Mistify: Automating DNN Model Porting
for On-Device Inference at the Edge

Peizhen Guo, Bo Hu, Wenjun Hu

Yale University

On-device deep learning inference

On-device deep learning inference

Where do the models come from?

Where do the models come from?

Pre-trained model

“+® TensorFlow

PYTORCH (@
HUB GLUON

Keras

Where do the models come from?

Pre-trained model Deployed model

Tailor to the deployment setting @

‘® TensorFlow

PYTORCH (@
HUB GLUON

e
Keras =

Tons of DNN tailoring algorithms

P r e_t ra | ne d mo d e I MorphNet: Fast & Simple Resour;e;t(‘lv(::;sl::ained Structure Learning of Deep

PROXYLESSNAS: DIRECT NEURAL ARCHITECTURE
SEARCH ON TARGET TASK AND HARDWARE

AdaNet: Adaptive Structural Learning of Artificial Neural Networks

ONCE-FOR-ALL: TRAIN ONE NETWORK AND SPE-
CIALIZE IT FOR EFFICIENT DEPLOYMENT

ChamNet: Towards Efficient Network Design through Platform-Aware Model

‘® TensorFlow Adaptation

SLIMMABLE NEURAL NETWORKS
PYTORCH
HUB i Many others......

Deployed model

s
i
5=
=

However, tailoring a DNN is still not trivial

However, tailoring a DNN is still not trivial

Original

model
Implement

the tailoring
algorithm
- 10 GFLOPs - g
300 MB size el Laborious manual efforts
- Annotate the DNNs
_- Configure parameters y

However, tailoring a DNN is still not trivial

(Expensive search process
- Hundreds of GPU hours

Original - 10x Glg memory usage
model
Implement Execute
the tailoring the DNN » @
algorithm adaptation
- 10 GFLOPs : _. Tailored model

-300 MB size Laborious manual efforts
- Annotate the DNNs
_- Configure parameters)

10

Even worse in practice -
Heterogeneous hardware targets

TFLOP/s GFLOP/s <MFLOP/s

11

Even worse in practice -
Heterogeneous performance requirements

Google Lens

Autonomous driving Traffic monitoring

Performance requirements

~1ms ~30ms ~1s

12

Even worse in practice -
Model Diversity

O
Z
Z
3
o
Q
D
(@)
o
3
=2
@
X,
(o
<

13

Even worse in practice
Model Diversity

NASNet-A-Large

SE-ResNeXt-101(32x4d)

Incephon—ResNet-vZ el
80 1 sE-ResNext-50(32x4d) et-

@ Xcepl:on &.palme, 9 IPathNet-131
SE-ResNet-101 esNet-152 eXt-101(64x4d)

SE-ResNet$0_ Inception V3MEXK 101(32 esNet-152

DenseNet-201@) WBenseNet- 161.55“""'101 ResNet-152

.ResNel»SO Caffe-ResNet-101 VGG-19_ BN

DenseNet-169 VGG-16_BN

@]
DualPathNet-68

DenseNet-121
® NASNet-A-Mobile

BN-lnce.ption @ ResNet-34 VGG-13_BN

75

@ MobileNet-v2 VGG-11_BN
VGG-19
70 4 .ResNet-lB VGG-16

MobileNet-v1
VGG-13

¥ shuffleNet VGG-11

Accuracy

Model size

.GoogLeNet

ANN

.
&7 Z

i 5M 10M S50M 75M 100M
SqueezeNet-v1.1

‘e SqueezeNet-v1.0

I. AlexNet

Complexity (GFLOPS)

BianCo, Simone, et al. ”"Benchmark Analysis of Representative Deep Neural Network Architectures" arXiv:1810.00763 (2018).

g
=

Alixa|dwod [opow NNQ

Even worse in practice -
Huge tailoring space

Huge space for tailoring

Hardware / Performance requirements

O
Z
Z
3
o
Q.
@
(@)
o
3
=2
@
X,
—t
<

15

Even worse in practice -
Huge tailoring space

Huge space for tailoring
@

Hardware / Performance requirements

fRE

(

Anxa|dwod [spow NNQ

- J

16

Even worse in practice -
Runtime dynamics

App requirement dynamics
- Accuracy (critical vs. idle)

- Latency (day vs. night)
- Power (battery vs. charged)

Device resource dynamics
- Memory space

- CPU quota

- Accelerator availability

- Queuing time

17

Summary: practical challenges

Unscalable DNN tailoring needs

Runtime dynamics

18

Summary: practical challenges

Unscalable DNN tailoring needs

Runtime dynamics

Need system support

19

Existing DL ecosystems

Data:
TF Dataset

Training: Model repo: On-device inference:
TF.Distribute.Strategy |8l TF Hub TensorFlow Lite

TensorBoard

Training (design) Inference (deployment)

20

Current DNN tailoring practice

(Current tailoring practice\
Data: spills into both sides and
relies on human.

TF Dataset

J

. .
*

o’

Training: Model repo: On-device inference:
TF.Distribute.Strategy |8l TF Hub TensorFlow Lite

03

Analysis:
TensorBoard

Training (design) Inference (deployment)

21

/deal DNN tailoring practice

Data: Need system support in A
TE Dataset | between to handle the
complexity y

On-device inference:

Training: Model repo:
TF.Distribute.Strategy |8l TF Hub

TensorBoard

Training (design) Inference (deployment)

TensorFlow Lite

22

Our solution - Mistify

* Mistify — framework for automated DNN model porting

* Decoupling and bridging DNN design and deployment

* Reducing manual efforts and computation overhead

23

Mistify design

How Mistify addresses the challenges

* Unscalable DNN tailoring needs
* Adaptation executor abstraction
* Collective adaptation

* Runtime dynamics
e Switching on multi-branch models

* Model re-adaptation

25

Adaptation executor

Search

satisfied

not satisfied

END

26

Adaptation executor

Embed adaptation logic,
configure execution
parameters, etc.

oﬁ

27

Adaptation executor

Core state: Run the actual
DNN structure searching c
process for ~ iterations

Embed adaptation logic, a
configure execution a
parameters, etc.

N
(_/o

28

Adaptation executor

Core state: Run the actual g
DNN structure searching c
process for ~ iterations

Embed adaptation logic, a
configure execution a

parameters, etc. «~

Measuring the cost of the

current DNN, and decide EI

if ready to terminate.

29

Adaptation executor

Embed adaptation logic,

parameters, etc.

Measuring the cost of the
current DNN, and decide
if ready to terminate.

o

configure execution a

e

Core state: Run the actual
DNN structure searching
process for ~ iterations

Adjust the parameters to
control the searching
algorithm behaviors

P

<’

0

30

How Mistify addresses the challenges

* Unscalable DNN tailoring needs
* Adaptation executor abstraction — minimizes manual efforts
* Collective adaptation

* Runtime dynamics
e Switching on multi-branch models

* Model re-adaptation

31

Multiple adaptation goals

How to scale to a batch of

simultaneous adaptations?

32

Multiple adaptation goals

#HParams: 12M #HParams: 10M #HParams: 7M #HParams: 9OM
HFLOPs: 7G HFLOPs: 6G HFLOPs: 5@G HFLOPs: 2G
Original DNN @ @ Q

#HParams: 5M #Params: 6M HParams: 8M
HFLOPs: 4G HFLOPs: 3G HFLOPs: 1G

33

Adapt independently

#Params: 12M :
#FLOPs: 7G 7 adaptation processes,
SOCUSRUVE [nefficient!
H#FLOPs: 6G
#Params: /M
4)@ HFLOPs: 5G
H #Params: O9M

HFLOPs: 2G
#Params: 5M

@ HFLOPs: 4G
#Params: 6M
HFLOPs: 3G
#HParams: 8M
HFLOPs: 1G ”

Adapt independently
#Params: 12M
H#HFLOPs: 7G

#Params: 10M

H#FLOPs: 6G
#Params: /M

—)@ #FLOPs: 5G
@ #Params: 9M

H#HFLOPs: 2G

Repeated efforts!

#Params: 5M
HFLOPs: 4G

#Params: 6M

@ HFLOPs: 3G
#HParams: 8M
HFLOPs: 1G

35

Adapt independently
#Params: 12M
P%FLOPS: 7G
........................... #Params: 10M
A)Q HFLOPs: 6G

36

Instead, collective adaptation

#Params: 7M
HFLOPs: 5G

12M > 10M
7G > 6G

HParams: 12M #HParams: 10M
HFLOPs: 7G HFLOPs: 6G

#HParams: 9M
HFLOPs: 2G

@

#HParams: 5M
HFLOPs: 4G

#HParams: 6 M
HFLOPs: 3G

#HParams: 8M
HFLOPs: 1G

37

Instead, collective adaptation

#HParams: 5M

HFLOPs: 4G
#Params: 7M

#FLOPs: 5G

#HParams: 6 M
HFLOPs: 3G

HParams: 12M #HParams: 10M
HFLOPs: 7G HFLOPs: 6G

#HParams: 9M #HParams: 8M
HFLOPs: 2G HFLOPs: 1G

Only 3 adaptation processes are needed

38

How Mistify addresses the challenges

* Unscalable DNN tailoring needs

* Adaptation executor abstraction — simplify manual efforts

e Collective adaptation — scale with multiple adaptation processes
* Runtime dynamics

e Switching on multi-branch models

* Model re-adaptation

39

How to handle runtime dynamics?

Foreground: switching on multi-branch DNNs

Background: on-demand model re-adaptation

40

Foreground: branch switching

_ i _ X _ | Branchl:
Generate multi-branch DNNs R WP | #params: 12m

#FLOPs: 7G

Branch?2

#HParams: 10M
HFLOPs: 6G

Single-branch model Branch3

#Params: 7M
#FLOPs: 5G

41

Foreground: branch switching

. i _ X _ | Branchl:
Generate multi-branch DNNs R WP | #params: 12m

#FLOPs: 7G

Branch?2

#HParams: 10M
HFLOPs: 6G

Single-branch model ow Ineed the

DNN with 8M
params and 5G

Branch3

#Params: 7M
#FLOPs: 5G

FLOPs

42

Background: re-adaptation

#Params: 6.5M @

HFLOPs: 3.5G #Params: 5M
HFLOPs: 4G

#HParams: 7/M
HFLOPs: 5G

#Params: 6M

#HParams: 12M #HParams: 10M HFLOPs: 3G

HFLOPs: 7G H#FLOPs: 6G

#Params: OM #HParams: 8M
HFLOPs: 2G HFLOPs: 1G

43

Background: re-adaptation

@

#HParams: 5M
HFLOPs: 4G

#HParams: 7/M

#FLOPs: 5G #Param=g;
#FLOPs: 3.5

#Params: 6M

#HParams: 12M #HParams: 10M HFLOPs: 3G

HFLOPs: 7G H#FLOPs: 6G

#Params: OM #HParams: 8M
HFLOPs: 2G HFLOPs: 1G

44

How Mistify addresses the challenges

* Unscalable DNN tailoring needs

* Adaptation executor abstraction — simplify manual efforts

e Collective adaptation — scale with multiple adaptation processes
* Runtime dynamics

e Switching on multi-branch models

 Model re-adaptation

45

Mistify system workflow

Original DNN model

[m] & h
l;I:IIE """ On-device DL Inference
O |

engine
== o

Mistify system workflow

Mistify
server
4 - Original DNN model
- Adaptation configs
On-device DL Inference engine]

47

Mistify system workflow

\ Mistify
server

4 Collective adaptation

\\
[Parfs.,e Adaptation
confiss executor)
_/

Parse adaptation requests and

generate collective adaptation
schedules

D F=x [On-device DL Inference engine]

48

Mistify system workflow

\ Mistify
server

4 Collective adaptation

\\
[Parfs.,e Adaptation
confiss executor)
_/

_

D F=y On-device DL Inference engine

Mistify system workflow

\ Mistify
server

4 Collective adaptation

\\
[% rfs.,e Adaptation
connss executor)

[Trigger runtime

J re-adaptation
, Y ~ Switch model
D ﬁﬁa On-device DL Inf¢
‘ branches

Performance
Monitor

50

Mistify performance

General setup

(Server Devices
nnnnnn Samsung 59
Linux server : Google Edge TPU
= with RTX 2070 GPU “bmm" Nvidia P600 GPU

Models
e CV: MobileNet, ResNet50, ResNeXt101

\° NLP: BiDAF, BERT

g
Workloads & datasets

* Image classification (ImageNet, Cifar100)
e Question & Answering (SQUADv1.1)

-

S
calability

(@)}
D

W
N

Sp
eedup Rati
10

.s*

2
4

8

16

32

Nu
mb
er of
configurat
ions

64

53

Scalability

‘..““.‘.“.‘..‘,“.‘.“.“.“‘..‘.“.‘.““..““‘ “““¢‘ ‘¢‘¢-‘-¢““-‘¢‘1 ‘I“I‘I““II““I‘I “ll“‘
—
+
+
2 N
RT

Number of configurations

54

Minimizing manual efforts

Metrics

10 configurations

100 configurations

Manual | MorphNet

Mistify

Manual | MorphNet

Mistify

- Implements and executes the algorithm from scratch
- Adapts to each configuration individually

55

Minimizing manual efforts

Metrics

10 configurations

100 configurations

Manual | MorphNet

Mistify

Manual | MorphNet

Mistify

- Annotates adaptation logic and termination conditions
- Adapts to each configuration individually

56

Minimizing manual efforts

Metrics

10 configurations

100 configurations

Manual | MorphNet

Mistify

Manual | MorphNet

Mistify

- Fully automated
- Adapt to multiple configurations collectively

57

Minimizing manual efforts

Metrics

10 configurations

100 configurations

Manual |MorphNet |Mistify |Manual | MorphNet |Mistify
Lines of Code >1k 138 14 >10k 782 104
Num of Files 30 12 1 300 102 1

- Orders of magnitude fewer lines of code changed

- Constant number of files changed

58

Minimizing manual efforts

10 configurations 100 configurations
Metrics . y
Manual | MorphNet | Mistify |Manual |MorphNet |Mistify
Lines of Code >1k 138 14 >10k 782 104
Num of Files 30 12 1 300 102 1
Time (normalized) | 10 1.25 100 2.86

Time: from linear to nearly constant

59

Conclusion

Mistify — automated and scalable DNN porting service

Decoupling DNN design and deployment and bridging them
with an end-to-end framework

Orders of magnitude reduction of computation overhead
and manual efforts

60

Thank you

