Tiara: A Scalable and Efficient Hardware Acceleration Architecture for Stateful Layer-4 Load Balancing

Chaoliang Zeng, Layong Luo, Teng Zhang, Zilong Wang, Luyang Li, Wenchen Han, Nan Chen, Lebing Wan, Lichao Liu, Zhipeng Ding, Xiongfei Geng, Tao Feng, Feng Ning, Kai Chen, Chuanxiong Guo

L4 LB at datacenter boundary

Real Servers

Being stateful

Real Servers

Stateful L4 LB requirements

Driven by exponentially increased content delivery and cloud computing demands, a typical LB in large service providers usually supports

- Terabits per second of Internet traffic
- Tens of millions of concurrent flows
- Millions of new connections per second (CPS)

Stateful L4 LB requirements

Driven by exponentially increased content delivery and cloud computing demands, a typical LB in large service providers usually supports

- Terabits per second of Internet traffic
- Tens of millions of concurrent flows
- Millions of new connections per second (CPS)

Existing LBs fail to meet these requirements in a scalable and efficient way

Existing solution: software-based LB

Software-based LB can scale out to support high throughput Ananta [SIGCOMM'13] Maglev [NSDI'16]

Low (cost, energy and space) efficiency

- 10 Gbps/server or 2 Mpps/core
- 100 servers to support 1 Tbps

High latency and jitter

- 10 us average latency
- up to ms tail latency/jitter

- > Expensive
- Sometimes undeployable in resourceconstrained PoPs or edge DCs
- Sometimes comparable to Internet latency when CPU utilization is high

Existing solution: switch-based LB

Scalability issue on data plane - 50-100 MB on-chip memory

Scalability issue on control plane

- 100K entry insertions per second
 - low-end SoC
 - slow PCIe interconnect
 - Cuckoo hash

Leveraging programmable switches can improve efficiency and latency Silkroad [SIGCOMM'17] Cheetah [NSDI'20]

Fail to support a large number of concurrent connections

→ ➢ Fail to support high CPS

Strawman solution: switch-server LB

Leveraging traffic locality can address scalability issues of switches Serving only a few elephant flows in the switch Serving the rest traffic in the server

Traffic locality assumption

Traffic do not necessarily follow a long-tail distribution.
It is dynamic and unpredictable!

Traffic at datacenter boundary

The flow distribution of individual services varies

- Top 10% connections carry 46.3%, 35.5%, and 19.6% traffic in three traces respectively.

Traffic distribution may not be long-tail!

 Limited memory in switch cannot hold enough connections to serve the majority of traffic

Traffic at datacenter boundary

The flow distribution of individual services varies

- Top 10% connections carry 46.3%, 35.5%, and 19.6% traffic in three traces respectively.

The traffic volume of a service can dynamically change

- Tidal traffic in a single day.
- Uncertainty in long-term due to change of users' interests.

The number of VIPs at a datacenter boundary can change over time

- A cluster can increase 3.2x VIPs in 6 months.

No assumption on traffic distribution at datacenter boundary!

System goals

Scalable – 10M concurrent connections and 1M CPS

Efficient – high cost, energy, and space efficiency

Generic – no assumption on traffic patterns

Tiara idea

LB Functionalities

Real server selection

Stateful memory-intensive

Packet en/decapsulation

Stateless throughput-intensive

Tiara idea

Tiara three-tier architecture

Tiara architecture in details

Inbound traffic

Outbound traffic

Optimizations

• Efficient hash table structure

- To enable both fast lookup in T-NIC and fast entry insertion in T-server
- Optimization for throughput, concurrent flow number, and CPS
- Lock-free offloading approach
 - To enable millions of flow offloading operations per second
 - Optimization for CPS
- Lightweight aging mechanism
 - To recycle outdated entries in FPGA HBM
 - Optimization for efficiency

Prototype implementation

T-switch: Barefoot Tofino switch

• RS Table: 64K entries

T-NIC: Xilinx FPGA-based SmartNIC with two 100GE ports & one HBM stack

• Connection table: 32M entries

T-server: Server with two Intel Xeon Platinum 8260 CPUs running a production SMux

T_NIC

• SMux CPS: 1.8M

-	• . •	INC		
T-switch			LUT	33.22%
SRAM	53.85%	Resource	FF	28.46%
TCAM	13.19%	Untilization	BRAM	50.93%
			URAM	36.72%

System performance

Latency-bounded throughput

Tiara vs. existing approaches

	Throughput	P99 lat.	CPS	CT size*	Cost efficiency	Energy efficiency	Space efficiency
SMux Silkroad**	38 Gbps 1.6 Tbps	100 us < 2 us	1.8M 200K	~100 GB 100 MB	4.75 Gbps/(cost unit) 457.14 Gbps/(cost unit)	76 Mbps/Watt 2909.1 Mbps/Watt	19 Gbps/U 1600 Gbps/U
Tiara	1.6 Tbps	< 4 us	1.8M	4 GB	82.05 Gbps/(cost unit)	969.7 Mbps/Watt	320 Gbps/U

17.4x higher cost efficiency, 12.8x higher energy efficiency, and 16.8x higher space efficiency than server-based solution

9x higher CPS and 40x larger connection table size than switch-based solution

Conclusion

Tiara is a three-tier hardware architecture for stateful L4 LB

- T-switch for stateless packet encap./decap.
- T-NIC for stateful real server selection
- T-server as slow path and make offloading decision

Tiara meets all design goals with high performance

- Scalable
 - Large HBM and efficient hash table for 10M concurrent flows
 - Fast PCIe DMA and lock-free offloading for 1M CPS
- Efficient
 - Specialized hardware for fast path
- Generic
 - No assumption on traffic patterns and fully programmable architecture

Contact: czengaf@connect.ust.hk, luo@bytedance.com