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Where do the models come from?

Pre-trained model Deployed model

Tailor to the deployment setting @

‘® TensorFlow

PYTORCH (@
HUB GLUON

e
Keras =




Tons of DNN tailoring algorithms

P r e_t ra | ne d mo d e I MorphNet: Fast & Simple Resour;e;t(‘lv(::;sl::ained Structure Learning of Deep

PROXYLESSNAS: DIRECT NEURAL ARCHITECTURE
SEARCH ON TARGET TASK AND HARDWARE

AdaNet: Adaptive Structural Learning of Artificial Neural Networks

ONCE-FOR-ALL: TRAIN ONE NETWORK AND SPE-
CIALIZE IT FOR EFFICIENT DEPLOYMENT

ChamNet: Towards Efficient Network Design through Platform-Aware Model

‘® TensorFlow Adaptation

SLIMMABLE NEURAL NETWORKS
PYTORCH
HUB i Many others......

Deployed model
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However, tailoring a DNN is still not trivial
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However, tailoring a DNN is still not trivial

(Expensive search process
- Hundreds of GPU hours

Original - 10x Glg memory usage
model
Implement Execute
the tailoring the DNN » @
algorithm adaptation
- 10 GFLOPs : _. Tailored model

-300 MB size Laborious manual efforts
- Annotate the DNNs
_- Configure parameters )
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Even worse in practice -
Heterogeneous hardware targets

TFLOP/s GFLOP/s <MFLOP/s
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Even worse in practice -
Heterogeneous performance requirements

Google Lens

Autonomous driving Traffic monitoring

Performance requirements

~1ms ~30ms ~1s
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Even worse in practice -
Model Diversity
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Even worse in practice
Model Diversity

NASNet-A-Large

SE-ResNeXt-101(32x4d)

Incephon—ResNet-vZ el
80 1 sE-ResNext-50(32x4d) et-

@ Xcepl:on &.palme, 9 IPathNet-131
SE-ResNet-101 esNet-152 eXt-101(64x4d)

SE-ResNet$0_ Inception V3MEXK 101(32 esNet-152

DenseNet-201@) WBenseNet- 161.55“""'101 ResNet-152

.ResNel»SO Caffe-ResNet-101 VGG-19_ BN

DenseNet-169 VGG-16_BN

@]
DualPathNet-68

DenseNet-121
® NASNet-A-Mobile

BN-lnce.ption @ ResNet-34 VGG-13_BN

75

@ MobileNet-v2 VGG-11_BN
VGG-19
70 4 .ResNet-lB VGG-16

MobileNet-v1
VGG-13

¥ shuffleNet VGG-11

Accuracy

Model size

.GoogLeNet

ANN

.
&7 Z

i 5M 10M S50M 75M  100M
SqueezeNet-v1.1

‘e SqueezeNet-v1.0

I. AlexNet

Complexity (GFLOPS)

BianCo, Simone, et al. ”"Benchmark Analysis of Representative Deep Neural Network Architectures" arXiv:1810.00763 (2018).
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Even worse in practice -
Huge tailoring space

Huge space for tailoring

Hardware / Performance requirements
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Even worse in practice -
Huge tailoring space

Huge space for tailoring
@

Hardware / Performance requirements
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Even worse in practice -
Runtime dynamics

App requirement dynamics
- Accuracy (critical vs. idle)

- Latency (day vs. night)
- Power (battery vs. charged)

Device resource dynamics
- Memory space

- CPU quota

- Accelerator availability

- Queuing time
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Summary: practical challenges

Unscalable DNN tailoring needs

Runtime dynamics
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Summary: practical challenges

Unscalable DNN tailoring needs

Runtime dynamics

Need system support
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Existing DL ecosystems

Data:
TF Dataset

Training: Model repo: On-device inference:
TF.Distribute.Strategy |8l TF Hub TensorFlow Lite

TensorBoard

Training (design) Inference (deployment)
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Current DNN tailoring practice

( Current tailoring practice\
Data: spills into both sides and
relies on human.

TF Dataset

J

-------------------------------
. .
*

o’

Training: Model repo: On-device inference:
TF.Distribute.Strategy |8l TF Hub TensorFlow Lite

03

Analysis:
TensorBoard

Training (design) Inference (deployment)
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/deal DNN tailoring practice

Data: Need system support in A
TE Dataset | between to handle the
complexity y

On-device inference:

Training: Model repo:
TF.Distribute.Strategy |8l TF Hub

TensorBoard

Training (design) Inference (deployment)

TensorFlow Lite
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Our solution - Mistify

* Mistify — framework for automated DNN model porting

* Decoupling and bridging DNN design and deployment

* Reducing manual efforts and computation overhead
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Mistify design



How Mistify addresses the challenges

* Unscalable DNN tailoring needs
* Adaptation executor abstraction
* Collective adaptation

* Runtime dynamics
e Switching on multi-branch models

* Model re-adaptation
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Adaptation executor

Search

satisfied

not satisfied

END
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Adaptation executor

Embed adaptation logic,
configure execution
parameters, etc.

oﬁ
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Adaptation executor

Core state: Run the actual
DNN structure searching c
process for ~ iterations

Embed adaptation logic, a
configure execution a
parameters, etc.

N
(_/o
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Adaptation executor

Core state: Run the actual g
DNN structure searching c
process for ~ iterations

Embed adaptation logic, a
configure execution a

parameters, etc. «~

Measuring the cost of the

current DNN, and decide EI

if ready to terminate.
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Adaptation executor

Embed adaptation logic,

parameters, etc.

Measuring the cost of the
current DNN, and decide
if ready to terminate.

o

configure execution a

e

Core state: Run the actual
DNN structure searching
process for ~ iterations

Adjust the parameters to
control the searching
algorithm behaviors

P

<’

0
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How Mistify addresses the challenges

* Unscalable DNN tailoring needs
* Adaptation executor abstraction — minimizes manual efforts
* Collective adaptation

* Runtime dynamics
e Switching on multi-branch models

* Model re-adaptation
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Multiple adaptation goals

How to scale to a batch of

simultaneous adaptations?
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Multiple adaptation goals

#HParams: 12M #HParams: 10M #HParams: 7M #HParams: 9OM
HFLOPs: 7G HFLOPs: 6G HFLOPs: 5@G HFLOPs: 2G
Original DNN @ @ Q

#HParams: 5M #Params: 6M HParams: 8M
HFLOPs: 4G HFLOPs: 3G HFLOPs: 1G
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Adapt independently

#Params: 12M :
#FLOPs: 7G 7 adaptation processes,
SOCUSRUVE [nefficient!
H#FLOPs: 6G
#Params: /M
4)@ HFLOPs: 5G
H #Params: O9M

HFLOPs: 2G
#Params: 5M

@ HFLOPs: 4G
#Params: 6M
HFLOPs: 3G
#HParams: 8M
HFLOPs: 1G ”




Adapt independently
#Params: 12M
H#HFLOPs: 7G

#Params: 10M

H#FLOPs: 6G
#Params: /M

—)@ #FLOPs: 5G
@ #Params: 9M

H#HFLOPs: 2G

Repeated efforts!

#Params: 5M
HFLOPs: 4G

#Params: 6M

@ HFLOPs: 3G
#HParams: 8M
HFLOPs: 1G
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Adapt independently
#Params: 12M
P%FLOPS: 7G
........................... #Params: 10M
A )Q HFLOPs: 6G
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Instead, collective adaptation

#Params: 7M
HFLOPs: 5G

12M > 10M
7G > 6G

HParams: 12M #HParams: 10M
HFLOPs: 7G HFLOPs: 6G

#HParams: 9M
HFLOPs: 2G

@

#HParams: 5M
HFLOPs: 4G

#HParams: 6 M
HFLOPs: 3G

#HParams: 8M
HFLOPs: 1G
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Instead, collective adaptation

#HParams: 5M

HFLOPs: 4G
#Params: 7M

#FLOPs: 5G

#HParams: 6 M
HFLOPs: 3G

HParams: 12M #HParams: 10M
HFLOPs: 7G HFLOPs: 6G

#HParams: 9M #HParams: 8M
HFLOPs: 2G HFLOPs: 1G

Only 3 adaptation processes are needed
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How Mistify addresses the challenges

* Unscalable DNN tailoring needs

* Adaptation executor abstraction — simplify manual efforts

e Collective adaptation — scale with multiple adaptation processes
* Runtime dynamics

e Switching on multi-branch models

* Model re-adaptation
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How to handle runtime dynamics?

Foreground: switching on multi-branch DNNs

Background: on-demand model re-adaptation
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Foreground: branch switching

_ i _ X _ | Branchl:
Generate multi-branch DNNs R WP | #params: 12m

#FLOPs: 7G

Branch?2

#HParams: 10M
HFLOPs: 6G

Single-branch model Branch3

#Params: 7M
#FLOPs: 5G

41



Foreground: branch switching

. i _ X _ | Branchl:
Generate multi-branch DNNs R WP | #params: 12m

#FLOPs: 7G

Branch?2

#HParams: 10M
HFLOPs: 6G

Single-branch model ow Ineed the

DNN with 8M
params and 5G

Branch3

#Params: 7M
#FLOPs: 5G

FLOPs
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Background: re-adaptation

#Params: 6.5M @

HFLOPs: 3.5G #Params: 5M
HFLOPs: 4G

#HParams: 7/M
HFLOPs: 5G

#Params: 6M

#HParams: 12M #HParams: 10M HFLOPs: 3G

HFLOPs: 7G H#FLOPs: 6G

#Params: OM #HParams: 8M
HFLOPs: 2G HFLOPs: 1G
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Background: re-adaptation

@

#HParams: 5M
HFLOPs: 4G

#HParams: 7/M

#FLOPs: 5G  #Param=g;
#FLOPs: 3.5

#Params: 6M

#HParams: 12M #HParams: 10M HFLOPs: 3G

HFLOPs: 7G H#FLOPs: 6G

#Params: OM #HParams: 8M
HFLOPs: 2G HFLOPs: 1G
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How Mistify addresses the challenges

* Unscalable DNN tailoring needs

* Adaptation executor abstraction — simplify manual efforts

e Collective adaptation — scale with multiple adaptation processes
* Runtime dynamics

e Switching on multi-branch models

 Model re-adaptation
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Mistify system workflow

Original DNN model

[m] & h
l;I:IIE """ On-device DL Inference
O |

engine
== o




Mistify system workflow

Mistify
server
4 - Original DNN model
- Adaptation configs
On-device DL Inference engine ]

47



Mistify system workflow

\ Mistify
server

4 Collective adaptation

\\
[ Parfs.,e Adaptation
confiss executor )
_/

Parse adaptation requests and

generate collective adaptation
schedules

D F=x [ On-device DL Inference engine ]
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Mistify system workflow

\ Mistify
server

4 Collective adaptation

\\
[ Parfs.,e Adaptation
confiss executor )
_/

\_

D F=y On-device DL Inference engine




Mistify system workflow

\ Mistify
server

4 Collective adaptation

\\
[ % rfs.,e Adaptation
connss executor )

[ Trigger runtime

J re-adaptation
, Y ~ Switch model
D ﬁﬁa On-device DL Inf¢
‘ branches

Performance
Monitor
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Mistify performance



General setup

(Server Devices
nnnnnn Samsung 59
Linux server : Google Edge TPU
= with RTX 2070 GPU “bmm" Nvidia P600 GPU

Models
e CV: MobileNet, ResNet50, ResNeXt101

\° NLP: BiDAF, BERT

g
Workloads & datasets

* Image classification (ImageNet, Cifar100)
e Question & Answering (SQUADv1.1)

-
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Scalability
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Minimizing manual efforts

Metrics

10 configurations

100 configurations

Manual | MorphNet

Mistify

Manual | MorphNet

Mistify

- Implements and executes the algorithm from scratch
- Adapts to each configuration individually
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Minimizing manual efforts

Metrics

10 configurations

100 configurations

Manual | MorphNet

Mistify

Manual | MorphNet

Mistify

- Annotates adaptation logic and termination conditions
- Adapts to each configuration individually
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Minimizing manual efforts

Metrics

10 configurations

100 configurations

Manual | MorphNet

Mistify

Manual | MorphNet

Mistify

- Fully automated
- Adapt to multiple configurations collectively
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Minimizing manual efforts

Metrics

10 configurations

100 configurations

Manual |MorphNet |Mistify |Manual | MorphNet |Mistify
Lines of Code >1k 138 14 >10k 782 104
Num of Files 30 12 1 300 102 1

- Orders of magnitude fewer lines of code changed

- Constant number of files changed
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Minimizing manual efforts

10 configurations 100 configurations
Metrics . y
Manual | MorphNet | Mistify |Manual |MorphNet |Mistify
Lines of Code >1k 138 14 >10k 782 104
Num of Files 30 12 1 300 102 1
Time (normalized) | 10 1.25 100 2.86

Time: from linear to nearly constant
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Conclusion

Mistify — automated and scalable DNN porting service

Decoupling DNN design and deployment and bridging them
with an end-to-end framework

Orders of magnitude reduction of computation overhead
and manual efforts
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