
Mistify: Automating DNN Model Porting 
for On-Device Inference at the Edge

Peizhen Guo, Bo Hu, Wenjun Hu

Yale University



On-device deep learning inference

2



On-device deep learning inference

3

Need compact and accurate DNN models



Where do the models come from?



Where do the models come from?

Pre-trained model



Where do the models come from?

Tailor to the deployment setting
Pre-trained model Deployed model



Tons of DNN tailoring algorithms

7

Many others……

Pre-trained model Deployed model



However, tailoring a DNN is still not trivial!

8



However, tailoring a DNN is still not trivial!

Edge deployment goal:
- 10 GFLOPs
- 300 MB size

}
Original
model

9

Implement
the tailoring
algorithm

Laborious manual efforts
- Annotate the DNNs
- Configure parameters



However, tailoring a DNN is still not trivial!

Edge deployment goal:
- 10 GFLOPs
- 300 MB size

}
Original
model

10

Tailored model

Implement
the tailoring
algorithm

Execute
the DNN
adaptation

Laborious manual efforts
- Annotate the DNNs
- Configure parameters

Expensive search process
- Hundreds of GPU hours
- 10x Gig memory usage



Hardware

TFLOP/s GFLOP/s <MFLOP/s

11

Even worse in practice -
Heterogeneous hardware targets



Performance requirements

~1ms ~30ms ~1s

12

Autonomous driving Traffic monitoring Google Lens

Even worse in practice -
Heterogeneous performance requirements



Hardware / Performance requirements

DN
N
m
odelcom

plexity

13

Even worse in practice -
Model Diversity



Hardware / Performance requirements

DN
N
m
odelcom

plexity

BianCo, Simone, et al. ”Benchmark Analysis of Representative Deep Neural Network Architectures" arXiv:1810.00763 (2018).

Ac
cu
ra
cy

Complexity (GFLOPS)

Model size

14

Even worse in practice -
Model Diversity



Hardware / Performance requirements

DN
N
m
odelcom

plexity

Huge space for tailoring

15

Even worse in practice -
Huge tailoring space



Hardware / Performance requirements

DN
N
m
odelcom

plexity

Huge space for tailoring

16

Even worse in practice -
Huge tailoring space



Even worse in practice -
Runtime dynamics

App requirement dynamics
- Accuracy (critical vs. idle)
- Latency (day vs. night)
- Power (battery vs. charged)
- …

Device resource dynamics
- Memory space
- CPU quota
- Accelerator availability
- Queuing time

17



Summary: practical challenges

18

Unscalable DNN tailoring needs

Runtime dynamics



Summary: practical challenges

19

Need system support

Unscalable DNN tailoring needs

Runtime dynamics



Existing DL ecosystems

20

Data:
TF Dataset

Model:
Keras

Training:
TF.Distribute.Strategy

Analysis:
TensorBoard

Model repo:
TF Hub

On-device inference:
TensorFlow Lite

Training (design) Inference (deployment)



Current DNN tailoring practice

21

Data:
TF Dataset

Model:
Keras

Training:
TF.Distribute.Strategy

Analysis:
TensorBoard

Model repo:
TF Hub

On-device inference:
TensorFlow Lite

Current tailoring practice
spills into both sides and
relies on human.

Training (design) Inference (deployment)



Ideal DNN tailoring practice

22

Data:
TF Dataset

Model:
Keras

Training:
TF.Distribute.Strategy

Analysis:
TensorBoard

Model repo:
TF Hub

On-device inference:
TensorFlow Lite

Need system support in
between to handle the
complexity

Training (design) Inference (deployment)



Our solution -Mistify

• Mistify – framework for automated DNN model porting

• Decoupling and bridging DNN design and deployment

• Reducing manual efforts and computation overhead

23



Mistify design

24



HowMistify addresses the challenges

• Unscalable DNN tailoring needs
• Adaptation executor abstraction

• Collective adaptation

• Runtime dynamics
• Switching on multi-branch models

• Model re-adaptation

25



Adaptation executor

Init Search Measure END

Adjust

not satisfied

satisfied

26



Adaptation executor

Init

27

Embed adaptation logic,
configure execution
parameters, etc.

Search

Measure Adjust



Adaptation executor

Init

28

Search

Measure Adjust

Embed adaptation logic,
configure execution
parameters, etc.

Core state: Run the actual
DNN structure searching
process for ~ iterations



Adaptation executor

Init

29

Search

Measure Adjust

Embed adaptation logic,
configure execution
parameters, etc.

Core state: Run the actual
DNN structure searching
process for ~ iterations

Measuring the cost of the
current DNN, and decide
if ready to terminate.



Adaptation executor

Init

30

Embed adaptation logic,
configure execution
parameters, etc.

Search
Core state: Run the actual
DNN structure searching
process for ~ iterations

Measure
Measuring the cost of the
current DNN, and decide
if ready to terminate.

Adjust
Adjust the parameters to
control the searching
algorithm behaviors



HowMistify addresses the challenges

• Unscalable DNN tailoring needs
• Adaptation executor abstraction –minimizes manual efforts

• Collective adaptation

• Runtime dynamics
• Switching on multi-branch models

• Model re-adaptation

31



Multiple adaptation goals

…… How to scale to a batch of
simultaneous adaptations?

32



Multiple adaptation goals

G1 G2 G3 G4

G5 G6 G7

#Params: 12M
#FLOPs: 7G

#Params: 10M
#FLOPs: 6G

#Params: 7M
#FLOPs: 5G

#Params: 9M
#FLOPs: 2G

#Params: 5M
#FLOPs: 4G

#Params: 6M
#FLOPs: 3G

#Params: 8M
#FLOPs: 1G

33

X

Original DNN



Adapt independently

X G2

G3

G4

G5

G6

G7

#Params: 12M
#FLOPs: 7G

#Params: 10M
#FLOPs: 6G

#Params: 7M
#FLOPs: 5G

#Params: 9M
#FLOPs: 2G

#Params: 5M
#FLOPs: 4G

#Params: 6M
#FLOPs: 3G

#Params: 8M
#FLOPs: 1G 34

X

X

X

X

X

X G1 7 adaptation processes,
inefficient!



Adapt independently

X G2

G3

G4

G5

G6

G7

#Params: 12M
#FLOPs: 7G

#Params: 10M
#FLOPs: 6G

#Params: 7M
#FLOPs: 5G

#Params: 9M
#FLOPs: 2G

#Params: 5M
#FLOPs: 4G

#Params: 6M
#FLOPs: 3G

#Params: 8M
#FLOPs: 1G 35

X

X

X

X

X

X G1

Repeated efforts!



Adapt independently

X G2

G3

G4

G5

G6

G7

#Params: 12M
#FLOPs: 7G

#Params: 10M
#FLOPs: 6G

#Params: 7M
#FLOPs: 5G

#Params: 9M
#FLOPs: 2G

#Params: 5M
#FLOPs: 4G

#Params: 6M
#FLOPs: 3G

#Params: 8M
#FLOPs: 1G 36

X

X

X

X

X

X G1

X



Instead, collective adaptation

G1 G2

G3

G4

G5

G6

G7

#Params: 12M
#FLOPs: 7G

#Params: 10M
#FLOPs: 6G

#Params: 7M
#FLOPs: 5G

#Params: 9M
#FLOPs: 2G

#Params: 5M
#FLOPs: 4G

#Params: 6M
#FLOPs: 3G

#Params: 8M
#FLOPs: 1G

12M > 10M
7G > 6G

37

X



Instead, collective adaptation

G1 G2

G3

G4

G5

G6

G7

#Params: 12M
#FLOPs: 7G

#Params: 10M
#FLOPs: 6G

#Params: 7M
#FLOPs: 5G

#Params: 9M
#FLOPs: 2G

#Params: 5M
#FLOPs: 4G

#Params: 6M
#FLOPs: 3G

#Params: 8M
#FLOPs: 1G

Only 3 adaptation processes are needed
38

X



HowMistify addresses the challenges

• Unscalable DNN tailoring needs
• Adaptation executor abstraction – simplify manual efforts

• Collective adaptation – scale with multiple adaptation processes

• Runtime dynamics
• Switching on multi-branch models

• Model re-adaptation

39



How to handle runtime dynamics?

40

Background: on-demand model re-adaptation

Foreground: switching on multi-branch DNNs



Foreground: branch switching

41

Single-branch model

Generate multi-branch DNNs

CaseOp

Branch1:

Branch2

Branch3

#Params: 12M
#FLOPs: 7G

#Params: 10M
#FLOPs: 6G

#Params: 7M
#FLOPs: 5G



Foreground: branch switching

42

Single-branch model

Generate multi-branch DNNs

CaseOp

Branch1:

Branch2

Branch3

#Params: 12M
#FLOPs: 7G

#Params: 10M
#FLOPs: 6G

#Params: 7M
#FLOPs: 5G

Now I need the
DNN with 8M
params and 5G

FLOPs



Background: re-adaptation

G1 G2

G3

G4

G5

G6

G7

#Params: 12M
#FLOPs: 7G

#Params: 10M
#FLOPs: 6G

#Params: 7M
#FLOPs: 5G

#Params: 9M
#FLOPs: 2G

#Params: 5M
#FLOPs: 4G

#Params: 6M
#FLOPs: 3G

#Params: 8M
#FLOPs: 1G

G8

#Params: 6.5M
#FLOPs: 3.5G

43



Background: re-adaptation

G1 G2

G3

G4

G5

G6

G7

#Params: 12M
#FLOPs: 7G

#Params: 10M
#FLOPs: 6G

#Params: 7M
#FLOPs: 5G

#Params: 9M
#FLOPs: 2G

#Params: 5M
#FLOPs: 4G

#Params: 6M
#FLOPs: 3G

#Params: 8M
#FLOPs: 1G

G8
#Params: 6.5M
#FLOPs: 3.5G

44



HowMistify addresses the challenges

• Unscalable DNN tailoring needs
• Adaptation executor abstraction – simplify manual efforts

• Collective adaptation – scale with multiple adaptation processes

• Runtime dynamics
• Switching on multi-branch models

• Model re-adaptation

45



Mistify system workflow

46

On-device DL Inference
engine

Original DNN model



Mistify
server

Mistify system workflow

47

On-device DL Inference engine

- Original DNN model
- Adaptation configs



Mistify
server

Mistify system workflow

48

On-device DL Inference engine

Collective adaptation

Parse
configs

Adaptation
executor

Parse adaptation requests and
generate collective adaptation
schedules



Mistify
server

Mistify system workflow

49

On-device DL Inference engine

Collective adaptation

Parse
configs

Adaptation
executor

Mistify
client……



Mistify
server

Mistify
client……

Mistify system workflow

50

On-device DL Inference engine

Collective adaptation

Parse
configs

Adaptation
executor

Performance
Monitor

Trigger runtime
re-adaptation

Switch model
branches



Mistify performance

51



General setup

52

Linux server
with RTX 2070 GPU

Samsung S9

Workloads & datasets
• Image classification (ImageNet, Cifar100)
• Question & Answering (SQuADv1.1)

Server

Models
• CV: MobileNet, ResNet50, ResNeXt101
• NLP: BiDAF, BERT

Google Edge TPU
Nvidia P600 GPU

Devices



Scalability

53

1

2

4

8

16

32

64

128

2 4 8 16 32 64 128

Sp
ee
du

p
Ra
tio

Number of configurations

Idea
l spe

edup
ratio



Scalability

10~70x

54

1

2

4

8

16

32

64

128

2 4 8 16 32 64 128

Sp
ee
du

p
Ra
tio

Number of configurations

MobileNet
ResNet50
BERT

Idea
l spe

edup
ratio



Minimizing manual efforts

55

Metrics
10 configurations 100 configurations
Manual MorphNet Mistify Manual MorphNet Mistify

- Implements and executes the algorithm from scratch
- Adapts to each configuration individually



Minimizing manual efforts

56

Metrics
10 configurations 100 configurations
Manual MorphNet Mistify Manual MorphNet Mistify

- Annotates adaptation logic and termination conditions
- Adapts to each configuration individually



Minimizing manual efforts

57

Metrics
10 configurations 100 configurations
Manual MorphNet Mistify Manual MorphNet Mistify

- Fully automated
- Adapt to multiple configurations collectively



Minimizing manual efforts

- Orders of magnitude fewer lines of code changed
- Constant number of files changed

58

Metrics
10 configurations 100 configurations
Manual MorphNet Mistify Manual MorphNet Mistify

Lines of Code >1k 138 14 >10k 782 104
Num of Files 30 12 1 300 102 1



Minimizing manual efforts

Time: from linear to nearly constant

59

Metrics
10 configurations 100 configurations
Manual MorphNet Mistify Manual MorphNet Mistify

Lines of Code >1k 138 14 >10k 782 104

Num of Files 30 12 1 300 102 1

Time (normalized) 10 1.25 100 2.86



Conclusion

60

Mistify – automated and scalable DNN porting service

Decoupling DNN design and deployment and bridging them
with an end-to-end framework

Orders of magnitude reduction of computation overhead
and manual efforts



Thank you


