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On-device deep learning inference
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On-device deep learning inference
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Need compact and accurate DNN models



Where do the models come from?



Where do the models come from?

Pre-trained model



Where do the models come from?

Tailor to the deployment setting
Pre-trained model Deployed model



Tons of DNN tailoring algorithms
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Many others……

Pre-trained model Deployed model



However, tailoring a DNN is still not trivial!
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However, tailoring a DNN is still not trivial!

Edge deployment goal:
- 10 GFLOPs
- 300 MB size

}
Original
model

9

Implement
the tailoring
algorithm

Laborious manual efforts
- Annotate the DNNs
- Configure parameters



However, tailoring a DNN is still not trivial!

Edge deployment goal:
- 10 GFLOPs
- 300 MB size

}
Original
model
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Tailored model

Implement
the tailoring
algorithm

Execute
the DNN
adaptation

Laborious manual efforts
- Annotate the DNNs
- Configure parameters

Expensive search process
- Hundreds of GPU hours
- 10x Gig memory usage



Hardware

TFLOP/s GFLOP/s <MFLOP/s
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Even worse in practice -
Heterogeneous hardware targets



Performance requirements

~1ms ~30ms ~1s
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Autonomous driving Traffic monitoring Google Lens

Even worse in practice -
Heterogeneous performance requirements
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Even worse in practice -
Model Diversity
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BianCo, Simone, et al. ”Benchmark Analysis of Representative Deep Neural Network Architectures" arXiv:1810.00763 (2018).

Ac
cu
ra
cy

Complexity (GFLOPS)

Model size

14

Even worse in practice -
Model Diversity
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Huge space for tailoring
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Even worse in practice -
Huge tailoring space
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Even worse in practice -
Huge tailoring space



Even worse in practice -
Runtime dynamics

App requirement dynamics
- Accuracy (critical vs. idle)
- Latency (day vs. night)
- Power (battery vs. charged)
- …

Device resource dynamics
- Memory space
- CPU quota
- Accelerator availability
- Queuing time
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Summary: practical challenges
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Unscalable DNN tailoring needs

Runtime dynamics



Summary: practical challenges
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Need system support

Unscalable DNN tailoring needs

Runtime dynamics



Existing DL ecosystems
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Data:
TF Dataset

Model:
Keras

Training:
TF.Distribute.Strategy

Analysis:
TensorBoard

Model repo:
TF Hub

On-device inference:
TensorFlow Lite

Training (design) Inference (deployment)



Current DNN tailoring practice
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Data:
TF Dataset

Model:
Keras

Training:
TF.Distribute.Strategy

Analysis:
TensorBoard

Model repo:
TF Hub

On-device inference:
TensorFlow Lite

Current tailoring practice
spills into both sides and
relies on human.

Training (design) Inference (deployment)



Ideal DNN tailoring practice
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Data:
TF Dataset

Model:
Keras

Training:
TF.Distribute.Strategy

Analysis:
TensorBoard

Model repo:
TF Hub

On-device inference:
TensorFlow Lite

Need system support in
between to handle the
complexity

Training (design) Inference (deployment)



Our solution -Mistify

• Mistify – framework for automated DNN model porting

• Decoupling and bridging DNN design and deployment

• Reducing manual efforts and computation overhead
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Mistify design
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HowMistify addresses the challenges

• Unscalable DNN tailoring needs
• Adaptation executor abstraction

• Collective adaptation

• Runtime dynamics
• Switching on multi-branch models

• Model re-adaptation
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Adaptation executor

Init Search Measure END

Adjust

not satisfied

satisfied
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Adaptation executor

Init

27

Embed adaptation logic,
configure execution
parameters, etc.

Search

Measure Adjust



Adaptation executor

Init

28

Search

Measure Adjust

Embed adaptation logic,
configure execution
parameters, etc.

Core state: Run the actual
DNN structure searching
process for ~ iterations



Adaptation executor

Init

29

Search

Measure Adjust

Embed adaptation logic,
configure execution
parameters, etc.

Core state: Run the actual
DNN structure searching
process for ~ iterations

Measuring the cost of the
current DNN, and decide
if ready to terminate.



Adaptation executor

Init
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Embed adaptation logic,
configure execution
parameters, etc.

Search
Core state: Run the actual
DNN structure searching
process for ~ iterations

Measure
Measuring the cost of the
current DNN, and decide
if ready to terminate.

Adjust
Adjust the parameters to
control the searching
algorithm behaviors



HowMistify addresses the challenges

• Unscalable DNN tailoring needs
• Adaptation executor abstraction –minimizes manual efforts

• Collective adaptation

• Runtime dynamics
• Switching on multi-branch models

• Model re-adaptation
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Multiple adaptation goals

…… How to scale to a batch of
simultaneous adaptations?
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Multiple adaptation goals

G1 G2 G3 G4

G5 G6 G7

#Params: 12M
#FLOPs: 7G

#Params: 10M
#FLOPs: 6G

#Params: 7M
#FLOPs: 5G

#Params: 9M
#FLOPs: 2G

#Params: 5M
#FLOPs: 4G

#Params: 6M
#FLOPs: 3G

#Params: 8M
#FLOPs: 1G
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Adapt independently

X G2

G3

G4

G5

G6

G7

#Params: 12M
#FLOPs: 7G

#Params: 10M
#FLOPs: 6G

#Params: 7M
#FLOPs: 5G

#Params: 9M
#FLOPs: 2G

#Params: 5M
#FLOPs: 4G

#Params: 6M
#FLOPs: 3G

#Params: 8M
#FLOPs: 1G 34
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X G1 7 adaptation processes,
inefficient!



Adapt independently

X G2

G3

G4

G5

G6

G7

#Params: 12M
#FLOPs: 7G

#Params: 10M
#FLOPs: 6G

#Params: 7M
#FLOPs: 5G

#Params: 9M
#FLOPs: 2G

#Params: 5M
#FLOPs: 4G

#Params: 6M
#FLOPs: 3G

#Params: 8M
#FLOPs: 1G 35
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Repeated efforts!



Adapt independently

X G2

G3

G4

G5

G6

G7

#Params: 12M
#FLOPs: 7G

#Params: 10M
#FLOPs: 6G

#Params: 7M
#FLOPs: 5G

#Params: 9M
#FLOPs: 2G

#Params: 5M
#FLOPs: 4G

#Params: 6M
#FLOPs: 3G

#Params: 8M
#FLOPs: 1G 36
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Instead, collective adaptation

G1 G2

G3

G4

G5

G6

G7

#Params: 12M
#FLOPs: 7G

#Params: 10M
#FLOPs: 6G

#Params: 7M
#FLOPs: 5G

#Params: 9M
#FLOPs: 2G

#Params: 5M
#FLOPs: 4G

#Params: 6M
#FLOPs: 3G

#Params: 8M
#FLOPs: 1G

12M > 10M
7G > 6G
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Instead, collective adaptation

G1 G2

G3

G4

G5

G6

G7

#Params: 12M
#FLOPs: 7G

#Params: 10M
#FLOPs: 6G

#Params: 7M
#FLOPs: 5G

#Params: 9M
#FLOPs: 2G

#Params: 5M
#FLOPs: 4G

#Params: 6M
#FLOPs: 3G

#Params: 8M
#FLOPs: 1G

Only 3 adaptation processes are needed
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HowMistify addresses the challenges

• Unscalable DNN tailoring needs
• Adaptation executor abstraction – simplify manual efforts

• Collective adaptation – scale with multiple adaptation processes

• Runtime dynamics
• Switching on multi-branch models

• Model re-adaptation
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How to handle runtime dynamics?
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Background: on-demand model re-adaptation

Foreground: switching on multi-branch DNNs



Foreground: branch switching
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Single-branch model

Generate multi-branch DNNs

CaseOp

Branch1:

Branch2

Branch3

#Params: 12M
#FLOPs: 7G

#Params: 10M
#FLOPs: 6G

#Params: 7M
#FLOPs: 5G



Foreground: branch switching
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Single-branch model

Generate multi-branch DNNs

CaseOp

Branch1:

Branch2

Branch3

#Params: 12M
#FLOPs: 7G

#Params: 10M
#FLOPs: 6G

#Params: 7M
#FLOPs: 5G

Now I need the
DNN with 8M
params and 5G

FLOPs



Background: re-adaptation

G1 G2

G3

G4

G5

G6

G7

#Params: 12M
#FLOPs: 7G

#Params: 10M
#FLOPs: 6G

#Params: 7M
#FLOPs: 5G

#Params: 9M
#FLOPs: 2G

#Params: 5M
#FLOPs: 4G

#Params: 6M
#FLOPs: 3G

#Params: 8M
#FLOPs: 1G

G8

#Params: 6.5M
#FLOPs: 3.5G
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Background: re-adaptation

G1 G2

G3

G4

G5

G6

G7

#Params: 12M
#FLOPs: 7G

#Params: 10M
#FLOPs: 6G

#Params: 7M
#FLOPs: 5G

#Params: 9M
#FLOPs: 2G

#Params: 5M
#FLOPs: 4G

#Params: 6M
#FLOPs: 3G

#Params: 8M
#FLOPs: 1G

G8
#Params: 6.5M
#FLOPs: 3.5G
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HowMistify addresses the challenges

• Unscalable DNN tailoring needs
• Adaptation executor abstraction – simplify manual efforts

• Collective adaptation – scale with multiple adaptation processes

• Runtime dynamics
• Switching on multi-branch models

• Model re-adaptation
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Mistify system workflow
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On-device DL Inference
engine

Original DNN model



Mistify
server

Mistify system workflow
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On-device DL Inference engine

- Original DNN model
- Adaptation configs



Mistify
server

Mistify system workflow
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On-device DL Inference engine

Collective adaptation

Parse
configs

Adaptation
executor

Parse adaptation requests and
generate collective adaptation
schedules



Mistify
server

Mistify system workflow
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On-device DL Inference engine

Collective adaptation

Parse
configs

Adaptation
executor

Mistify
client……



Mistify
server

Mistify
client……

Mistify system workflow
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On-device DL Inference engine

Collective adaptation

Parse
configs

Adaptation
executor

Performance
Monitor

Trigger runtime
re-adaptation

Switch model
branches



Mistify performance
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General setup
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Linux server
with RTX 2070 GPU

Samsung S9

Workloads & datasets
• Image classification (ImageNet, Cifar100)
• Question & Answering (SQuADv1.1)

Server

Models
• CV: MobileNet, ResNet50, ResNeXt101
• NLP: BiDAF, BERT

Google Edge TPU
Nvidia P600 GPU

Devices



Scalability

53

1

2

4

8

16

32

64

128

2 4 8 16 32 64 128

Sp
ee
du

p
Ra
tio

Number of configurations

Idea
l spe

edup
ratio



Scalability

10~70x
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Minimizing manual efforts
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Metrics
10 configurations 100 configurations
Manual MorphNet Mistify Manual MorphNet Mistify

- Implements and executes the algorithm from scratch
- Adapts to each configuration individually



Minimizing manual efforts
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Metrics
10 configurations 100 configurations
Manual MorphNet Mistify Manual MorphNet Mistify

- Annotates adaptation logic and termination conditions
- Adapts to each configuration individually



Minimizing manual efforts
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Metrics
10 configurations 100 configurations
Manual MorphNet Mistify Manual MorphNet Mistify

- Fully automated
- Adapt to multiple configurations collectively



Minimizing manual efforts

- Orders of magnitude fewer lines of code changed
- Constant number of files changed
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Metrics
10 configurations 100 configurations
Manual MorphNet Mistify Manual MorphNet Mistify

Lines of Code >1k 138 14 >10k 782 104
Num of Files 30 12 1 300 102 1



Minimizing manual efforts

Time: from linear to nearly constant
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Metrics
10 configurations 100 configurations
Manual MorphNet Mistify Manual MorphNet Mistify

Lines of Code >1k 138 14 >10k 782 104

Num of Files 30 12 1 300 102 1

Time (normalized) 10 1.25 100 2.86



Conclusion
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Mistify – automated and scalable DNN porting service

Decoupling DNN design and deployment and bridging them
with an end-to-end framework

Orders of magnitude reduction of computation overhead
and manual efforts



Thank you


