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ABSTRACT
Nowadays the demands for managing and analyzing substantially

increasing collections of time series are becoming more challenging.

Subsequence matching, as a core subroutine in time series analy-

sis, has drawn significant research attention. Most of the previous

works only focus on matching the subsequences with equal length

to the query. However, many scenarios require support for efficient

variable-length subsequence matching. In this paper, we propose a

new representation, Uniform Piecewise Aggregate Approximation

(UPAA) with the capability of aligning features for variable-length

time series while remaining the lower bounding property. Based on

UPAA, we present a compact index structure by grouping adjacent

subsequences and similar subsequences respectively. Moreover, we

propose an index pruning algorithm and a data filtering strategy

to efficiently support variable-length subsequence matching with-

out false dismissals. The experiments conducted on both real and

synthetic datasets demonstrate that our approach achieves consid-

erably better efficiency, scalability, and effectiveness than existing

approaches.
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1 INTRODUCTION
Time series has become prevalent due to numerous applications

generating extensive collections of time-stamped data [13, 15, 42],

necessitating advanced analysis techniques for valuable insights. As

a core subroutine of time series analysis, subsequence matching has

attracted significant attention and research effort [25, 30, 31, 39].
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Informally, subsequence matching finds subsequences from a

long sequence that are similar to a given query sequence. Many

subsequence matching approaches focus on matching the subse-

quences with the same length as the query [8, 29]. However, it

has been demonstrated that many applications call for sequence

matching approaches that allow for variable length [12, 18]. We

illustrate it with an example below.
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Figure 1: Variable-length Subsequence Matching on four
Stock datasets. The Triangles pattern (𝑄1) searches datasets
(a) and (b), yielding results 𝑆1 and 𝑆2. TheHead-and-shoulders
pattern (𝑄2) searches datasets (c) and (d), yielding results 𝑆3
and 𝑆4. (e) shows the process of variable-length subsequence
matching between 𝑄1 and 𝑆1, 𝑆2.

Example 1. In stock trading, technical analysis is a financial

method to identify investigation opportunities by studying histori-

cal trading activity [1]. As a concrete example, Figure 1 presents

four sequences of stock prices, which conform to two classic chart

patterns in technical analysis, triangles (𝑆1, 𝑆2 in Figure 1(a) and (b))

and head-and-shoulders (𝑆3, 𝑆4 in Figure 1(c) and (d)) [9], depicted

with highlighted lines. 𝑄1 and 𝑄2 are utilized as query sequences

for two chart patterns, employed for subsequence matching. □

Different subsequences though adhering to the same pattern,

may have different lengths. We name this phenomenon as global
scaling. In this case, only finding subsequences of the same length

as query will lose many meaningful results. To solve this prob-

lem, uniform scaling has been proposed to align variable-length

subsequences [18, 31]. With uniform scaling, the query sequence

is uniformly stretched or shrunk to different lengths and aligned

with the target subsequence, thus solving global scaling in the
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time dimension. This technique is widely employed in actual ap-

plication [10, 18, 33, 41]. In addition, to focus on the shape of sub-

sequences and eliminate the effect offset shifting and amplitude,

z-normalization [17, 30] is often used before distance calculation,

which still works in the context of uniform scaling.

In this paper, we focus on the variable-length subsequencematch-

ing problem under uniform scaling and z-normalization. During

the variable-length subsequence matching, the query sequence is

first uniformly-scaled to variable lengths and then find similar sub-

sequences of the corresponding lengths [12]. Figure 1 shows two

concrete examples. Before calculating the distances, the query 𝑄1

is scaled to sequences 𝑄
′
1
and 𝑄

′′
1
whose lengths are the same as

𝑆1 and 𝑆2 and then computing distance (say, Euclidean Distance)

between them after z-normalization. The hat symbols (e.g.,
ˆ𝑄
′
1
)

indicate z-normalized sequences.

Compared with fixed-length subsequence matching, the variable-

length subsequence matching problem is more challenging. First,

the variable-length case has a much larger search space. Given

a length-𝑙 query subsequence, fixed-length matching only needs

to verify all equi-length subsequences in the database, whereas

variable-length matching needs all the subsequences in the con-

cerned range of lengths. Second, calculating distance between sub-

sequences of different lengths is more time-consuming and it in-

volves a large number of redundant calculations when computing

distances between query and different subsequences of long time

series. Therefore, it is essential to design an efficient index and

query algorithm to avoid unnecessary computations.

Numerous works have studied variable-length sequence match-

ing problem under uniform scaling [10, 12, 18, 41]. However, these

approaches do not consider the subsequences of the time series

in the database, despite that the length of the subsequences are in

the user’s concerned range. Thus, the search space of this problem

is substantially smaller than ours. Other works [31, 33] study the

variable-length subsequence matching problem. Nonetheless, these

methods cannot take effect with z-normalization due to the design

of distance bounds. Thus, their results are prone to get disturbed

by the offset shifting and amplitude of subsequences.

In this paper, we propose an extended PAA that can eliminate the

influence of global scaling between time series. Besides, we have

meticulously designed a compact index structure, which stores sim-

ilar but variable-length subsequences closely, possessing the ability

to handle scaled queries of different lengths at once. Moreover, our

methodologies in representation and index structures have been

meticulously designed. They can efficiently facilitate exact top-K

queries without incurring any false dismissals combined with the

respective lower bound distances. In addition, we formulate en-

veloping sequences by utilizing the monotonicity of the mean and

standard deviation values in z-normalization. Leveraging these en-

veloping sequences, we introduce a robust lower bounding distance

designed to efficaciously eliminate redundant distance computa-

tions in the context of uniform scaling and normalization.

In summary, facilitated by a new representation technique, we de-

sign a compact index structure supporting efficient variable-length

subsequence matching with the help of index pruning and data

filtering strategies. We call the approach as CIVET (Compact Index

for Variable-length subsequencE matching on Time series). CIVET

Table 1: Table of Symbols

Symbols Description

𝑇 = (𝑡1, 𝑡2, ..., 𝑡𝑛) Time series

|𝑆 | Length of 𝑆

𝑇𝑖,𝑙 Subsequence of𝑇 (from 𝑖 to 𝑖 + 𝑙 − 1 )
𝑆 Z-normalized 𝑆

𝑄𝑝 𝑄 scaled to length 𝑝 with uniform scaling

𝑆𝑖 The 𝑖-th segment of 𝑆 in UniSeg

𝑟𝑖 The last point index of 𝑖-th segment

𝐷𝑒𝑑 ( ·, ·) Euclidean distance

𝐷𝑑𝑡𝑤 ( ·, ·) DTW distance

𝐷 ··𝑢𝑠𝑛 ( ·) Uniform scaling distance with normalization

is experimentally proved to be more advanced than the SOTA ap-

proaches in terms of approximate matching accuracy and exact

matching performance under uniform scaling and normalization.

The contributions of this paper can be summarized as follows:

• The Uniform Piecewise Aggregate Approximation (UPAA)

is introduced to manage variable lengths, aligning feature

representations while retaining essential properties of PAA,

thus enhancing robustness against global scaling.

• Anew indexingmethod is designed, constructing a compact

index structure by grouping adjacent subsequences and

subsequently grouping subsequences with similar features.

• Leveraging lower bounding properties, we propose effective

index pruning and data filtering techniques, both tailored

for global scaling and z-normalization and compatible with

ED and DTW distances.

The paper is organized as follows: Section 2 presents the formal

problem statement andmethod overview. Section 3 extends the PAA

to represent variable-length time series. Sections 4 and 5 introduce

the details of index construction andmatching algorithms. Section 6

presents and discusses the experimental results. Section 7 discusses

related works. Section 8 concludes the paper.

2 PROBLEM STATEMENT
2.1 Preliminaries and Problem Formulation
Time series is a sequence of values listed in time order, denoted

as 𝑇 = (𝑡1, 𝑡2, · · · , 𝑡𝑛), where 𝑛 = |𝑇 | is the length of 𝑇 . Sub-

sequence 𝑇𝑖,𝑙 of time series 𝑇 is a length-𝑙 contiguous sequence

within 𝑇 , which starts from position 𝑖 . Formally, we denoted 𝑇𝑖,𝑙 as

𝑇𝑖,𝑙 = (𝑡𝑖 , 𝑡𝑖+1, · · · , 𝑡𝑖+𝑙−1), where 1 ≤ 𝑖 ≤ |𝑇 | − 𝑙 + 1. Later in this

paper, we refer to query sequence and subsequence as 𝑄 and 𝑆 for

distinction. 𝑇 is used to refer to a long sequence specifically. For

any subsequences 𝑆 = (𝑠1, 𝑠2, · · · , 𝑠𝑛), we use 𝜇𝑆 and 𝜎𝑆 to denote

the mean value and standard deviation of 𝑆 respectively.

Definition 1 (Euclidean Distance (ED)). Given 𝑄 and 𝑆 with

the same length 𝑙 , ED between them is 𝐷𝑒𝑑 (𝑄, 𝑆) =
√︃∑𝑙

𝑖=1 (𝑞𝑖 − 𝑠𝑖 )2.

ED computes the distance between two sequences with one-

to-one map, while DTW eliminates local misalignment with one-

to-many map. The warping path is used to describe the mapping

relation between two sequences.
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Definition 2 (Warping Path). Given two length-𝑙 sequences,
𝑄 and 𝑆 , a warping path is denoted as 𝐴 = (𝑎1, 𝑎2, . . . , 𝑎 |𝐴 |). The
x-th element 𝑎𝑥 = (𝑖, 𝑗) is a pair of values representing the mapping
between 𝑄𝑖 and 𝑆 𝑗 . We use 𝑎𝑥 .𝑓 𝑠𝑡 and 𝑎𝑥 .𝑠𝑛𝑑 to refer to the first and
second values of 𝑎𝑥 . A warping path satisfies the following constraints:
(1) 1 ≤ 𝑖, 𝑗 ≤ 𝑙 , 𝑎1 = (1, 1), and 𝑎 |𝐴 | = (𝑙, 𝑙), (2) 0 ≤ 𝑎𝑥+1 .𝑓 𝑠𝑡 −
𝑎𝑥 .𝑓 𝑠𝑡 ≤ 1 and 0 ≤ 𝑎𝑥+1 .𝑠𝑛𝑑 − 𝑎𝑥 .𝑠𝑛𝑑 ≤ 1.

Definition 3 (ConstrainedDynamic TimeWarpingDistance).

Given two length-𝑙 sequences 𝑄 and 𝑆 , and the time warping con-
straint 𝑐 , the constrained dynamic time warping distance between

them is defined as, 𝐷𝑑𝑡𝑤 (𝑄, 𝑆) = argmin

𝐴

√︃∑ |𝐴 |
𝑖
(𝑞𝑎𝑖 .𝑓 𝑠𝑡 − 𝑠𝑎𝑖 .𝑠𝑛𝑑 )2 .

According to the Sakoe-Chiba constraint [32], any element 𝑎𝑥 in the
warping path 𝐴 satisfies that |𝑎𝑥 .𝑓 𝑠𝑡 − 𝑎𝑥 .𝑠𝑛𝑑 | ≤ 𝑐 .

Definition 4 (Uniform Scaling). Given a length-𝑛 sequence 𝑄
and a length 𝑝 , the uniform scaling stretches up (if 𝑛 < 𝑝) or shrinks
down (if 𝑛 > 𝑝) 𝑆 to a length-𝑝 time series 𝑄𝑝 = (𝑞𝑝

1
, 𝑞
𝑝

2
, · · · , 𝑞𝑝𝑝 ),

where
𝑞
𝑝

𝑖
= 𝑞 ⌈𝑖∗𝑛

𝑝
⌉ , 1 ≤ 𝑖 ≤ 𝑝

Definition 5 (Z-Normalized Series). Given a length-𝑛 time
series 𝑆 , a normalized series of 𝑆 , is defined as, 𝑆 = (𝑠1, 𝑠2, · · · , 𝑠𝑛),
where 𝑠𝑖 =

𝑠𝑖−𝜇𝑆
𝜎𝑆

, 1 ≤ 𝑖 ≤ 𝑛.

Under the influence of time series length, ED between shorter

time series is more likely small, even though they could be less

similar. Therefore, the length norm is adopted to eliminate the

influence of different lengths. It divides the distance by

√
𝑙 , where 𝑙

is the length of the sequences [26].

Definition 6 (Uniform Scaling Distance with Norm). Given
𝑄 and 𝑆 , the uniform scaling distance with both z-norm and length-
norm between them is defined as follows:

𝐷𝑢𝑠𝑛 (𝑄, 𝑆) =
𝐷 (𝑄𝑙 , 𝑆)
√
𝑙

, 𝑙 = |𝑆 |.

Definition 6 scales 𝑄 to length |𝑆 |, while it is also possible to

scale 𝑆 to |𝑄 |. Both approaches possess similar capabilities in elimi-

nating global scaling. Here we stay consistent with the preceding

works [31]. Distance 𝐷 in 𝐷𝑢𝑠𝑛 can be either 𝐷𝑒𝑑 or 𝐷𝑑𝑡𝑤 depend-

ing on the concrete scenario. We denote them as 𝐷𝑒𝑑𝑢𝑠𝑛 and 𝐷𝑑𝑡𝑤𝑢𝑠𝑛 . In

this paper, when saying two sequences are similar or have similar

patterns, we mean that they have a small distance under 𝐷𝑢𝑠𝑛 . That

is, when scaling to the same length, the two sequences have a very

small ED/DTW.

Problem 1 (Top-K SubseqenceMatchingwithin𝐷𝑢𝑠𝑛). Given
a time series 𝑇 , a length range [𝑙𝑚𝑖𝑛, 𝑙𝑚𝑎𝑥 ] and an integer 𝐾 , for
any 𝑄 , the top-K matching is to find a set of subsequences R =

{𝑆1, 𝑆2, · · · , 𝑆𝐾 } ⊆ A, where A contains all subsequences of 𝑇 whose
lengths satisfy the length range, such that, ∀𝑆 ∈ R and ∀𝑆 ′ ∈ A − R,
𝐷𝑢𝑠𝑛 (𝑄, 𝑆) ≤ 𝐷𝑢𝑠𝑛 (𝑄, 𝑆 ′).

2.2 iSAX Index Family
Our work preserves the main structure of iSAX index, thus we

briefly review the related techniques in this part.

2.2.1 Representation. The representation technique summarizes

time series into a lower-dimensional representation to estimate the

approximate distance between them efficiently. We review the PAA

used by iSAX index [16, 40].

The Piecewise Aggregate Approximation (PAA) [16, 40] splits a

sequence 𝑆 into disjoint equal-length segments and represents each

segment with the mean of its values, which transforms 𝑆 into a𝑚-

dimensional representation 𝑃𝐴𝐴(𝑆), where𝑚 = ⌊ |𝑆 |
𝑙𝑒𝑛𝑔𝑡ℎ 𝑜 𝑓 𝑠𝑒𝑔𝑚𝑒𝑛𝑡

⌋.
Referring to the proposition [11, 16], PAA gives a lower bounding

distance for the Euclidean distance between two sequences.

Proposition 1 (PAA Lower Bound). Given two time series 𝑄
and 𝑆 such that |𝑄 | = |𝑆 |, we have

𝐷𝑒𝑑 (𝑄,𝑆) ≥

√√
𝑙𝑠𝑒𝑔 ·

𝑚∑︁
𝑖=1

(𝑃𝐴𝐴(𝑄)𝑖 − 𝑃𝐴𝐴(𝑆)𝑖 )2 . (1)

where 𝑙𝑠𝑒𝑔 is the length of segment,𝑚 = ⌊|𝑆 |/𝑙𝑠𝑒𝑔⌋.
The SAX [24] and iSAX [34] representations are also adopted in

iSAX index to to reduce storage space and facilitate index construc-

tion. Briefly described, they discretize each coefficient of 𝑃𝐴𝐴(𝑆)
as a binary string, referred to as 𝑆𝐴𝑋 (𝑆) and 𝑖𝑆𝐴𝑋 (𝑆).

2.2.2 Index Structure. When given a predefined segment length,

iSAX index [34, 38] follows the same behavior to represent all

sequences as PAAs and construct a tree-like index structure on

top of them. The index consists of three types of nodes (root node,

inner node, and leaf node). The root node has at most 2
𝑚

child

nodes, while the inner node has only 2 child nodes. Each node has

a distinct iSAX representation representing all the sequences in its

subtree. Combining the Proposition 1, iSAX index can guarantee

no false dismissals when pruning tree nodes during the matching

procedure. The index also supports incremental data insertion and

dynamic update of tree structure [2].

2.3 Approach Overview
Our work systematically tackles this problem from three intercon-

nected aspects: data representation, indexing, and query processing.

The framework and basic design approach are illustrated in Figure 2.

Figure 2: CIVET Framework
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UPAA Representation. As shown in Figure 2(a), we propose

Uniform Piecewise Aggregate Approximation (UPAA), which ef-

fectively summarizes sequences of different lengths and provides

an exact lower bound of the uniform scaling distance with norm

between two sequences for pruning.

Index Construction.We design a compact iSAX-based index

to manage massive subsequences based on UPAA, where adjacent
subsequences are organized into blocks (e.g., 𝐵𝑖 , 𝐵 𝑗 in Figure 2(b)),

and similar blocks are organized into envelops (e.g., 𝐸𝑘 ). In this

way, subsequences are compactly stored in our index and can be

efficiently accessed based on similarity.

Query Processing.We further design exact and approximate

subsequence querying algorithms that can efficiently prune the sub-

trees based on the lower bound provided by UPAA when traversing

the index (see Figure 2(c1)), and can also filter out unpromising sub-

sequences when scanning the subsequences inside a node without

any false dismissals (see Figure 2(c2)).

3 EXTENDING PAA FOR GLOBAL SCALING
We extend PAA as UPAA to handle the global scaling among se-

quences and present the lower bound properties of UPAA.

3.1 Uniform PAA
Since PAA splits both query and database subsequences into equal-

length segments, it cannot solve the global scaling phenomenon. As

shown in Figure 3(a), although 𝑆1 and 𝑆2 exhibit the same pattern,

the equi-length segmentation of PAA fails to capture this similarity.

To tackle this problem, we adopt a new segmentation strategy.

Instead of fixing the length of each segment, we fix the total number

of segments. Formally, we first define the segmentation method

and then extend the PAA with this method.

Definition 7 (Uniform Segmentation (UniSeg)). Given a se-
quence 𝑆 = (𝑠1, 𝑠2, · · · , 𝑠𝑛) and the number of segments𝑚, 𝑆 is seg-
mented as 𝑚 parts, denoted as 𝑈𝑛𝑖𝑆𝑒𝑔(𝑆) = (𝑆1, 𝑆2, · · · , 𝑆𝑚). The
𝑖-th segment is defined as 𝑆𝑖 = (𝑠𝑟𝑖−1+1, · · · , 𝑠𝑟𝑖 ), where 𝑟𝑖 = ⌊ 𝑖×𝑛𝑚 ⌋,
for 1 ≤ 𝑖 ≤ 𝑚, and initially, 𝑟0 = 0.

Definition 8 (Uniform PAA (UPAA)). Given a sequence 𝑆 =

(𝑠1, 𝑠2, · · · , 𝑠𝑛) and the number of segments𝑚, we compress and rep-
resent 𝑈𝑛𝑖𝑆𝑒𝑔(𝑆) as a𝑚-dimension vector, denoted as 𝑈𝑃𝐴𝐴(𝑆) =
(𝜇1, 𝜇2, · · · , 𝜇𝑘 ), where 𝜇𝑖 is the mean value of 𝑆𝑖 . The i-th coefficient
𝑈𝑃𝐴𝐴(𝑆)𝑖 is denoted as 𝜇𝑖 (𝑆) interchangeably.

Given a dataset, 𝑚 is the same for database and query subse-

quences, despite different lengths. In this way, for similar sequences

with global scaling, the corresponding segments after UniSeg will

tend to be similar. As demonstrated in Figure 3(b), UPAA (with

𝑚 = 3) effectively transforms 𝑆1 and 𝑆2 into similar and same-

dimensional representations.

Similar to PAA, UPAA also possesses the lower bound property.

Theorem 1 (UPAA Lower Bound). Given two time series 𝑄 and
𝑆 such that |𝑄 | = |𝑆 |, the number of segments𝑚, we have that,

𝐷𝑒𝑑 (𝑄, 𝑆) ≥

√√⌊
|𝑆 |
𝑚

⌋
·
𝑚∑︁
𝑖=1

(𝑈𝑃𝐴𝐴(𝑄)𝑖 −𝑈𝑃𝐴𝐴(𝑆)𝑖 )2 . (2)

(a) PAA (b) UPAA

𝑆! 𝑆!

𝑆" 𝑆"

𝑃𝐴𝐴 𝑆! = (−0.12, 0.43, −0.51) 𝑈𝑃𝐴𝐴 𝑆! = (−0.12, 0.43, −0.51)

𝑃𝐴𝐴 𝑆" = (−0.06, −0.21) 𝑈𝑃𝐴𝐴 𝑆" = (−0.14, 0.41, −0.49)

Figure 3: PAA and UPAA. 𝑆1 and 𝑆2 have a small 𝐷𝑢𝑠𝑛 (a) but
PAA summarize them with values of large differences. (b)
UPAA summarize them with closer values.

Proof. According to the definition of UniSeg, a given sequence

might be split into segments of different lengths. But the difference

among the lengths of all segments does not exceed one. Let 𝑙𝑠𝑒𝑔 =

⌊|𝑆 |/𝑚⌋, we have that,
𝑟𝑖 − 𝑟𝑖−1 = 𝑙𝑠𝑒𝑔 𝑜𝑟 𝑙𝑠𝑒𝑔 + 1, 𝑓 𝑜𝑟 1 ≤ 𝑖 ≤ 𝑚. (3)

According to the corollary in [40], for the 𝑖-th segment, we have,

(𝑟𝑖 − 𝑟𝑖−1) · (𝜇𝑖 (𝑄) − 𝜇𝑖 (𝑆))2 ≤
𝑟𝑖∑︁

𝑗=𝑟𝑖−1+1
(𝑞 𝑗 − 𝑠 𝑗 )2 (4)

Now, we can easily prove the correctness by scaling the polynomial

coefficient as follows,

𝐷𝑒𝑑 (𝑄, 𝑆) ≥

√√
𝑚∑︁
𝑖=1

(𝑟𝑖 − 𝑟𝑖−1) · (𝜇𝑖 (𝑄) − 𝜇𝑖 (𝑆))2

≥

√√⌊
|𝑆 |
𝑚

⌋
·
𝑚∑︁
𝑖=1

(𝜇𝑖 (𝑄) − 𝜇𝑖 (𝑆))2 .

(5)

□

Note that when the sequence length is divisible by𝑚, the formula

in Theorem 1 and the formula in Proposition 1 have the same

meaning. Consequently, UPAA enhances PAA with capabilities to

represent and align variable-length sequences without losing the

original properties of PAA.

3.2 Lower Bound for a Set of Time Series
Usually, we need to estimate the distance between a query sequence

and a set of variable-length subsequences. So, we infer the lower

bounding distance for this situation. First, we scale the query to all

possible lengths and use two vectors to delimit minimal and maxi-

mal UPAA representations of the scaled query sequences. Formally,

for a query sequence 𝑄 and a set of sequences S, and the number

of segments𝑚, we denote the minimal and maximal UPAAs as 𝐿𝑄

and𝑈𝑄 , respectively, such that for 1 ≤ 𝑖 ≤ 𝑚.

𝐿
𝑄

𝑖
= min

({
𝜇𝑖 (𝑄 |𝑆 |)

})
,𝑈
𝑄

𝑖
= max

({
𝜇𝑖 (𝑄 |𝑆 |)

})
,∀𝑆 ∈ S, (6)

where 𝑄 |𝑆 | means scaling the query 𝑄 to the length of sequence 𝑆

using uniform scaling.

Similarly, for the sequences in S, we can use two vectors, 𝐿S and

𝑈 S, to enclose the minimal and maximal UPAA coefficients of all

the sequences in the set S,

𝐿S𝑖 = min(𝜇𝑖 (𝑆)),𝑈 S𝑖 = max(𝜇𝑖 (𝑆)),∀𝑆 ∈ S. (7)

Now we have the lower bound for a set of time series.
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Figure 4: CIVET Index Construction

Theorem 2 (UPAA Lower Bound on Set). Given a sequence 𝑄
and a set of time series S, the number of segments𝑚, we have that,

min

𝑆 ∈S
{𝐷𝑒𝑑 (𝑄 |𝑆 |, 𝑆)} ≥

√√√√√√√√√⌊
𝑙𝑚𝑖𝑛

𝑚

⌋
·
𝑚∑︁
𝑖=1


(𝐿S𝑖 −𝑈

𝑄

𝑖
)2, 𝑖 𝑓 𝐿S𝑖 > 𝑈

𝑄

𝑖

(𝑈 S𝑖 − 𝐿
𝑄

𝑖
)2, 𝑖 𝑓 𝑈 S𝑖 < 𝐿

𝑄

𝑖

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(8)

where 𝑙𝑚𝑖𝑛 is the minimal length of sequences in S.

Proof. Without loss of generality, we consider a random se-

quence 𝑆 in S here. Before calculating the distance, 𝑄 is scaled to

the length of 𝑆 . And it is easy to know that |𝑆 | ≥ 𝑙𝑚𝑖𝑛 . So, combining

with the Theorem 1, we have that,

𝐷𝑒𝑑 (𝑄 |𝑆 |, 𝑆) ≥

√√⌊
𝑙𝑚𝑖𝑛

𝑚

⌋
·
𝑚∑︁
𝑖=1

(𝜇𝑖 (𝑄 |𝑆 |) − 𝜇𝑖 (𝑆))2 . (9)

According to the definition of 𝐿 and 𝑈 for the query and the set

of sequences, we easily prove the correctness of Equation 8. □

Therefore, UPAA enables the iSAX family index to obtain the

capability to process variable-length data effectively while retaining

the ability of index pruning without false dismissals.

4 INDEX CONSTRUCTION
In this section, we present our compact index. We provide two

techniques named block summarization (Section 4.1) and envelope

summarization (Section 4.2) to compact the redundant information

of subsequence. Then, we describe the procedure of building CIVET

index (Section 4.3).

4.1 Grouping Adjacent Subsequences
In this part, we provide a representation method to summarize sets

of overlapping subsequences succinctly.

A specific subsequence is determined by its start position and

length. Considering subsequences as points on a two-dimensional

coordinate, all the subsequences of a long time series form a two-

dimensional space. we depict it as the space of subsequences in

Figure 4(a). Thus, subsequences can be divided into small rectan-

gles with width𝑊 and height 𝐻 . The two user-defined parameters,

𝑊 and 𝐻 , represent the stepsizes of start position and length, re-

spectively. We refer to the rectangle as Block (Blk). Since there are

many overlaps among the subsequences in the same block, their

UPAAs tend to be similar. We summarize them with a higher-level

representation.

Definition 9 (Block). Given two parameters𝑊 and 𝐻 , a block
Blk(s,l) groups a set of adjacent subsequences in the long sequence 𝑆
and delimits the UPAA coefficients of these subsequences with two
m-dimension vectors, 𝐿𝐵 and𝑈 𝐵 . The set of subsequences in Blk(s,l)
is defined as follows,

S𝐵 = {𝑆𝑖,𝑙 ′ |𝑠 ≤ 𝑖 < 𝑠 +𝑊 𝑎𝑛𝑑 𝑙 ≤ 𝑙 ′ < 𝑙 + 𝐻 }. (10)

And two vectors, 𝐿𝐵 and𝑈 𝐵 , satisfy that,

𝐿𝐵𝑖 =𝑚𝑖𝑛(𝜇𝑖 (𝑆 ′)),𝑈 𝐵𝑖 =𝑚𝑎𝑥 (𝜇𝑖 (𝑆 ′)),∀𝑆 ′ ∈ S𝐵 . (11)

Specific boundary corner cases are not explicitly mentioned in

Equation 10 for brevity. But note that the subsequences in the set

S𝐵 must adhere to the sequence length constraints [𝑙𝑚𝑖𝑛, 𝑙𝑚𝑎𝑥 ].
Now, we can summarize all subsequences within the space of

subsequences using continuous but non-overlapping blocks, as

illustrated in Figure 4(a). Each block effectively summarizes the

information of the corresponding adjacent sequences using only

two low-dimensional vectors and a pointer that references the raw

data. We depict two concrete examples of Blocks, 𝐵1 and 𝐵2.

Block summarization allows users to adjust𝑊 and 𝐻 to trade

space and time. However, we can only summarize the subsequences

with close positions and lengths. The similar subsequences may not

be arranged rectangularly in the space of subsequences. Intuitively,

in Figure 4, we use similar colors to mark the Blocks with similar

representations. For example, the blocks 𝐵1 and 𝐵2 are similar but

not adjacent. So, we propose a new method to rearrange and pack

up Blocks with similar features to improve the compactness of the

index further.

4.2 Grouping Similar Blocks
Block summarizes the information of adjacent subsequences. This

part focuses on the blocks with similar UPAA representations but

different positions. We call the grouped blocks an Envelope. We

refine the sortable representation invSAX [20] for block summa-

rization and then introduce the procedure to group blocks.

4.2.1 InvSAX for block summarization. The invSAX provides the

ability to convert the SAX representation of a time series into a

sortable representation [20]. Sorted by invSAX, time series with

similar SAX will be placed in close positions. So we utilize the

invSAX to rearrange blocks in our work.

Given a time series 𝑆 , 𝑆𝐴𝑋 (𝑆) represents 𝑆 with a length-𝑚

vector, whose 𝑖-th value 𝑆𝐴𝑋𝑖 (𝑆) is a binary number. The bits in

the binary number indicate the possible value range of 𝑃𝐴𝐴𝑖 (𝑆),
and the higher bit has more impact on this range. The key idea of

invSAX is to sort the time series according to the more important

bits, i.e., the higher bits have higher sorting priority. For example,

the invSAX representation of SAX(011, 101, 001) is represented as

’010100111’.
Here, we refine the invSAX for block summarization. As intro-

duced above, block summarization delimits a block 𝐵𝑙𝑘 with two

vectors 𝐿𝐵 and𝑈 𝐵 . We can merge these two vectors into one named

𝐿𝑈 𝐵 as follows,

𝐿𝑈 𝐵 (𝐵𝑙𝑘) = (𝐿𝐵
1
,𝑈 𝐵

1
, · · · , 𝐿𝐵𝑚,𝑈 𝐵𝑚), (12)
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where𝑚 is the number of segments.

Now, the invSAX can be easily applied to block summarization

straightforwardly. We transform the 𝐿𝑈 𝐵 (𝐵𝑙𝑘) into SAX represen-

tation and then convert the SAX into sortable summarization using

the same logic of invSAX. We refer to this sortable summarization

as 𝑖𝑛𝑣𝑆𝐴𝑋𝐵 for simplicity. For instance, 𝐿𝐵1 and 𝑈 𝐵1 in Figure 4(a)

are respectively given by (00, 10, 00) and (01, 10, 01). Consequently,
the 𝑖𝑛𝑣𝑆𝐴𝑋𝐵 representation for 𝐵1 would be 001100010001.

4.2.2 Envelope construction. In this part, we further compact the

blocks with similar UPAA representations facilitated by 𝑖𝑛𝑣𝑆𝐴𝑋𝐵 .

Given the blocks constructed from a long time series, we append

them into an array and sort the array by 𝑖𝑛𝑣𝑆𝐴𝑋𝐵 . Thus, the blocks

with similar 𝐿𝐵 and𝑈 𝐵 tend to be placed in close positions of the

array. We use an envelope to summarize the blocks in a sliding

window.

Definition 10 (Envelope). Given a length-𝑛 array of blocks
sorted by 𝑖𝑛𝑣𝑆𝐴𝑋𝐵 (𝐵1, 𝐵2, · · · , 𝐵𝑛) and window size𝑤𝑠 , we group
every𝑤𝑠 blocks as an envelope and delimit their UPAAs with two𝑚-
dimensional vectors, 𝐿𝐸 and𝑈 𝐸 . Formally, the set of blocks in the 𝑖-th
envelope is defined as S𝐸𝑖 = {𝐵 𝑗 | (𝑖 − 1) ∗𝑤𝑠 < 𝑗 ≤ 𝑚𝑖𝑛(𝑛, 𝑖 ∗𝑤𝑠)}.
And two vectors 𝐿𝐸 and𝑈 𝐸 of 𝐸𝑖 satisfy that,

𝐿𝐸𝑖 =𝑚𝑖𝑛(𝐿𝐵𝑖 ),𝑈
𝐸
𝑖 =𝑚𝑎𝑥 (𝑈 𝐵𝑖 ),∀𝐵 ∈ S

𝐸𝑖 . (13)

A concrete example is depicted in Figure 4(b). We set the size

of the sliding window to 4. To aid in understanding, we provide

a more intuitive example in Figure 2(b). When grouping adjacent

subsequences, the construction algorithm collects subsequences

with similar lengths and starting positions into the same block, as

the figure illustrates by 𝐵𝑖 and 𝐵 𝑗 . When grouping similar blocks, 𝐵𝑖
and 𝐵 𝑗 , which have similar UPAA features, are sorted into nearby

positions for constructing the envelope.

So far, we compact the subsequences with similar UPAAs in

an Env with the help of the summarization methods above. For

one envelope, we only need to store two vectors, 𝐿𝐸 and𝑈 𝐸 , and

the pointers of blocks in the envelope. Combining these grouping

methods, we can construct a compact and efficient index to support

subsequence matching.

4.3 Index Building
Here in this part, we tend to present the procedure to index the

envelopes based on iSAX index [34], called CIVET index.

Similar to ULISSE [25], we maintain minimal and maximal iSAX

symbols in each node of CIVET index, denoted by 𝑖𝑆𝐴𝑋 (𝐿𝑁 ) and
𝑖𝑆𝐴𝑋 (𝑈𝑁 ). Besides that, in the leaf node, we additionally store the

SAX representations of two vectors, 𝐿𝐸 and 𝑈 𝐸 , and pointers to

the blocks. CIVET does not contain real data since subsequences

overlap extensively.

Before constructing the index structure, we first build the en-

velopes for subsequences as described in Sections 4.1 and 4.2. Then,

we insert these envelopes into CIVET index according to the 𝑆𝐴𝑋 (𝐿𝐸 )
one by one. That is, finding the target leaf node whose 𝑖𝑆𝐴𝑋 (𝐿𝑁 )
contains 𝑆𝐴𝑋 (𝐿𝐸 ). Then we update the nodes in the route from the

root node to the leaf node with respect to 𝑖𝑆𝐴𝑋 (𝑈𝑁 ).
Figure 4(c) shows a concrete example of envelope inserting. The

𝐸𝑖 is inserted according to the 𝑆𝐴𝑋 (𝐿𝐸𝑖 ). Notably, the 𝑖𝑆𝐴𝑋 (𝑈𝑁 )

is also updated to ensure the property of the node representation

vectors. Besides, we also depict the pointers of blocks 𝐵1 and 𝐵2.

When building the CIVET index, we adopt the efficient algo-

rithm for block construction [25] and then sort blocks to construct

envelopes. However, it will consume a lot of memory to sort all the

blocks of long time series. So we utilize the buffer mechanism. We

sequentially load part of the raw time series into a fixed-size buffer

and then conduct blocks and envelopes in bulk.

Complexity Analysis. For convenience, we let𝑀 be the value

𝑙𝑚𝑎𝑥 − 𝑙𝑚𝑖𝑛 ,𝑚 be the segment number, 𝑘 be the number of blocks

in one envelope and 𝑁 is the length of long time series. Before

utilizing any grouping technique, the magnitude of subsequences is

𝑂 (𝑀𝑁 ). while the CIVET shrinks the space complexity to𝑂 ( 𝑏𝑀𝑁
𝑘𝑊𝐻

),
where 𝑏 means the bytes of each envelope. The time complexity of

block construction is 𝑂 (𝑀2𝑁𝑚
𝑊
). The time complexity of envelope

construction is 𝑂 (𝑀𝑁
𝑊𝐻

𝑙𝑔(𝑀𝑁
𝑊𝐻
)).

5 QUERY PROCESSING
This section provides the matching algorithm, including the lower

bounding distance, details on matching algorithms, optimization of

scanning to reduce unnecessary distance calculations, and extends

these techniques to support DTW.

5.1 Lower Bounding for Envelope and Node
In this part, we propose a lower bounding distance between the

query and envelope to prune the candidate envelopes and tree

nodes during the exact matching.

First of all, similar to envelope summarization, we use two vec-

tors to summarize the information of a given query. Specifically,

We scale the query to all possible lengths in the range [𝑙𝑚𝑖𝑛, 𝑙𝑚𝑎𝑥 ],
calculate the UPAAs, and delimit them as lower and upper bounds

to represent the query. Formally, given𝑚 as the number of segment

and a query𝑄 , the lower and upper bounds of𝑄 are denoted as 𝐿𝑄

and𝑈𝑄 respectively, such that,

𝐿
𝑄

𝑖
=𝑚𝑖𝑛({𝜇𝑖 (𝑄𝑙 )}), 𝑈𝑄𝑖 =𝑚𝑎𝑥 ({𝜇𝑖 (𝑄𝑙 )}), (14)

where 1 ≤ 𝑖 ≤ 𝑚 and 𝑙 ∈ [𝑙𝑚𝑖𝑛, 𝑙𝑚𝑎𝑥 ].
The distance between 𝑃𝐴𝐴 and SAX is provided for the lower

bound of the Euclidean distance [34]. Similarly, we refer to the lower

and upper breakpoints of SAX value as 𝛽𝐿 (·) and 𝛽𝑈 (·). Given a

query 𝑄 with bounds 𝐿𝑄 and𝑈𝑄 and an envelope 𝐸 with bounds

𝐿𝐸 and𝑈 𝐸 , we define a lower bounding distance between them as,

𝐿𝐵𝑒𝑛𝑣 (𝑄, 𝐸) = (15)

√︂
𝜂

𝑚

√√√√√√√√√ 𝑚∑︁
𝑖=1


(𝛽𝐿 (𝑆𝐴𝑋 (𝐿𝐸 )𝑖 ) −𝑈𝑄𝑖 )

2, 𝑖 𝑓 𝛽𝐿 (𝑆𝐴𝑋 (𝐿𝐸 )𝑖 ) > 𝑈𝑄𝑖
(𝛽𝑈 (𝑆𝐴𝑋 (𝑈 𝐸 )𝑖 ) − 𝐿𝑄𝑖 )

2, 𝑖 𝑓 𝛽𝑈 (𝑆𝐴𝑋 (𝑈 𝐸 )𝑖 ) < 𝐿𝑄𝑖
0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

As mentioned earlier, UniSeg may produce segments of different

lengths. To eliminate the influence of this phenomenon and ensure

the correctness of the lower bounding distance, we import the

scaling factor 𝜂, such that,

𝜂 =
𝑙 ′

𝑙 ′ + 1 ,𝑤ℎ𝑒𝑟𝑒 𝑙
′ = ⌊ 𝑙

𝑚
⌋ (16)
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𝑙 refers to the minimal length among all subsequences in this enve-

lope, and 𝑙 ′ indicates the minimal length of segments.

Theorem 3. Given an envelope 𝐸 and a query 𝑄 , for any subse-
quence 𝑆 in the envelope, we have that,

𝐿𝐵𝑒𝑛𝑣 (𝑄, 𝐸) ≤ 𝐷𝑒𝑑𝑢𝑠𝑛 (𝑄, 𝑆) . (17)

Proof. According to the definition of PAA and SAX in [34], we

know that 𝛽𝐿 (𝑆𝐴𝑋 (𝐿𝐸 )𝑖 ) ≤ 𝐿𝐸𝑖 ≤ 𝑈
𝐸
𝑖
≤ 𝛽𝑈 (𝑆𝐴𝑋 (𝑈 𝐸 )𝑖 ), where 𝛽𝐿

and 𝛽𝑈 are the lower and higher breakpoint of iSAX [34]. We have,

𝐿𝐵𝑒𝑛𝑣 (𝑄, 𝐸) ≤
√︂
𝜂

𝑚

√√√√√√√√√ 𝑚∑︁
𝑖=1


(𝐿𝐸𝑖 −𝑈

𝑄

𝑖
)2, 𝑖 𝑓 𝐿𝐸𝑖 > 𝑈

𝑄

𝑖

(𝑈 𝐸𝑖 − 𝐿
𝑄

𝑖
)2, 𝑖 𝑓 𝑈 𝐸𝑖 < 𝐿

𝑄

𝑖

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(18)

Then we consider the scaling factor 𝜂. According to the mono-

tonicity of the function 𝑓 (𝑥) = 1/(𝑥 + 1), combining with 0 <

𝑙𝑚𝑖𝑛 < |𝑆 |, we have,

𝜂 =
𝑙 ′

𝑙 ′ + 1 =

⌊
𝑙𝑚𝑖𝑛
𝑚

⌋⌊
𝑙𝑚𝑖𝑛
𝑚

⌋
+ 1
≤

⌊
|𝑆 |
𝑚

⌋⌊
|𝑆 |
𝑚

⌋
+ 1

. (19)

Besides, it is easy to know,

|𝑆 |/𝑚 ≤ ⌊|𝑆 |/𝑚⌋ + 1. (20)

From Equation 19 and Equation 20 we infer that,

𝜂

𝑚
≤

⌊
|𝑆 |
𝑚

⌋
|𝑆 | (21)

Now, according to Equation 8, Equation 18 can be derived as,

𝐿𝐵𝑒𝑛𝑣 (𝑄, 𝐸) ≤
√︂

1

|𝑆 |

√√√√√√√√√⌊
|𝑆 |
𝑚

⌋
·
𝑚∑︁
𝑖=1


(𝐿𝐸𝑖 −𝑈

𝑄

𝑖
)2, 𝑖 𝑓 𝐿𝐸𝑖 > 𝑈

𝑄

𝑖

(𝑈 𝐸𝑖 − 𝐿
𝑄

𝑖
)2, 𝑖 𝑓 𝑈 𝐸𝑖 < 𝐿

𝑄

𝑖

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

≤
√︂

1

|𝑆 | · 𝐷𝑒𝑑 (𝑄
|𝑆 |, 𝑆) = 𝐷𝑒𝑑𝑢𝑠𝑛 (𝑄,𝑆)

□

Moreover, we apply the same logic of 𝐿𝐵𝑒𝑛𝑣 (𝑄, 𝐸) to lower bound
the distance between query𝑄 and node 𝑁 in CIVET. We only need

to replace the envelope’s SAX representation with the node’s iSAX

representation. Formally, given a query 𝑄 with bounds 𝐿𝑄 and𝑈𝑄

and a node 𝑁 with bounds 𝐿𝑁 and𝑈𝑁 , we define a lower bounding

distance between them as,

𝐿𝐵𝑛𝑜𝑑𝑒 (𝑄, 𝑁 ) = (22)

√︂
𝜂 ′

𝑚

√√√√√√√√√ 𝑚∑︁
𝑖=1


(𝛽𝐿 (𝑖𝑆𝐴𝑋 (𝐿𝑁 )𝑖 ) −𝑈𝑄𝑖 )

2,𝑖 𝑓 𝛽𝐿 (𝑖𝑆𝐴𝑋 (𝐿𝑁 )𝑖 ) > 𝑈𝑄𝑖
(𝛽𝑈 (𝑖𝑆𝐴𝑋 (𝑈𝑁 )𝑖 ) − 𝐿𝑄𝑖 )

2,𝑖 𝑓 𝛽𝑈 (𝑖𝑆𝐴𝑋 (𝑈𝑁 )𝑖 ) < 𝐿𝑄𝑖
0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Here, the 𝜂 ′ is set as 𝑙 ′

𝑙 ′+1 , where 𝑙
′ = ⌊ 𝑙𝑚𝑖𝑛𝑚 ⌋. Similar to 𝐿𝐵𝑒𝑛𝑣 ,

𝐿𝐵𝑛𝑜𝑑𝑒 also retains lower-bound properties. Its logic is akin to that

of Theorem 3, and thus will not be elaborated here. We depict

the detailed calculation of 𝐿𝐵𝑛𝑜𝑑𝑒 in Figure 2(c1) for an intuitive

illustration. The black bar and the gray area, respectively, represent

the minimal and maximal UPAAs of scaled queries (𝐿𝑄 , 𝑈𝑄 in

Equation 6) and subsequences in the node (𝐿𝑁 ,𝑈𝑁 ). The blue bar

represents the numerical calculations of 𝐿𝐵𝑛𝑜𝑑𝑒 in Equation 22.

5.2 Search Algorithm
We utilize the lower bounding distances in the previous subsection

to prune unnecessary sub-trees and indicate the visiting order of

tree nodes, which supports an efficient approximate search. Then,

we refine the results with an exact search procedure.

Algorithm 1matches the top-𝐾 nearest neighbors of query𝑄 and

returns the distance of K-th nearest neighbor, 𝐾𝑇ℎ𝐵𝑠 𝑓 , and the top-

K results, 𝑅𝐾 . Firstly, we initialize variables. 𝑅𝐾 is a max heap used

to record the current top-K optimal results, and the variable𝐾𝑇ℎ𝐵𝑠 𝑓

records the largest distance in 𝑅𝐾 . The ℎ𝑒𝑎𝑝 accepts a node and a

𝐿𝐵𝑛𝑜𝑑𝑒 distance. The heap orders the inserted nodes in descending

order of the lower bounding distances. Initially, we insert the root

node into the heap with a zero distance (Line 1-3).In the main loop,

we first get the closest node from the heap (Line 5). If the 𝐿𝐵𝑛𝑜𝑑𝑒 of

the node is greater than or equal to the 𝐾𝑇ℎ𝐵𝑠 𝑓 , the 𝑅𝐾 is already

the exact result of the top-K search (Line 6-7). We also adopt early-

stopping logic for approximate matching procedure, controlling

the total number of visiting leaf nodes (Line 8-9). If the node is

terminal, we iterate all the envelopes and check the lower bounding

distance between 𝐸 and 𝑄 . The envelope is skipped directly if the

lower bounding distance equals or exceeds the 𝐾𝑇ℎ𝐵𝑠 𝑓 . Otherwise,

we calculate the exact results using 𝑐ℎ𝑒𝑐𝑘𝐸𝑛𝑣 . Here, the 𝑐ℎ𝑒𝑐𝑘𝐸𝑛𝑣

calculates distances for every subsequence in the envelope and

updates the top-K results in 𝐾𝑇ℎ𝐵𝑠 𝑓 and 𝑅𝐾 (Line 10-13). Later in

Algorithm 1: 𝑠𝑒𝑎𝑟𝑐ℎ𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚
Data: 𝐾 ,𝑄 ,𝑈𝑆𝐼 ,𝑚𝑎𝑥𝑉𝑖𝑠𝑖𝑡 .

Result: 𝐾𝑇ℎ𝐵𝑠𝑓 , 𝑅𝐾 .
1 𝐾𝑇ℎ𝐵𝑠𝑓 ←∞, 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑅𝐾 ; // Max-heap with capability K

2 Initialize ℎ𝑒𝑎𝑝 ; // Min-heap

3 ℎ𝑒𝑎𝑝.𝑎𝑑𝑑 (𝑈𝑆𝐼 .𝑟𝑜𝑜𝑡, 0) ;
// Getting approximate results

4 while ℎ𝑒𝑎𝑝 is not empty do
5 𝑛 ← ℎ𝑒𝑎𝑝.𝑝𝑜𝑝 () ;
6 if 𝑛.𝑑𝑖𝑠𝑡 >= 𝐾𝑇ℎ𝐵𝑠𝑓 then
7 return 𝐾𝑇ℎ𝐵𝑠𝑓 , 𝑅𝐾 ; // Got the exact top-K results

8 if Number of visited leaves >=𝑚𝑎𝑥𝑉𝑖𝑠𝑖𝑡 then
9 break;

10 if 𝑛.𝑛𝑜𝑑𝑒 is leaf node then
11 for 𝐸 in 𝑛.𝑛𝑜𝑑𝑒.𝑒𝑛𝑣𝑠 do
12 if 𝐿𝐵𝑒𝑛𝑣 (𝑄, 𝐸) < 𝐾𝑇ℎ𝐵𝑠𝑓 then
13 𝐾𝑇ℎ𝐵𝑠𝑓 , 𝑅𝐾 ← 𝑐ℎ𝑒𝑐𝑘𝐸𝑛𝑣 (𝑄, 𝐸,𝐾𝑇ℎ𝐵𝑠𝑓 , 𝑅𝐾 ) ;

14 else if 𝑛.𝑛𝑜𝑑𝑒 is internal or root node then
15 for 𝑐ℎ𝑖𝑙𝑑𝑁𝑜𝑑𝑒 in 𝑛.𝑛𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 do
16 ℎ𝑒𝑎𝑝.𝑎𝑑𝑑 (𝑐ℎ𝑖𝑙𝑑𝑁𝑜𝑑𝑒, 𝐿𝐵𝑛𝑜𝑑𝑒 (𝑄,𝑐ℎ𝑖𝑙𝑑𝑁𝑜𝑑𝑒)) ;

// Getting exact results

17 for 𝐸 in𝑈𝑆𝐼 .𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙𝐸𝑛𝑣𝑠 do
18 if 𝐿𝐵𝑒𝑛𝑣 (𝑄, 𝐸) < 𝐾𝑇ℎ𝐵𝑠𝑓 then
19 𝐾𝑇ℎ𝐵𝑠𝑓 , 𝑅𝐾 ← 𝑐ℎ𝑒𝑐𝑘𝐸𝑛𝑣 (𝑄, 𝐸,𝐾𝑇ℎ𝐵𝑠𝑓 , 𝑅𝐾 ) ;

20 return 𝐾𝑇ℎ𝐵𝑠𝑓 , 𝑅𝐾 ;
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Section 5.3, Algorithm 2 will enhance this brute-force procedure

with an effective filtering strategy. If the node is an internal or

root node, we insert its child nodes into the heap with the lower

bounding distances 𝐿𝐵𝑛𝑜𝑑𝑒 (Line 14-16).

Till now, if the algorithm does not obtain the exact results, we

adopt the sequential checking procedure to refine the final results.

We maintain sorted envelopes, which allows us to scan the raw

data only once to get the final results. The algorithm sequentially

processes the envelopes. If an envelope can not be filtered by 𝐿𝐵𝑒𝑛𝑣 ,

we calculate the exact distance between the query and subsequences

in the envelope (Line 17-19).

5.3 Enhanced Scanning with Lower Bounding
In Algorithms 1, if an envelope cannot be filtered by 𝐿𝐵𝑒𝑛𝑣 , we

must calculate all the distances between query and subsequences

in the envelopes. In this part, we propose a new lower bounding

distance to accelerate the distance calculation.

Lower Bounding. Subsequences at the same position but with

varying lengths yield subtle differences after z-normalization, which

results in a large amount of redundant calculation. By exploiting

the monotonicity in z-normalization, we construct enveloping se-

quences to delimit the maximum and minimum values of normal-

ized subsequences. Then, we propose a new lower-bound distance

𝐿𝐵𝑠 based on these enveloping sequences to skip unnecessary dis-

tance calculation.

Given a query 𝑄 and a block 𝐵(𝑠, 𝑙), and parameters𝑊 and 𝐻 .

When calculating the distances between the query and the sub-

sequences in this block, query only has to be scaled into lengths

within the range [𝑙, 𝑙 +𝐻 − 1] rather than all the possible lengths.

Therefore, we can delimit a tighter lower and upper bound for

query, denoted as 𝑙𝑄 and 𝑢𝑄 , respectively, such that,

𝑙
𝑄

𝑖
=𝑚𝑖𝑛({𝑄𝑙 ′

𝑖
| 𝑙 ′ ∈ [𝑙, 𝑙 + 𝐻 − 1]}),

𝑢
𝑄

𝑖
=𝑚𝑎𝑥 ({𝑄𝑙 ′

𝑖
| 𝑙 ′ ∈ [𝑙, 𝑙 + 𝐻 − 1]})

(23)

where 1 ≤ 𝑖 ≤ 𝑙 .
Now, we consider all the subsequences with the same start posi-

tion 𝑠 ′ in the block 𝐵. So we have 𝑠 ′ ∈ [𝑠, 𝑠 +𝑊 − 1], and the length
of these subsequences 𝑙 ′ ∈ [𝑙, 𝑙 + 𝐻 − 1]. We enclose these subse-

quences with two enveloping sequences, 𝑙𝑆 and 𝑢𝑆 . For brevity, we

use 𝑆 to denote 𝑇𝑠′,𝑙 ′ . Here, we show the bounds as follows,

𝑙𝑆𝑖 =


𝑆𝑖 − 𝜇𝑚𝑎𝑥
𝜎𝑚𝑎𝑥

, 𝑖 𝑓 𝑆𝑖 > 𝜇𝑚𝑎𝑥

𝑆𝑖 − 𝜇𝑚𝑎𝑥
𝜎𝑚𝑖𝑛

, 𝑖 𝑓 𝑆𝑖 ≤ 𝜇𝑚𝑎𝑥
𝑢𝑆𝑖 =


𝑆𝑖 − 𝜇𝑚𝑖𝑛
𝜎𝑚𝑖𝑛

, 𝑖 𝑓 𝑆𝑖 > 𝜇𝑚𝑖𝑛

𝑆𝑖 − 𝜇𝑚𝑖𝑛
𝜎𝑚𝑎𝑥

, 𝑖 𝑓 𝑆𝑖 ≤ 𝜇𝑚𝑖𝑛
(24)

where 1 ≤ 𝑖 ≤ 𝑙 .
Till now, we build the lower bound 𝐿𝐵𝑠 (𝑄, 𝐵, 𝑠 ′) between query

and subsequences starting at the same position 𝑠 ′ in the block 𝐵,

𝐿𝐵𝑠 (𝑄, 𝐵, 𝑠 ′) =
√︂

1

𝑙 + 𝐻 − 1

√√√√√√√√√ 𝑙∑︁
𝑖=1


(𝑙𝑆𝑖 − 𝑢

𝑄

𝑖
)2,𝑖 𝑓 𝑙𝑆𝑖 > 𝑢

𝑄

𝑖

(𝑢𝑆𝑖 − 𝑙
𝑄

𝑖
)2,𝑖 𝑓 𝑢𝑆𝑖 < 𝑙

𝑄

𝑖

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. (25)

Theorem 4. Having a block 𝐵(𝑠, 𝑙) and a query 𝑄 , for any sub-
sequence 𝑆 starting at the position 𝑠 ′ in this block 𝐵, the following
inequality is satisfied,

𝐿𝐵𝑠 (𝑄, 𝐵, 𝑠 ′) ≤ 𝐷𝑒𝑑𝑢𝑠𝑛 (𝑄, 𝑆) . (26)

Proof. First, we prove the correctness of bounds 𝑙𝑆 and 𝑢𝑆 , us-

ing the monotonicity of 𝜇 and 𝜎 in the definition of Z-normalization.

Without loss of generality, we consider 𝜎 > 0. Let 𝑓 (𝑥) = 𝑥−𝜇
𝜎 . By

taking the partial derivative of 𝑓 (𝑥), we have
𝜕𝑓 (𝑥)
𝜕𝜇

= − 1
𝜎
,
𝜕𝑓 (𝑥)
𝜕𝜎

= −𝑥 − 𝜇
𝜎2

.

For the lower bound 𝑙𝑆
𝑖
, we first consider the case of 𝑆𝑖 > 𝜇𝑚𝑎𝑥 .

Thus, we have
𝜕𝑓 (𝑥)
𝜕𝜎 < 0. To obtain the lower bound, we set 𝜎 to the

maximal value 𝜎𝑚𝑎𝑥 . For 𝜇, we have
𝜕𝑓 (𝑥)
𝜕𝜇 < 0. So, 𝜇 needs to take

the maximal value 𝜇𝑚𝑎𝑥 . Therefore, in the case of 𝑆𝑖 − 𝜇𝑚𝑎𝑥 > 0,

𝐿𝑠
′
𝑖
takes the value of

𝑆𝑖−𝜇𝑚𝑎𝑥
𝜎𝑚𝑎𝑥

. Similarly, we can prove the case of

𝑆𝑖 ≤ 𝜇𝑚𝑎𝑥 and the upper bound 𝑢𝑆
𝑖
.

Thus, considering any subsequence 𝑆 = (𝑠1, 𝑠2, · · · , 𝑠 |𝑆 |), starting
at 𝑠 ′ in the block 𝐵, we have 𝑙𝑆

𝑖
≤ 𝑠𝑖 ≤ 𝑢𝑆𝑖 . It is easy to prove that

the 𝐿𝐵𝑠 (𝑄, 𝐵, 𝑠 ′) is a lower bounding distance for 𝐷𝑒𝑑𝑢𝑠𝑛 (𝑄, 𝑆). □

Figure 2(c2) presents an illustration of 𝐿𝐵𝑠 . The grey stripes

represent the bounds calculated by Equation 23. The red dashed

lines indicate the upper and lower bounds in Equation 24, and the

blue shaded area represents the schematic of the 𝐿𝐵𝑠 calculation.

Searching Algorithm. Now, the procedure of searching an

envelope can be accelerated using 𝐿𝐵𝑠 , presented in Algorithm

2. For each block contained by an envelope (Line 1), we iterate

every start position in the block (Line 2-3). Before calculating the

exact distances, we check whether to skip the calculation using 𝐿𝐵𝑠
(Line 4). The calculation of concrete distance is conducted for each

subsequence starting at the specific position (Line 5-6). We adopt

the online normalization technique [30] when computing the 𝐿𝐵𝑠 .

Now, we can replace the function 𝑐ℎ𝑒𝑐𝑘𝐸𝑛𝑣 in Algorithms 1 with

𝑐ℎ𝑒𝑐𝑘𝐸𝑛𝑣𝐸𝑛ℎ𝑎𝑛𝑐𝑒𝑑 in Algorithm 2 for faster searching.

Algorithm 2: 𝑐ℎ𝑒𝑐𝑘𝐸𝑛𝑣𝐸𝑛ℎ𝑎𝑛𝑐𝑒𝑑
Data:𝑄 , 𝐸, 𝐾𝑇ℎ𝐵𝑠𝑓 , 𝑅𝐾 .

Result: 𝐾𝑇ℎ𝐵𝑠𝑓 , 𝑅𝐾 .
1 for 𝐵 in 𝐸.𝑏𝑙𝑜𝑐𝑘𝑠 do
2 𝑠 ← 𝐵.𝑠𝑡𝑎𝑟𝑡𝑃𝑜𝑠 ;

3 for 𝑖 ← 0 to𝑊 − 1 do
4 if 𝐿𝐵𝑠 (𝑄, 𝐵, 𝑠 + 𝑖) < 𝑏𝑠 𝑓 then
5 for 𝑆 starting at 𝑠 + 𝑖 in the block 𝐵 do
6 Calculate 𝐷𝑢𝑠𝑛 (𝑄,𝑆) , update 𝐾𝑇ℎ𝐵𝑠𝑓 and 𝑅𝐾 ;

7 return 𝐾𝑇ℎ𝐵𝑠𝑓 , 𝑅𝐾 ;

Complexity analysis. We use 𝑙𝑎𝑣𝑔 to represent the average

length of subsequences in a block. The time complexity of calculat-

ing 𝐿𝐵𝑠 is 𝑂 (𝑙𝑎𝑣𝑔) for each start position. Using 𝛼 as the pruning

ratio of 𝐿𝐵𝑠 , the average time complexity of 𝑐ℎ𝑒𝑐𝑘𝐸𝑛𝑣𝐸𝑛ℎ𝑎𝑛𝑐𝑒𝑑

is 𝑂 (𝑤𝑠𝑊 (𝑙 + (1 − 𝛼)𝐻𝑙)), while 𝑐ℎ𝑒𝑐𝑘𝐸𝑛𝑣 consumes 𝑂 (𝑤𝑠𝑊𝐻𝑙)
time. Therefore, when the pruning ratio of 𝐿𝐵𝑠 is high, some pre-

computation can help us save a amount of real distance calculation.
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5.4 Supporting DTW Distance
To handle the local misalignment between scaled queries and target

subsequences, adopting the concept of 𝐿𝐵𝐾𝑒𝑜𝑔ℎ [19] (which con-

structs upper and lower-bound sequences for the query sequence

to incorporate variations in time axis), we construct a boundary

envelope for the query to enable UPAA tolerant the temporal mis-

alignment and support the cDTW distance.

Given a length-𝑛 query sequence 𝑄 and the time warping con-

straint 𝑐 , according to [19], the enveloping sequences for cDTW

distance are constructed as,

𝑢
𝑘𝑒𝑜𝑔ℎ

𝑖
(𝑄) =𝑚𝑎𝑥 (𝑄𝑚𝑎𝑥 (1,𝑖−𝑐) , . . . , 𝑄𝑚𝑖𝑛 (𝑖+𝑐,𝑛) ),

𝑙
𝑘𝑒𝑜𝑔ℎ

𝑖
(𝑄) =𝑚𝑖𝑛(𝑄𝑚𝑎𝑥 (1,𝑖−𝑐) , . . . , 𝑄𝑚𝑖𝑛 (𝑖+𝑐,𝑛) )

(27)

, where 1 ≤ 𝑖 ≤ 𝑛. These two sequences 𝑢𝑘𝑒𝑜𝑔ℎ and 𝑙𝑘𝑒𝑜𝑔ℎ form a

length-𝑛 envelope to enclose the original sequence 𝑄 , which helps

to calculate the lower bounding distance for cDTW to accelerate

the query processing.

Now we reformulate the lower and upper bounds for query in

Section 5.1 and Section 5.3 with a similar idea of [19].

First, we reconstruct the lower and upper bounds in Equation 14,

denoted as 𝐿𝑄𝑑𝑡𝑤 and𝑈𝑄𝑑𝑡𝑤 , such that,

𝐿
𝑄𝑑𝑡𝑤

𝑖
=𝑚𝑖𝑛({𝜇𝑖 (𝑙𝑘𝑒𝑜𝑔ℎ (𝑄𝑙 )) | 𝑙 ∈ [𝑙𝑚𝑖𝑛, 𝑙𝑚𝑎𝑥 ]}),

𝑈
𝑄𝑑𝑡𝑤

𝑖
=𝑚𝑎𝑥 ({𝜇𝑖 (𝑢𝑘𝑒𝑜𝑔ℎ (𝑄𝑙 )) | 𝑙 ∈ [𝑙𝑚𝑖𝑛, 𝑙𝑚𝑎𝑥 ]}) .

(28)

Similarly, we restate the lower and upper enveloping sequences

in Equation 23, denoted as 𝑙𝑄𝑑𝑡𝑤 and 𝑢𝑄𝑑𝑡𝑤 , satisfying that,

𝑙
𝑄𝑑𝑡𝑤

𝑖
=𝑚𝑖𝑛({𝑙𝑘𝑒𝑜𝑔ℎ (𝑄𝑙 ′

𝑖
) | 𝑙 ′ ∈ [𝑙, 𝑙 + 𝐻 − 1]}),

𝑢
𝑄𝑑𝑡𝑤

𝑖
=𝑚𝑎𝑥 ({𝑢𝑘𝑒𝑜𝑔ℎ (𝑄𝑙 ′

𝑖
) | 𝑙 ′ ∈ [𝑙, 𝑙 + 𝐻 − 1]}) .

(29)

By replacing the enveloping sequences in 𝐿𝐵𝑒𝑛𝑣 and 𝐿𝐵𝑠 with

𝑙𝑄𝑑𝑡𝑤 and𝑢𝑄𝑑𝑡𝑤 , we obtain the new 𝐿𝐵𝑑𝑡𝑤𝑒𝑛𝑣 and 𝐿𝐵𝑑𝑡𝑤𝑠 suitable for

𝐷𝑑𝑡𝑤𝑢𝑠𝑛 . Referring to the property of enveloping sequences [19], we

can easily prove the correctness of these lower bounding distances

similar to the Theorem 3 and Theorem 4. Therefore, the CIVET

index and query algorithms can be adapted to the cDTW distance.

5.5 Discussion
CIVET is designed for finding similar subsequences with the closest

𝐷𝑢𝑠𝑛 . Users can use a pattern as the query sequence and find subse-

quences with the same pattern. CIVET does not support constrained

matching and non-normalized matching, as well as ad-hoc semantic

search. Nonetheless, CIVET can be extended to many real-world

applications. For example, one can use CIVET to find subsequences

containing multiple patterns by extracting and searching single

patterns and then filtering the returned results to obtain the final

answer. CIVET can also be extended to support range search by

combining the lower bounding distances in Section 5.1 with the

user-provided range threshold for timely abandonment.

6 EXPERIMENT
We evaluate the efficiency and effectiveness of CIVET on real and

synthetic datasets. All experiments are conducted on a computer

running Ubuntu 18.04.6 LTS 64-bit with an Intel(R) Xeon(R) Gold

5215 CPU @ 2.50GHz 𝑚𝑢𝑙𝑡𝑖 80 CPU, 64GB RAM, and 4TB Dell

PERC H730P disk. All methods are implemented with C++.

6.1 Experimental Setup
6.1.1 Datasets. Datasets used in our experiments are listed below.

AGW is a gesture recognition dataset that contains 10 types of

gestures acquired by a three-axis accelerometer. GMA contains 3D

hand trajectories collected with Leap Motion device. PLAID con-

tains current and voltage measurements from different appliance

types. GAP records the active energy consumed from 2006 to 2008

in France [14]. CAP contains a periodic EEG activity occurring

during NREM sleep phase [36]. SYN is a synthetic dataset generated

as the sum of a sequence of random steps extracted from a standard

Gaussian distribution N(0, 1).
The AGW, GMA, and PLAID are three small and real datasets

containing variable-length sequences provided by UCR Archive [7].

We randomly select sequences for each dataset as queries; the rest

are shuffled and concatenated as a long target sequence. Their

lengths are 370K, 170K, and 340K, respectively. Length ranges of

the query workload are [32,385], [80,360], and [200,684].

For GAP, CAP, and SYN, queries are remolded from random

subsequences. We scale subsequences into random lengths within

[𝑙𝑚𝑖𝑛 , 𝑙𝑚𝑎𝑥 ] to generate queries. The additional Gaussian noise

is added to the scaled sequences. In the experiments, we set the

length range as [256, 512] by default. These three datasets (SYN,

GAP, CAP) are large datasets, where the size of each dataset is

10M. Note that the number of candidate subsequences in the long

sequence is about 2 billion under these settings.

6.1.2 The Comparison Methods. Three baselines are adopted.
UCR Suite [30] (UCR for short) searches the most similar nor-

malized subsequence by scanning the whole time series and speeds

up the search processing using some pruning techniques. During

the subsequence matching, we scale the given query to every pos-

sible length within the length range [𝑙𝑚𝑖𝑛, 𝑙𝑚𝑎𝑥 ] and then match

top-k subsequences with the UCR Suite.

UCR-US [31] is a representative subsequence matching method

that supports normalized distance under uniform scaling. It refines

the lower-bound techniques in UCR Suite to suit the scenario of

uniform scaling. UCR-US is omitted for comparison under DTWdue

to lack of support. Besides, UCR and UCR-US can directly execute

queries without building indexes.

ULISSE [25], as state of the art in subsequence matching, sup-

ports matching the subsequences within the constraint on length

range by constructing an iSAX-based index. Similarly, we scale the

given query to every possible length and conduct the subsequence

matchings with ULISSE. Both CIVET and ULISSE support control

the number of visited leaf nodes during the approximate matching

procedure. Unless otherwise specified, we set it to 5, the default

parameter provided by ULISSE.

UCR and UCR-US are scanning algorithms without an index,

while ULISSE and CIVET require constructing indexes. Later, we

show that a few queries will amortize the index-building cost.

6.1.3 Parameter Default Setting and Influences. CIVET requires

four parameters during the indexing. We provide default values

of the parameters that ensure both optimal performance and fair
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comparison. By default, we set𝑊 as 0.1(𝑙𝑚𝑎𝑥 − 𝑙𝑚𝑖𝑛), 𝐻 as 16,𝑤𝑠

as
𝑙𝑚𝑎𝑥−𝑙𝑚𝑖𝑛

8
,𝑚 as 8.

We study the influences of parameters on multiple datasets (SYN,

CAP, GAP). We adjust one parameter and keep the other as default

values to show the changes in query time and index size. Since the

structure and size of the index under the same parameter setting

are similar, we only show the average size here. The results are

depicted in Figure 5.

𝑊 and𝑤𝑠 , the step size of starting positions and the window size

of envelopes. These two parameters are not sensitive to the query

time and can fine-tune the time-space tradeoff (see Figure 5 (a) and

(b)). Users can decide them according to the space constraint. In

our experiments, we use them to control the index size to be nearly

equal to the baseline ULISSE in order to ensure a fair comparison.

𝐻 , the step size of lengths. The proper 𝐻 optimizes the effective-

ness of both index pruning and scan filtering. In CIVET, there is

a sweet point when varying 𝐻 where the query performance can

achieve the optimum. We decide it by pre-experiments. As shown

in Figure 5 (c), 𝐻 = 16 is the best point for all three datasets.

𝑚, the number of segments in each subsequence. Experimental

results (see Figure 5(d) in the paper) indicate that query efficiency

changes slightly when 𝑚 varies. As 𝑚 increases, the expressive

capability of PAA (and UPAA) improves, but this also leads to

higher computational costs [38]. Thus, increasing the number of

segments is beneficial up to a point, after which query efficiency

starts to decrease [5]. To determine the most effective value of𝑚,

we conducted initial testing on a subset of our data. Specifically, we

sampled 5% of the subsequences to construct indexes with different

𝑚 values ({4, 8, 12, 16}). Then, we executed a series of random queries

to assess the efficiency of these indexes. The𝑚 value yielding the

highest efficiency was selected to construct the complete index. The

results of our initial tests, presented in Figure 6, indicate that for

our datasets,𝑚 = 8 offers the best configuration.

The parameter𝑊 in CIVET and 𝛾 in ULISSE share the same

meanings (step size of starting positions). Therefore, we vary them

to provide additional details about the index structure, as shown in

Table 2. It is evident that, owing to our more compact construction

logic, CIVET achieves superior compactness.

6.2 Evaluation of Exact Top-1 Matching
In this part, we have thoroughly explored Exact Top-1 Matching to

analyze the efficiency and effectiveness of our method. All experi-

ments in this subsection are conducted on all datasets.

Table 2: Details of Index Structure

W for CIVET / 𝛾 for ULISSE

4 8 16 32 64 128

CIVET

Height 8.7 7.3 6.5 5.4 4.2 3.1

# Envs 1.3M 620K 314K 156K 78K 39K

# Leaf Nodes 1843 938 460 227 115 60

Index Size(MB) 269 138 68 32 16 7.3

ULISSE

Height 9.5 8.6 7.6 6.9 6.1 5.4

# Envs 2.0M 1.1M 588K 303K 153K 78K

# Leaf Nodes 3870 2243 1218 724 403 204

Index Size(MB) 720 361 180 66 33 23

We record the average exact query time and the pruning power

of 100 queries. The pruning power refers to the percentage of the

total number of subsequences that do not need to calculate concrete

distance. Note that ULISSE skips envelopes for efficient matching

while UCR-US prunes sets of subsequences with the help of lower

bounding distance. CIVET has two steps of pruning procedure. We

refer to the index pruning as the first stage (ST1) and the filtering

in 𝑐ℎ𝑒𝑐𝑘𝐸𝑛𝑣 as the second stage (ST2).

Performance of Exact Top-1 Matching with ED.We first test

CIVET and baselines using exact Top-1 matching with ED.

Figure 7(a) and (b) show the average exact Top-1 query time. As

depicted, CIVET achieves the acceleration of 2.5x-7.8x compared

with UCR-US and 7.3x-11.5x compared with ULISSE on different

datasets. Figure 7(c) and (d) report the average pruning power of

three methods on these datasets. Due to the grouping of subse-

quences with similar features during index building, the pruning

power of ST1 in our indexing method surpasses that of ULISSE. One

distinction is important: unlike ULISSE, we consider all possible

lengths at once during the index pruning process. Yet, we can still

achieve a higher pruning rate in ST1. This also reflects the capa-

bility of UPAA to eliminate the influence of global scaling. In ST2,

when setting an appropriate value for 𝐻 , the algorithm constructs

a compact lower-bounding distance for z-normalized subsequences

with varying lengths. Therefore, the pruning rate of the scanning

algorithm consistently remains very high on different datasets.

To illustrate the overall time cost of indexing and querying, we

show the cumulative time to build the index and answer 20 queries.

As shown in Figures 7(e) and 7(f), the index-building overhead

brought by CIVET index building is very small. After executing 5

queries, the cumulative time cost of CIVET gets smaller than UCR

and UCR-US. Additionally, the results indicate that the Disk I/O

time required for CIVET is substantially smaller than ULISSE.
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Figure 7: Exact Top-1 Matching with ED

Performance of Exact Top-1 Matching with DTW. CIVET
is also extended to support variable-length matching within cDTW

distance. So we conduct the exact Top-1 matching with cDTW

distance here. Figure 8 shows average query time and pruning

effectiveness. As illustrated, CIVET is 5.5x-16.6x faster than ULISSE

and 8.1x-22.7x than UCR on different datasets.

In summary, our approach achieves an average of 5x speed-

ups than UCR-US, 11x speed-ups than ULISSE, and 15x on UCR

on different datasets. The efficiency of matching underscores our

method’s superiority in variable-length subsequence matching. In

addition, the pruning rate and other statistical data also reflect

the high effectiveness of UPAA in representing variable-length

sequences, and the efficiency and robustness of the query algorithm.

6.3 Exploratory Experiments
To analyze more beneficial aspects of CIVET, we conduct a series of

exploratory experiments in this part. All experiments are performed

on large and real datasets, specifically GAP and CAP.

Performance of Top-K Matching. CIVET supports exact Top-

K query as well. We also show the query time of the exact Top-K

query varying 𝐾 in Figure 9. Both ED and DTW distances are

tested. The experimental results show that CIVET keeps a stable

performance as the number of nearest neighbors increases.

Performance when Varying 𝑙𝑚𝑎𝑥 −𝑙𝑚𝑖𝑛 .We explore the query

time and the pruning power of different methods on GAP and CAP
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Figure 8: Exact Top-1 Matching with DTW

when varying the length range 𝑙𝑚𝑎𝑥 − 𝑙𝑚𝑖𝑛 in Figure 10. The in-

dex pruning of CIVET (CIVET-ST1) outperforms that of ULISSE,

and pruning during the scanning (CIVET-ST2) also exhibits supe-

rior capability compared to the pruning efficiency of UCR-US. For

CIVET, due to the effective grouping strategies of subsequences,

subsequences in the same blocks and envelopes have more similar

features. Therefore, the pruning power drops with a slower trend,

and the query time grows more slowly.

Accuracy of Approximate Matching In this part, we show

the accuracy of the approximate matching compared with ULISSE.

For ULISSE, we get the results from scaled queries of all possible

lengths. We record how many approximate results belong to the
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(c) Top-K Matching on CAP with ED
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Figure 9: Exact Top-K Matching
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Figure 11: Approximate Matching

top-100 exact results (Recall of Top-100). Figure 11 demonstrates

how the accuracy of approximate matching changes as the number

of visited subsequences increases. CIVET achieves a higher recall

on both datasets than ULISSE.

6.4 Scalability
To test the scalability of CIVET, we conduct experiments on SYN

with different sizes from 10
5
to 10

9
. We record the index building

time and the query time of CIVET in Figure 12. The time of CIVET

building increases linearly with the amount of data. The efficient

indexing algorithm proposed by ULISSE is also suitable for our

index. So we can construct CIVET with the same time complexity

(with a few more constants). In addition, we also depict the exact

matching time of different methods. As the size of the dataset grows,

the query time of our method grows linearly. Again, CIVET is faster

than baselines by about one order of magnitude. Therefore, CIVET

has the ability to index and query efficiently with great scalability.

7 RELATED WORK
Fixed-length Subsequence Matching. UCR SUITE [30] devise

several techniques for computing lower bounds for the efficient

similarity query. Many works have improved time series indexing

through various summarization techniques [3, 11, 34, 37]. However,

all of these indexes require queries with a preset and fixed length.

(a) Efficiency of Index Building (b) Exact Top-1 Matching with ED

Figure 12: Scalability

Recent research has tried to tackle this limitation. Some studies

propose efficient approaches to support constrained normalized

subsequence matching, which is different from our problem. [4, 39].

ULISSE extends iSAX with envelope summarization so that it can

index subsequences of variable length [25]. However, the methods

above only support equal-length queries, meaning that the lengths

of matched subsequences and queries are the same. As a result, they

are not good at handling global scaling in the time dimension.

Variable-Length Subsequence Matching. The SpADe dis-

tance function is an elastic distance function that can handle time

drift, amplitude drift, and shape scaling [6]. Lian et al. create the

multi-scaled segment mean (MSM), which can be computed gradu-

ally and is suited to the stream features [23]. Kotsifakos et al. modify

the edit distance for query by humming problem [21, 22]. These

elastic measures do allow for variation in length. However, they

only provide tolerance to local shifts in two sequences without the

ability to deal with large global scaling. Recently, the sketch-based

method has attracted the attention of many researchers [27, 28, 35].

While these methods are capable of matching variable-length data,

their main focus is on the whole matching.

Uniform Scaling. Keogh et al. [18] utilize R-tree to index and

accelerate uniform scaling distance calculation for whole matching.

Ada et al. motivate the accommodation of US and DTW [12]. The

extended work on UCR Suite proposes a lower bound distance to

accelerate sequential match under uniform scaling [31]. A recent

work refines the distance with a tighter bound [33]. However, these

methods have not thoroughly investigated the properties of Uni-

form Scaling, and they have not been meticulously designed for

subsequence queries under normalized conditions. There is still

significant room for improvement in terms of efficiency.

8 CONCLUSION
In this paper, we extend the PAA as UPAA with uniform segmen-

tation, which possesses the ability to tolerate global scaling. Be-

sides combining two grouping strategies, our approach constructs

a compact and effective index structure that supports efficient sub-

sequence matching facilitated by index pruning and data filtering.

Experimental results on different synthetic and real datasets demon-

strate the efficiency, scalability, and effectiveness of our approach.
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