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ABSTRACT
We consider the problem of the private release of statistics (like pay-

roll) where it is critical to preserve the contribution made by a small

number of outlying large entities. We propose a privacy formalism,

per-record zero concentrated differential privacy (PzCDP), where

the privacy loss associated with each record is a public function of

that record’s value. Unlike other formalisms which provide different

privacy losses to different records, PzCDP’s privacy loss depends

explicitly on the confidential data. We define our formalism, derive

its properties, and propose mechanisms which satisfy PzCDP that

are uniquely suited to publishing skewed or heavy-tailed statistics,

where a small number of records contribute substantially to query

answers. This targeted relaxation helps overcome the difficulties of

applying standard DP to these data products.
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1 INTRODUCTION
We consider the problem of releasing private aggregate statistics

on data with highly skewed attributes. These kinds of data occur

frequently in practice, for example the Census Bureau’s County

Business Patterns (CBP) dataset [8], USDA’s Census of Agriculture

[28], and many IRS data products like the Corporation Sourcebook

[19]. Moreover, the aggregate statistics are highly sensitive to con-

tributions by a single (or small set of) units. For example, CBP takes

business establishments as its unit of analysis, where it is common

that one establishment (like a large retailer or hospital) contributes

to the majority of the jobs in a rural area. Regardless of their large

contributions, the privacy of these units is often protected under
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Table 1: Sample of skewed data containing a subset of a much
larger collection of rows.

ID Industry Employees

1 Retail 5

2 Retail 5

3 Retail 10

4 Retail 1000

5 Technology 10000

6 Services 5

7 Hospitality 5

federal law [1, 2]. Current disclosure avoidance methods, both tradi-

tional and modern, either fail to provide strong privacy guarantees

or high utility. Classical statistical disclosure limitation techniques

like complementary cell suppression using the p% rule and EZS

noise [16, 24] offer no formal privacy guarantee and can determin-

istically reveal information about large contributions. Differentially

private (DP) techniques [13, 14] that globally bound the contri-

bution of any one unit to published statistics require that highly

skewed data are either truncated or suppressed, resulting in un-

reasonably large bias or unreasonably large noise injected into

published statistics.

Table 1 gives one such data example. Suppose we wanted to

execute the following SQL query using DP:

SELECT SUM(Employees) FROM table1 WHERE Industry = ’Retail’

DP requires bounding the contribution of any one record to the sum-

mation, enforced by truncating large values to a clamping bound.

Setting this bound too high will require unreasonably large addi-

tional noise for DP, whereas setting this bound too low will add

unreasonably large bias by truncating record 4. In Section 6.2, we

further demonstrate how this problem makes global DP methods

ill-suited for summations on skewed data.

Problems like these affect many high-sensitivity queries, where

mitigating the effect of one record can have exorbitant effects on

utility. For example, DP partition selection algorithms [11] used

in keyset selection for group-by queries can neglect the impact

of individual records with important, outlying attributes. In Table

1, if we were to execute the query “SELECT Count(*) FROM Ta-

ble1 GROUP BY Industry" using DP, the probability of including

"Services" and "Technology" would be the same, despite the fact

that the majority of employees in the dataset work in Technology.
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Issues like these stem from inherent connections between DP and

robustness [5, 12, 23], where DP techniques cannot successfully

answer inherently non-robust queries.

1.1 Contributions
In these settings where standard DP tools do not work, we might

consider a relaxation of DP that applies different privacy loss bounds

to different units. For example, in Table 1, we might allow addi-

tional privacy loss for record 5 (Technology establishment with

10000 employees) than record 1 (Retail establishment with 5 em-

ployees), especially because record 5 is an influential record which

describes more individuals than record 1. However, existing tech-

niques restrict how this mapping between records and privacy

losses can occur. Personalized DP [20] requires that the mapping

between units and their privacy losses is public knowledge, but we

might require this mapping to non-trivially depend on confidential

data. Alternatively, individual DP [15] requires that this mapping

is confidential, but this limits our ability to be methodologically

transparent or describe how privacy losses differ across units.

We propose per-record zero-concentrated DP (PRzCDP), which

aims to address these problems. We publicly release what we call a

"policy function" 𝑃 that maps each possible (hypothetical) record

to a maximum privacy loss that said record could incur. The form

of 𝑃 can depend on the record’s value, allowing different privacy

losses for outlying units when necessary to maintain reasonable

data utility. We next propose an algorithm methodology, called unit
splitting, which indirectly sets 𝑃 by executing traditional zCDP [7]

algorithms on a preprocessed version of the data where influential

records are split into sub-records. Our formalism and mechanisms

are ideal for non-interactive query workloads involving highly

skewed data; as a result, our approach is a candidate methodology

for data products like CBP [9]. Our contributions are as follows:

• In Sections 3 and 4, we formally define PRzCDP and demon-

strate its formal properties, such as sequential and parallel

composition.

• In Section 5, we propose unit splitting, a pre-processing

step which allows us to compute DP mechanisms on the

output so that the final results satisfy 𝑃-PRzCDP.

• In Section 6, we apply these techniques to three datasets:

one simulated heavy-tailed dataset, one USDA dataset, and

simulated CBP data provided to us by the U.S. Census Bu-

reau
1
. We empirically demonstrate how small changes in

privacy loss significantly improve utility for these skewed

datasets.

1.2 Related work
Among the hundreds of existing formal privacy definitions [10],

many formalisms aim to provide privacy guarantees which differ

across units [4, 15, 18, 20] or realized datasets [25, 29]. These are

often used in service of broader global DP goals, such as publishing

data-dependent privacy guarantees [27] or establishing privacy fil-

ters for adaptive composition [17, 30]. Our work differs in a few key

1
The simulated CBP data has been provided to Tumult Labs as part of an ongoing

contract with MITRE (Government Contract No. TIRNO-99-D00005 and subcontract

MSA-000099) to provide scientific research support to the Economic Directorate of the

US Census Bureau.

areas. First, we consider explicit dependencies between individual

privacy loss parameters and confidential record values, relaxing

strong assumptions made about this relationship in previous work

[4, 15, 18, 20, 25, 27, 29]. Second, we consider data-dependent pri-

vacy guarantees without global bounds on privacy loss; we consider

cases where the policy loss can become arbitrarily large for certain

records. Such relaxations are necessary to address problems that

arise with skewed data, for which global DP guarantees cannot pro-

vide reasonable privacy loss and utility simultaneously. We provide

a detailed comparison between PRzCDP and related definitions in

Section 4.1.

2 PRELIMINARIES
2.1 Data Model
We assume a single table schema 𝑅(𝑎1, 𝑎2 . . . 𝑎𝑑 ) where

A = {𝑎1, 𝑎2 . . . 𝑎𝑑 } denotes the set of attributes 𝑅. Each attribute

in 𝑎𝑖 has domain, Dom(𝑎𝑖 ), which need not be finite or bounded.

The full domain of 𝑅 is Dom(𝑅) = Dom(𝑎1) × . . .Dom(𝐴𝑑 ).
A database 𝐷 is an instance of relation 𝑅. 𝐷 is a multi-set whose

elements are tuples in Dom(𝑅), i.e., a tuple can be written as 𝑟 =

(𝑥1, . . . , 𝑥𝑑 ) where 𝑥𝑖 ∈ Dom(𝑎𝑖 ). The number of tuples in 𝐷 is

denoted as |𝐷 | = 𝑛.

2.2 Zero-Concentrated Differential Privacy
Informally, a randomized mechanism𝑀 satisfies DP if the output

distribution of the mechanism does not change too much with the

addition or removal of a single unit’s record. We focus on a variant

of DP called 𝜌-Zero-Concentrated Differential Privacy (zCDP)[7],

but all the following results could similarly be adapted for 𝜖-DP

[13]. This DP formulation bounds the Rényi Divergence of output

distributions induced by changes in a single record. We first begin

by defining neighboring databases.

Definition 1 (Neighboring Databases). Two databases 𝐷 and 𝐷′

are considered neighboring databases if𝐷 and𝐷′
differ by adding or

removing at most one row. We denote this relationship by 𝐷′ ≈ 𝐷 .

We often use neighboring databases to measure the impact of

any particular individual’s input on the output of a function. We

call the maximum change to a function due to the removal or

addition of a single row the sensitivity of the function. We will

often refer to a single row in a database as a “unit” and use the

terms interchangeably.

Definition 2 (ℓ2-Sensitivity). Given a vector function 𝑓 , the sensi-

tivity of 𝑓 is 𝑠𝑢𝑝𝐷 ′≈𝐷 |𝑓 (𝐷) − 𝑓 (𝐷′) |2, where | · |2 is the ℓ2-norm,

and is denoted by Δ.

From here, we can define the formal notion of privacy under

zCDP.

Definition 3 (Zero-Concentrated Differential Privacy). A rand-

omized mechanism 𝑀 satisfies 𝜌-zCDP for 𝜌 ≥ 0 if, for any two

neighboring databases 𝐷 and 𝐷′
and for all values of 𝛼 ∈ (1,∞):

𝐷𝛼 (𝑀 (𝐷)∥𝑀 (𝐷′)) ≤ 𝜌𝛼

where 𝐷𝛼 (·∥·) is the Rényi divergence of order 𝛼 between two

probability distributions.
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zCDP ensures that no unit contributes too much to the final out-

put of the mechanism by bounding the difference with or without

their particular record. The parameter 𝜌 is often called the privacy

loss and refers to the amount of information that can be learned

about any particular individual. A high value of 𝜌 means weaker

privacy protection, while a lower value of 𝜌 denotes a stronger

privacy protection.

zCDP has a number of properties that are often used to con-

struct more complex mechanisms. These are composability, post-

processing invariance, and group privacy. Composition allows for

multiple private mechanisms to compose together to create a large

mechanism which still satisfies zCDP.

Theorem 1 (zCDP Sequential Composition [7]). Let 𝑀1, 𝑀2 be
randomized mechanisms which satisfy 𝜌1−zCDP and 𝜌2−zCDP re-
spectively. Then the mechanism𝑀′ (𝐷) = (𝑀1 (𝐷), 𝑀2 (𝐷)) satisfies
(𝜌1 + 𝜌2)−zCDP.

Additionally, if a mechanism is run on multiple disjoint sections

of the database, private mechanisms compose with no additional

privacy loss.

Theorem 2 (zCDP Parallel Composition [7]). Let 𝑀1, 𝑀2 be ran-
domized mechanisms which satisfy 𝜌1−zCDP and 𝜌2−zCDP respec-
tively. Let 𝐷1, 𝐷2 be two disjoint subsets of a database, 𝐷 . The mech-
anism𝑀′ (𝐷) = (𝑀1 (𝐷1), 𝑀2 (𝐷2)) satisfies max(𝜌1, 𝜌2)−zCDP.

zCDP also allows for arbitrary post-processing without addi-

tional privacy loss.

Theorem 3 (zCDP Post-processing [7]). Let 𝑀 be a randomized
mechanism which satisfies 𝜌− zCDP. Let𝑀′ (𝐷) = 𝑓 (𝑀 (𝐷)) for some
arbitrary function 𝑓 . Then𝑀′ satisfies 𝜌-zCDP.

Due to the composition and post-processing theorems, most

zCDP mechanisms are built out of simple primitive mechanisms

such as the Gaussian mechanism [7] which are then post-processed

and combined to create more complex mechanisms.

Definition 4 (Gaussian Mechanism [7]). Let 𝑞 be a sensitivity Δ
query. Consider the mechanism𝑀 that on input𝐷 releases a sample

from N(𝑞(𝐷), 𝜎2). Then𝑀 satisfies
Δ2

2𝜎2
-zCDP.

Another property of formally private mechanisms is the notion

of group privacy. Mechanisms not only protect the unit but also

protect arbitrary groups of units with a privacy loss that scales in

the size of the group.

Theorem 4 (zCDP Group Privacy). Let𝑀 be a randomized mecha-
nism which satisfies 𝜌−zCDP. Then𝑀 guarantees (𝑘2𝜌)−zCDP for
groups of size 𝑘 . That is, for every set of neighboring databases 𝐷,𝐷′

differing in up to 𝑘 entries, and 𝛼 ∈ (1,∞) we have the following.
𝐷𝛼 (𝑀 (𝐷)∥𝑀 (𝐷′)) ≤ (𝑘2𝜌) · 𝛼

While all the results that follow will use zCDP, they still hold in

the context of pure 𝜖-DP.

3 PER-RECORD DIFFERENTIAL PRIVACY
Here, we introduce Per-Record Zero-Concentrated Differential Pri-

vacy (PRzCDP), a relaxation of DP designed for highly skewed data.

This takes the form of a privacy guarantee that varies as a function

of the record’s confidential value; for example, when records are

real-valued positive numbers, we can consider privacy loss bounds

that grow monotonically as a function of these record values. The

key feature of PRzCDP is a record-dependent policy function which

can be publicly released and analytically captures the privacy loss

of a hypothetical record.

Definition 5 (Record-dependent policy function). A

record-dependent policy function 𝑃 : T → R≥0 denotes a max-

imum allowable privacy loss associated with a particular record

value 𝑟 ∈ T , where T is the universe of possible records.

This record-dependent policy function differs from other indi-

vidual privacy frameworks in that the parameter value 𝑃 (𝑟 ) itself
depends on the confidential record values 𝑟 . We allow the functional

form of the policy function 𝑃 (·) to be made public, but the value of

the policy function 𝑃 (𝑟 ) for any record 𝑟 in the confidential data-

base cannot be made public. Record-dependent policy functions are

inspired by and generalize binary policy functions of [21]. Given a

policy function, Per-Record Zero-Concentrated Differential Privacy

is defined as follows.

Definition 6 (𝑃-per-record zero-Concentrated DP (𝑃-PRzCDP)).
Let 𝑀 be a randomized algorithm which outputs a random vari-

able 𝑌 over a range (Y, F𝑌 ), where F𝑌 is an appropriately chosen

𝜎-algebra.𝑀 satisfies 𝑃-per-record zero-concentrated differential

privacy (𝑃-PRzCDP) iff ∀𝐷,𝐷′ ∈ D:

𝐷 ⊖ 𝐷′ = {𝑟 } =⇒ 𝑑𝛼 (𝑀 (𝐷) | |𝑀 (𝐷′)) ≤ 𝛼𝑃 (𝑟 ) ∀𝛼 ∈ (1,∞)

where D is the input database space and ⊖ denotes symmetric

difference.

In this definition, the privacy loss associated with each record

scales according to the policy function, as opposed to having equal

privacy loss for all records. Note that under this definition, any

traditional 𝜌-zCDP mechanism also satisfies PRzCDP with a policy

function of 𝑃 (𝑟 ) = 𝜌 , that is, a constant policy function.

Lemma 1. Let 𝑀 be a randomized mechanism which satisfies 𝜌-
zCDP. Then𝑀 also satisfies 𝑃-PRzCDP where 𝑃 (𝑟 ) = 𝜌 .

Example 1. Consider Table 2(a) and a policy function 𝑃 (𝑟 ) =

𝜌

⌈︂
𝑟 [𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠 ]

50

⌉︂
, where 𝜌 is a privacy parameter. Under this policy

function, Establishment 1 would receive 3𝜌 privacy loss since it has

150 employees, while Establishment 2 would incur 𝜌 privacy loss

since it only has 50 employees. Establishment 5 would still incur 𝜌

privacy loss even though it has less than 50 employees.

4 PROPERTIES OF PER-RECORD
DIFFERENTIAL PRIVACY

We demonstrate here that PRzCDP satisfies the traditional proper-

ties often associated with Differential Privacy, as well as its variants.

First, PRzCDP is closed under post-processing, in that any data in-

dependent function computed on the output of a mechanism which

satisfies PRzCDP also satisfies PRzCDP.

Lemma 2 (Closure under post-processing). Given 𝑀 : T ∗ → Y,
a 𝑃-PRzCDP mechanism 𝑀 , and any function 𝑓 , it is the case that
𝑓 ◦𝑀 is also 𝑃-PRzCDP.
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Closure under post-processing is required for any formal privacy

definition because it ensures that any private release will retain its

properties regardless of the development or application of future

privacy attacks.

PRzCDP satisfies basic adaptive sequential composition in that

two PRzCDP mechanisms with arbitrary policy functions (cho-

sen prior to running any mechanism) compose together to satisfy

PRzCDP in combination.

Lemma 3 (Basic adaptive sequential composition for 𝑃-PRzCDP).
Let𝑀1 satisfy 𝑃1-PRzCDP and let𝑀2 satisfy 𝑃2-PRzCDP. Then𝑀3 (𝐷)
= 𝑀2 (𝑀1 (𝐷), 𝐷) satisfies (𝑃1 (𝑟 ) + 𝑃2 (𝑟 ))-PRzCDP.

This ensures that multiple private releases still ensure privacy

and demonstrates how the privacy loss decays over multiple re-

leases. Like in DP, the privacy losses sum when mechanisms are

composed together. In PRzCDP, since the privacy loss is encoded

into the policy function, this takes the form of the sum of the two

policy functions.

PRzCDP also satisfies a form of parallel composition. When

multiple mechanisms which satisfy 𝑃-PRzCDP are run on disjoint

subsets of the database, the joint result also satisfies 𝑃-PRzCDP:

Lemma 4 (Parallel composition for 𝑃-PRzCDP). Define the partition
of size 𝐽 ∈ N ∪ {∞}: Let T define a partition over the universe of
possible records. That is,

T =

𝐽⋃︂
𝑗=1

𝐶 𝑗 , 𝐶𝑖 ∩𝐶 𝑗 = ∅, 𝑖 ≠ 𝑗

Let D𝑗 be the space of all databases containing only records in 𝐶 𝑗

for 𝑗 ∈ [𝐽 ]. Let {𝑀𝑗 }𝐽𝑗=1 be mechanisms satisfying 𝑃-PRzCDP for
databases 𝐷 𝑗 ∈ D𝑗 for 𝑗 ∈ [𝐽 ], respectively. Then for any realized
database 𝐷 , the mechanism:

𝑀 (𝐷) =
{︁
𝑀𝑗 (𝐷 ∩𝐶 𝑗 ) | 𝑗 ∈ [𝐽 ]

}︁
satisfies 𝑃-PRzCDP. Note that the𝑀𝑗 s can depend on their respective
𝐶 𝑗 s, allowing for adaptivity.

Note that Lemma 4 does not require the individual mechanisms

{𝑀𝑗 }𝐽𝑗=1 to be the same for all 𝑗 ∈ [𝐽 ], allowing for adaptive parallel
composition. Parallel composition allows for the combination of

mechanisms on disjoint sets of the data universe. This results in a

policy function which is a piecewise combination of the individual

policy functions of each mechanism over their respective partition

of the data universe.

PRzCDP satisfies the group privacy notion as well. A mechanism

that satisfies 𝑃-PRzCDP also protects groups.

Lemma 5 (Simple group privacy for 𝑃-PRzCDP). Consider a se-
quence of databases 𝐷0, . . . , 𝐷 𝐽 where 𝐷0 = 𝐷 and 𝐷 𝑗 ⊖𝐷 𝑗−1 = {𝑟 𝑗 }
for 𝑗 ∈ [𝐽 ]. Let𝑀 be a randomized mechanism satisfying 𝑃-PRzCDP.
Then we have:

𝑑𝛼 (𝑀 (𝐷0) | |𝑀 (𝐷 𝐽 )) ≤ 𝛼 𝐽

𝐽∑︂
𝑗=1

𝑃 (𝑟 𝑗 ) (1)

Lemma 6 (Advanced group privacy for 𝑃-PRzCDP). Consider a
sequence of databases 𝐷0, . . . , 𝐷 𝐽 where 𝐷0 = 𝐷 and 𝐷 𝑗 ⊖ 𝐷 𝑗−1 =

{𝑟 𝑗 } for 𝑗 ∈ [𝐽 ]. Let 𝑀 be a randomized mechanism satisfying 𝑃-
PRzCDP. Define 𝑟 (1) , . . . , 𝑟 ( 𝐽 ) such that:

𝑃 (𝑟 (1) ) ≥ 𝑃 (𝑟 (2) ) ≥ · · · ≥ 𝑃 (𝑟 ( 𝐽 ) )

Then we have:

𝑑𝛼 (𝑀 (𝐷0) | |𝑀 (𝐷 𝐽 )) ≤ 𝛼 inf

𝑘∈ (1,∞)

𝐽∑︂
𝑗=1

𝑘 𝑗

𝑘 − 1

𝑃 (𝑟 ( 𝑗 ) ) (2)

The group privacy notions ensure that the formal privacy guar-

antee extends beyond the individual and also protects groups of

arbitrary size, with the privacy loss growing as the size increases.

Note that Lemma 5 yields a group privacy guarantee that’s agnos-

tic to database sequence order, whereas Lemma 6 yields a group

privacy guarantee that depends on an optimal order-dependent

sequence. By construction, Lemma 6 will always yield a smaller

upper bound than Lemma 5.

4.1 Relation to Other Privacy Formulations
Prior work has studied the idea of giving different privacy guaran-

tees to different records, and the idea of accounting privacy loss

as a function of the data. The flexibility of PRzCDP, by compar-

ison, lies in the fact that each unit’s privacy loss is a function of

their private record, and only that function is published instead

of particular values. Units with knowledge of their private record

use this public function to ‘look up’ their privacy loss. PRzCDP

most closely resembles the definition for Personalized Differential

Privacy (PDP) [20]. Like PRzCDP, PDP gives different guarantees

to different records:

Definition 7 (Personalized zCDP (PDP)[20]). Let T be a universe

of participating records and Φ : T ↦→ R+
be a function which

maps each unit to a privacy loss. A randomized algorithm 𝑀 sat-

isfies Φ-PDP if, for any two databases 𝐷,𝐷′
which differ on the

contributions of one unit 𝑟 ∈ T , we have

𝑑𝛼 (𝑀 (𝐷) | |𝑀 (𝐷′)) ≤ 𝛼Φ(𝑟 )

This definition contrasts with PRzCDP by assuming that Φ(𝑟 ) is
public knowledge for all 𝑟 ∈ T i.e., each unit’s privacy guarantee is

publishable. Fundamentally, this requires that the guarantee, Φ(𝑟 ),
of each unit, 𝑟 , is independent of their private record. By comparison,

𝑃-PRzCDP does not make any assumptions about independence of

a unit’s privacy guarantee and their sensitive record. Thus, each

unit’s guarantee, 𝑃 (𝑟 ) for the unit’s record 𝑟 , remains confidential.

Only the policy function, 𝑃 (·), is published and individual unit

with knowledge of their private record can compute their own

guarantee.

Other works have also studied computing privacy loss as a func-

tion of the data but only in an effort to give tighter accounting of

the global privacy loss, which is constant across all participants and

is made public. For instance, Papernot et al. [26] give tight privacy

loss accounting by deriving a global loss from the data itself. This

global loss is then passed through a novel mechanism to publish a

noisy private version.

Similarly, the individualized accounting method of [17] com-

putes each record’s loss as a function of its data. However, this is
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only to ensure that no single record exceeds the public global pri-

vacy budget, constant across all records. Alternatively, [27] uses an

existing global DP guarantee to provide an ex-post characterization

for the gap between the global privacy loss and the confidential

data-dependent realized privacy loss. The foundational distinguish-

ing factor of PRzCDP from both these approaches is that only the

policy is published, as opposed to any global or individual privacy

losses.

DP encompasses a wide variety of formalisms [10] which rely

on alternative characterizations of scenarios under comparison,

measures of privacy loss between those scenarios, and the general-

ity of bounds on these measures. Here, we show how PRzCDP is

interoperable with these definitions.

Connections can be made to one-sided DP [21], also adapted to

the semantics of zCDP:

Definition 8 (One-sided zCDP (OSzCDP)[21]). Let 𝑃 : R ↦→ {0, 1}
be a function that labels records as privacy-sensitive (𝑃 (𝑟 ) = 0) or

not (𝑃 (𝑟 ) = 1). A randomized algorithm𝑀 satisfies (𝑃, 𝜌)-one-sided
zero-concentrated DP if, for any two databases 𝐷, 𝐷′

where

𝐷′ = 𝐷 \ {𝑟 } ∪ {𝑟 ′}, 𝑃 (𝑟 ) = 0, 𝑟 ≠ 𝑟 ′ (3)

we have

𝑑𝛼 (𝑀 (𝐷) | |𝑀 (𝐷′)) ≤ 𝛼𝜌 (4)

Lemma 7. Suppose there exists 𝜌 ≥ 0 and a subset of records 𝑅 ⊆ T
such that:

sup

𝑟 ∈𝑅
𝑃 (𝑟 ) ≤ 𝜌 (5)

Then for the policy 𝑃∗ : T ↦→ {0, 1} where 𝑃 (𝑟 ) = 1 for {𝑟 ∉ 𝑅} and
0 otherwise, any mechanism 𝑀 that is 𝑃-PRzCDP is also (𝑃∗, 2𝜌)-
OSzCDP.

Note that for the problems under consideration, PRzCDP enables

communication about the policy loss function without relying on

assuming 𝑃 (𝑟 ) is public knowledge for all 𝑟 (as is true for Personal-
ized zCDP) or 𝑃 (𝑟 ) is confidential (as is true for individual DP).

5 MECHANISMS FOR PRZCDP
In this section, we present a novel class of privacy mechanisms for

ensuring PRzCDP. This class of mechanisms is called Unit Splitting.
As the name suggests, the mechanisms follow this general pattern:

• Preprocess the input dataframe by “splitting" each row or

record into many smaller rows or sub-records. The number

of splits depends on a measure of how large the row is.

• Next, we run a mechanism that satisfies standard 𝜌-zCDP.

• By group composition, the privacy loss of a row or record

in the original dataframe will be 𝑘2𝜌 , where 𝑘 is the number

of times an original row is split in the preprocessing step.

This allows a PRzCDP mechanism to be built by doing a pre-

processing step followed by any arbitrary zCDP mechanism. We

introduce the basics of unit splitting in Section 5.1, and describe

how to use them to answer SQL aggregation queries and group-by

aggregation queries in Sections 5.2 and 5.4.

5.1 Unit Splitting
Unit splitting is a preprocessing step that uses a mapping function

𝐴(𝑟 ) to map each record into one or more other records. Answering

queries on the split records using a mechanism that satisfies zCDP

results in an overall mechanism that satisfies PRzCDP. We state

this more formally as follows.

Lemma 8 (𝜌-zCDP with pre-processing implies 𝑃-PRzCDP). Con-
sider a pre-processing function 𝐴 : T ↦→ T ∗ where 𝐴 maps each
record 𝑟 ∈ T to a multiset of records in T ∗. Let |𝐴(𝑟 ) | be the car-
dinality of the multiset 𝐴(𝑟 ), i.e., the number of subsequent records
generated by𝐴(𝑟 ). If𝑀 is a 𝜌-zCDP algorithm operating onD∗, then
𝑀 (𝐴(𝐷)) satisfies 𝑃-PRzCDP where 𝑃 (𝑟 ) =

(︁
𝜌 |𝐴(𝑟 ) |2

)︁
.

Proof. Let 𝐷 and 𝐷′
be neighboring datasets and, without loss

of generality, let 𝐴(𝐷′) \ 𝐴(𝐷) = {𝑠1, . . . 𝑠 |𝐴(𝑟 ) | } ⊆ T ∗
. By the

group-privacy properties of 𝜌-zCDP:

𝐷𝛼 (𝑀 (𝐴(𝐷)) | |𝑀 (𝐴(𝐷′))) ≤ 𝛼

(︂
|𝐴(𝑟 ) |2𝜌

)︂
(6)

□

This allows a practitioner to create mechanisms which satisfy

𝑃-PRzCDP by using the unit-splitting preprocessing step followed

by an off-the-shelf zCDP mechanism. This applies to all zCDP

mechanisms from existing private frameworks such as Tumult

Analytics [6], to complex mechanisms such as stochastic gradient

descent [3] and the matrix mechanism [22]. The policy function in

this case is implied by the choice of unit splitting. The number of

splits per-record directly impacts the privacy loss of that record,

with those that require a higher number of splits receiving a larger

privacy loss than those with a smaller number of splits. However,

the choice of splitting threshold bounds the sensitivity of the queries

and consiquently the amount of noise required. As such, a smaller

splitting threshold results in a smaller sensitivity and as such a

smaller noise requirement. An empyrical analysis on how the choice

of splitting threshold impacts both utility and the distribution of

privacy loss can be found in Section 6.

In practice, a practitionermust choose a splitting thresholdwhich

balances the privacy loss of the records and the utility of the release.

This can be done by either choosing a splitting threshold that results

in the desired amount of noise, or by choosing a splitting threshold

which results in reasonable privacy loss for the majority of records.

Since each record’s privacy loss is now a function of the contents

of the record, the privacy loss is considered a private value, and

cannot be published. Instead, for transparency, the splitting function

itself can be released, which would allow an observer to reason

about the privacy loss of hypothetical records without releasing

information about the records.

5.2 Answering Aggregation Queries Using Unit
Splitting

We can privately compute aggregates such as sums on skewed data

by applying unit splitting in the form of a splitting threshold. Doing

so splits the few large contributors with possibly unbounded values

into several smaller bounded values. This method both bounds and

reduces the overall sensitivity of many queries, therefore allowing

lower-error private answers. However, it comes at the cost of higher

privacy loss for larger records which were split into multiple smaller

records. The choice of splitting procedure results in an implicit

policy function for PRzCDP.
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Table 2: Sample table before and after unit splitting. The
splitting thresholds used were as follows. Employees: 50,
Payroll: $ 5,000,000

(a) Pre-Split Table

ID Industry Employees Payroll

1 Agriculture 150 $ 10,000,000

2 Agriculture 50 $ 15,000,000

3 Mining 100 $ 10,000,000

4 Mining 50 $ 10,000,000

5 Retail 20 $ 1,000,000

(b) Post-Split Table

ID Industry Employees Payroll

1 Agriculture 50 $ 5,000,000

1 Agriculture 50 $ 5,000,000

1 Agriculture 50 $ 0

2 Agriculture 50 $ 5,000,000

2 Agriculture 0 $ 5,000,000

2 Agriculture 0 $ 5,000,000

3 Mining 50 $ 5,000,000

3 Mining 50 $ 5,000,000

4 Mining 50 $ 5,000,000

4 Mining 0 $ 5,000,000

5 Retail 20 $ 1,000,000

We make a distinction between conditional attributes and mea-

sure attributes. Conditional attributes are those which will be used

in conditional statements, such as the WHERE clause in an SQL

query. These get duplicated across all splits of the data. Measure at-

tributes are those which are computed in aggregations and thus get

split across all the split records. For numerical measure attributes,

we individually evaluate the minimum number of times each of

the magnitude attributes 𝑎 need to be split (i.e., the smallest integer

𝑚 such that𝑚𝑇 (𝑎) ≥ 𝑟 (𝑎)). For example, if a row has 𝑟 (𝑎) = 12,

and the splitting threshold is 𝑇 (𝑎) = 5, then the row would need

to be split into at least 3 sub-records, corresponding to values of

{5, 5, 2}. This minimum number of splits may be different for each

attribute in any particular row; to resolve this difference, we select

the magnitude attribute with the largest number of required splits.

The remaining split elements are zero-padded. Ideally, each mag-

nitude attribute will be split the same number of times, to prevent

too many zero-padded elements. As a complete example, Table 2

lists how several records would be split according to these rules.

Once each record has been split, the split records are used to

answer each query. For each query on the original unsplit records,

we define an equivalent rewritten query on the split records. Table

3 describes how each query is rewritten.

Lemma 9. As 𝜌 tends to∞, the difference between the private rewrit-
ten queries of Table 3 and the true query answers tends to 0.

Lemma 9 simply states that the process of unit splitting itself

incurs no bias for summation queries and asymptotically negligible

bias for other inexact reconstructed queries. Since these aggrega-

tions are simply a zCDP mechanism after a mapping, by Lemma 8,

Algorithm 1 Unit Splitting Pre-Processing

Require: 𝐷 : Private dataframe.

Require: 𝑇 : A ↦→ Z: splitting threshold function.

Ensure: {𝑟𝑖 }: multiset of unit splitting rows.

1: procedure UnitSplit(𝐷 , 𝑇 )
2: for 𝑟 ∈ Rows(𝐷) do
3: Find the smallest integer𝑚 such that𝑚𝑇 (𝑎) ≥ 𝑟 (𝑎) for

all 𝑎 ∈ A
4: Split 𝑟 into 𝑚 rows such that for each split and each

attribute 𝑟𝑖 (𝑎) ≤ 𝑇 (𝑎) and ∑︁
𝑖 𝑟𝑖 (𝑎) = 𝑟 (𝑎)

5: end for
6: end procedure

the entire process satisfies 𝑃-PRzCDP where the policy function is

dependent on the number of times each record is split.

Lemma 10. Computing Algorithm 1 followed by an aggregation
from Table 3 satisfies 𝑃-PRzCDP.

Conditionals such as group-by and filters can be applied to split

data without any adaptation, since the conditional attributes are

duplicated across all splits. We give an example of answering a

private sum below.

Example 2. Consider taking a sum over the Employees column

of Table 2(a). We use the following splitting threshold (Employees:

50, Payroll: $5,000,000). The table after splitting can be found in

Table 2(b). After splitting, the maximum value of the Employees

column is 50 and each record is split into multiple rows with at

most 50 employees. The same holds for Payroll and its associated

threshold. Once the table is split, the sum is taken over all the split

rows.

The PRzCDP policy function is implied by the splitting

threshold. Each record incurs a privacy loss according to the num-

ber of times it is split. Establishments 1 and 2 are split 3 times and

incurs a privacy loss of 9𝜌 . Establishments 3 and 4 are only split

twice and each incurs a privacy loss of 4𝜌 . Establishment 5 is never

split and incurs a privacy loss of 𝜌 . Larger thresholds would reduce

the number of times records are split, but increase errors due to DP

noise; for example, doubling the split thresholds would quadruple

the variance of the associated PzCDP mechanisms.

In this example, we used a sum, but this could include other

aggregations such as averages or other more complex zCDP mech-

anisms such as partition selection [11], matrix mechanism [22]

among others. One benefit of unit splitting is bounding the sensi-

tivity of previously unbounded queries.

Example 3. Consider taking a sum over the Employees column of

Table 2(a). Prior to unit splitting, the maximum possible number

of employees for any arbitrary establishment is unbounded. There

is no limit to the number of employees an establishment can have.

After the splitting, the maximum value of the Employees column

is set to 50, introducing a bound. Since the maximum number

of employees in any record is 50, the sensitivity of the sum over

employees is also 50.

In this case, the previously unbounded sensitivity is now bounded

by the unit splitting algorithm. Traditionally, one would set a clamp-

ing bound on the sum, which would truncate all the values outside
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the bound to one of the boundary values. For heavily skewed data,

this can either introduce bias (if the bound is too small) or a large

amount of noise (if the bound is too large). When using unit split-

ting, this is no longer a concern, as the splitting threshold can be

set low enough to avoid incurring too much noise while also in-

curring no bias. The tradeoff in this case is that the larger records

incur a larger privacy loss overall. This makes PRzCDP particularly

powerful in the case of highly skewed data, where a small amount

of large records makes it impractical to introduce clamping bounds.

Instead, these records are split into many smaller records and incur

a larger privacy loss as a result.

5.3 Multiple Aggregations
While unit splitting is a versatile technique in its own right, much

of its power comes from its ability to compose neatly with much

of the existing DP literature as well as other instances of unit split-

ting. While any two PRzCDP mechanisms compose together due

to Lemma 3, this also holds for mechanisms run prior to the unit

splitting. This is because 𝜌-zCDP can be seen as a special case of

PRzCDPwhere the policy function is equal to the privacy parameter

𝜌 .

This allows mechanisms run prior to unit splitting to compose

with those run after unit splitting by using Lemma 3. PRzCDP excels

in reducing the sensitivity of high or unbounded sensitivity queries,

such as sums or means. However, when computing queries with low

sensitivities such as counts, medians, or low sensitivity sums, it is

more efficient (possibly identically efficient) to use zCDP rather than

use unit splitting. In these cases, each record only incurs a constant

privacy loss (the 𝜌 parameter given to the zCDP mechanism) as

opposed to the variable privacy loss given by PRzCDP and unit

splitting. We demonstrate this in the following example where

zCDP is used to compute a median followed by a sum computed

on unit split data.

Example 4. Consider the sum from Example 2 with the addition

of a median query on the Payroll column prior to the unit splitting

process. If we first compute the median with a privacy budget of

𝜌1, then compute the sum with privacy-loss budget 𝜌2, then by

Lemma 3 the combination of the two mechanisms satisfies PRzCDP

with a policy function of 𝜌1 + 𝜌2 |𝐴(𝑟 ) |2, where |𝐴(𝑟 ) | is the maxi-

mum number of times record 𝑟 is split. In this case, Establishments

1 and 2 incur 𝜌1 + 9𝜌2 privacy loss, Establishments 3 and 4 incur

𝜌1 + 4𝜌2 privacy loss, and Establishment 5 incurs 𝜌1 + 𝜌2 privacy

loss.

By using traditional zCDP to compute the median, each record

only incurs a constant (𝜌1) privacy loss. Had that median been

computed after the unit splitting, the larger records would have

incurred 9𝜌1 privacy loss instead, a significant increase. In these

cases, zCDPmechanisms can be used for tasks that are not subject to

high sensitivity, such asmedians, or complex tasks for which no unit

split equivalent is available, such as stochastic gradient descent [3].

This allows for tighter analysis when using low sensitivity queries

and opens up the vast literature of differentially private techniques

for use alongside unit splitting.

5.4 Answer GroupBy Aggregation Queries
Using Unit Splitting

In addition to aggregations such as sums and counts, unit splitting

also supports conditional analysis such as filters and group-by.

Filters and group-by can be applied directly on the conditional

attributes after unit splitting, since those attributes are duplicated

across all splits. This allows for individual analysis for each group.

Lemma 4 allows a practitioner to apply different splitting thresh-

olds for each group in order to better serve the needs of each group.

For example, consider if we added Technology as an additional

industry in Table 2. Technology firms have significantly higher

average pay than agricultural establishments and as such have a

significantly higher payroll. In such cases, a different set of split-

ting thresholds may be necessary for technology firms to avoid

extremely high privacy loss.

In cases where the group-by keyset is unknown, or is sparse in

the domain of the attribute one can use a private partition selection

algorithm, after the unit splitting process. Since the data has been

split prior to partition selection, large records are instead split into

many small records and are as such more likely to be discovered.

We demonstrate an example of using all three techniques: group-by,

multiple splitting thresholds, and split partition selection.

Example 5. Consider taking two sums over the Employee col-

umn and Payroll column of Table 2(a), grouped by the values of

the Industry column. In addition, consider the following splitting

thresholds for each industry. For agriculture and retail, use the

previous splitting threshold of (Employees: 50, Payroll: $5,000,000).

For mining, apply the splitting threshold of (Employees: 50, Payroll:

$10,000,000).

To compute the sum, we need to complete three steps. First apply

unit splitting to each industry with their own splitting threshold.

This bounds the sensitivity of both the Employees and Payroll

column, however this bound is now different for each industry. Then

use some privacy budget 𝜌1 to use a partition selection technique

[11] to find the keyset for the group-by. Since each industry is split

prior to the partition selection, those with few but large records

still have a high probability to be in the resulting keyset. Then

for each category in the Industry column, we take the sum over

employees using the Gaussian mechanism with sensitivity 50 and

privacy budget 𝜌2. This sensitivity remains the same since the

employee splitting threshold is the same for all industries. For sum

over payroll, use the Gaussian mechanismwith sensitivity 5,000,000

for agriculture and retail and use sensitivity 10,000,000 for mining.

For both, we will use the same privacy budget 𝜌3.

Since the partitions over the industry column form disjoint sub-

sets of the dataset by Lemma 4, the sum over Employees and Payroll

satisfy 𝜌2 |𝐴(𝑟 ) |2 and 𝜌3 |𝐴(𝑟 ) |2-PRzCDP respectively where |𝐴(𝑟 ) |
denotes the number of splits for each record for their respective

splitting thresholds. We can combine all of these policy functions

together using Lemma 3 to get that the overall mechanism satisfies

𝑃-PRzCDP with a policy function 𝑃 (𝑟 ) = (𝜌1 + 𝜌2 + 𝜌3) |𝐴(𝑟 ) |2. For
records 1 and 2, the final privacy loss is 9(𝜌1 + 𝜌2 + 𝜌3) since they
are each split into 3 rows. Record 3 incurs 4(𝜌1 + 𝜌2 + 𝜌3) privacy
loss since it is split into 2 rows under the new splitting threshold,

and record 4 only incurs 𝜌1 + 𝜌2 + 𝜌3 privacy loss since it is not

split under the new splitting thresholds.
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Table 3: Common exact queries and their reconstruction strategies

Original query Rewritten Exact Query PRzCDP 𝑃 (𝑟 )
COUNT(ROW_ID) COUNT_DISTINCT(ROW_ID) 𝜌

SUM(·) SUM(·) 𝜌 |𝐴(𝑟 ) |2
AVG(·) SUM(·) / COUNT_DISTINCT(ROW_ID) 𝜌 |𝐴(𝑟 ) |2 + 𝜌

Since these were disjoint sections of the database, we could

apply different splitting thresholds to each disjoint section and still

satisfy 𝑃-PRzCDP. In this case, the new policy function would be

a piece-wise function, giving a different functional form for each

industry.

Due to the initial unit splitting, the partition selection step has a

high probability of selecting each of the populated industries, even

if those industries are populated by few but large establishments.

This allows practitioners to properly analyze heavily skewed data

where much of the data is compressed into relatively few records,

which often happens in economic or population statistics.

6 EXPERIMENTS
In this section, we empirically demonstrate the effectiveness of

PRzCDP when applied to skewed data. In Section 6.2 we demon-

strate how the high bias and error from global zCDP results in an

unacceptable trade-off between privacy and utility. Then, in Section

6.3, we focus on univariate queries to show how PRzCDP can be

an effective alternative to zCDP with modest reductions in privacy.

Finally, in Section 6.4, we demonstrate the methodology on our

motivating use case.

6.1 Setup and Datasets
For each experiment, we answer queries using either zCDP or

PRzCDP according to theGaussianmechanism (Def. 4) with clamping-

enforced sensitivity Δ, noise variance 𝜎2, and privacy loss 𝜌 = Δ2

2𝜎2
,

or unit splitting pre-processing (Algorithm 1) with additive Gauss-

ian noise with variance 𝜎2 according to different splitting functions

𝑇 . We use the following metrics throughout. Where contextually

appropriate, we abuse notation and only include the relevant argu-

ments.

Policy loss: for 𝑟 ∈ 𝐷 , we have

PolicyLoss(𝑃, 𝑟 ) = 𝑃 (𝑟 ) (7)

Note that in practice, we cannot release PolicyLoss(𝑃, 𝑟 ), only the

functional form 𝑃 (·).
Realized loss: for a record 𝑟 , the realized dataset 𝐷 , and mecha-

nism𝑀 ,

RealizedLoss(𝑀,𝐷, 𝑟 ) (8)

= sup

𝛼∈ (1,∞)

𝑑𝛼 (𝑀 (𝐷) | |𝑀 (𝐷 \ {𝑟 }))
𝛼

(9)

By construction, when𝑀 satisfies 𝑃-PRzCDP,

PolicyLoss(𝑃, 𝑟 ) ≥ RealizedLoss(𝑀,𝐷, 𝑟 ) (10)

for all 𝑟 ∈ 𝐷 . Again, in practice, we cannot release

RealizedLoss(𝑀,𝐷, 𝑟 ) nor its functional form, as it depends on the

realized dataset 𝐷 .

Query relative error: for a dataset 𝐷 , query 𝑀 (𝐷), and non-

private answer 𝑆 (𝐷), define

QueryRelErr(𝑀, 𝑆, 𝐷,𝛾) (11)

= min

{︃
𝑣 ∈ R+ | P

(︃
|𝑀 (𝐷) − 𝑆 (𝐷) |

𝑆 (𝐷) ≥ 𝑣

)︃
≤ 1 − 𝛾

}︃
(12)

Absolute relative error (ARE): for a given output𝑀 (𝐷) and
non-private answer 𝑆 (𝐷), define

ARE(𝑀 (𝐷), 𝑆 (𝐷)) = |𝑀 (𝐷) − 𝑆 (𝐷) |
|𝑆 (𝐷) | (13)

Policy minimum: for a policy function 𝑃 , we will use

PolicyMin(𝑃) = min𝑟 ∈T 𝑃 (𝑟 ) to denote the smallest policy loss

associated with one record. For unit splitting algorithms, this can

be interpreted as the policy loss for records unaffected by unit

splitting.

Our experiments are run on three different datasets: a simulated

dataset (SIM), the National Agricultural Statistical Service Cattle

Inventory Survey (CIS), and a simulated County Business Patterns

(CBP) dataset.

The first dataset is simulated data for which we know the precise

data generating distribution. This allows us to illustrate the kinds

of heavy-tailed behavior that our methodology can better accom-

modate, as opposed to global DP. We simulate two heavy-tailed

variables in [1,∞) with tail index parameters 𝛼 , where smaller

values of 𝛼 correspond to heavier tails. The simulated variables

are listed in Table 4; note that both variables HT1 and HT2 have

infinite variance. Our goal is to answer sum queries of HT1 and

HT2 grouped by CatIX.

Table 4: Simulated heavy-tailed variables

Name Domain Distribution

CatIX {1, . . . , 1000} Categorical(𝜙)
HT1 [1,∞) Pareto(1, 1.2)
HT2 [1,∞) Pareto(1, 1.5)

The second dataset is from the U.S. Department of Agriculture

(USDA)’s Cattle Inventory survey (CIS), managed by the National

Agricultural Statistical Service (NASS) [28]. Our records consist of

county-level survey records of total cattle inventory and average

pastureland rent cost (in dollars per acre). Each county geography is

contained hierarchically within an agricultural district (AD), itself

contained within a particular state. We will treat these records as

our privacy units, since the individual farm-level records are not

publicly available. Still, a small number of records contribute to the

majority of the total cattle inventory in any particular state or AD,

making the methodology applicable. We consider the queries in
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Table 5 under different privacy loss allocations and splitting thresh-

olds shown in the figures. The 𝑃-PRzCDP queries are answered

using Algorithm 1 and the 𝜌-zCDP queries are answered using the

Gaussian mechanism from Definition 4.

Table 5: CIS Queries

Geographies Query Formalism

State SUM(CattleInventory) 𝑃-PRzCDP

State AVG(PastureRent) 𝜌-zCDP

State x AD SUM(CattleInventory) 𝑃-PRzCDP

State x AD AVG(PastureRent) 𝜌-zCDP

The final dataset is a proposed use case involving summations

over skewed data: the County Business Patterns (CBP) dataset, pub-

lished by the U.S. Census Bureau. We use simulated data provided

by the U.S. Census Bureau to demonstrate PRzCDPmethodology on

these simulated records. Each row in our tabular data represents an

“establishment", or one separate unit of a business; “firms" represent

one or more establishments that operate as a single business ven-

ture. Our goal is to release the following information about groups

of establishments:

• ESTAB: A count of the number of establishments.

• PAYANN: A sum of annual payrolls of establishments.

• PAYQTR1: A sum of first quarter payrolls of establishments.

• EMP: A sum over employee size of establishments.

The groups of establishments correspond to different geographic

areas (such as counties, ZIP codes, or congressional districts) and

different industry classifications using the North American Industry

Classification System (NAICS) codes (such as finance, real estate,

agriculture, etc.). For the purposes of this experiment, we consider

the subset of all county-level queries at every possible NAICS clas-

sification level with no cross-tabulations; moreover, we limit our

evaluations to only those queries with 100 or more establishments.

Table 6: CBP Queries

Geographies Query Formalism

County x NAICS* COUNT(ESTAB) 𝜌-zCDP

County x NAICS* SUM(EMP) 𝑃-PRzCDP

County x NAICS* SUM(PAYANN) 𝑃-PRzCDP

County x NAICS* SUM(PAYQTR1) 𝑃-PRzCDP

6.2 Global zCDP on Skewed data
First, we show how a theoretical analysis of the 𝜌-zCDP Gaussian

mechanism for sums on heavy-tailed random variables fails to yield

reasonable trade-offs between privacy and utility. Specific to our

simulation study, we consider the theoretical mean-square error

(MSE) of estimators truncated with high probability from heavy

tails. In Figure 1, we fix 𝑛 = 1000 and plot the theoretical mean-

square error (MSE) over the sum’s expected value as a measure

of "noise-to-signal" on the y-axis. We show how this ratio varies

with different sensitivities Δ on the x-axis, privacy losses 𝜌 , and

tail weights 𝛼 . Note that in every case, privacy-preserving noise

Figure 1: Theoretical MSE over the expected query value for
global 𝜌-zCDPmechanisms with different global sensitivities
Δ, privacy loss budgets 𝜌 , and different tail parameters 𝛼 for
𝑛 = 1000. Optimal Δ for minimizing MSE given 𝜌 and 𝛼 shown
in red. Blue dashed line at 1, for reference.

exceeds the sum’s expected value by orders of magnitude. For each

configuration, we additionally calculate the optimal Δ for given 𝛼

and 𝜌 values which minimize the ratio (shown as the vertical red

lines in the subplots). As expected, the optimal Δ value to mini-

mize MSE increases as 𝛼 decreases and as 𝜌 increases; however,

even at these optimal Δ values, the errors are prohibitively large.

Recall from [7] that Gaussian noise is tight for zCDP summation

queries, meaning any 𝜌-zCDP mechanism requires noise with vari-

ance at least Ω(Δ/𝜌2), i.e., as a function of the volume of the sum

query space. So even for modest tail weights, the cost of ensuring

each record lies in a bounded domain makes it near-impossible to

simultaneously maintain modest global privacy losses and MSE

guarantees.

6.3 PRzCDP privacy-utility trade-offs with
univariate splitting

Next, we show how using Algorithm 1 in conjunction with the

Gaussian mechanism offers significant improvements to utility

with a cost to privacy loss that only affects a small number of units.

In Figure 2, we use our proposed method to answer queries on

the workloads with different unit splitting thresholds (STs) for one

variable (HT1 for SIM, CattleInventory for CIS). The left set of

subplots show the workload AREs (y-axis) at different STs; as ST

decreases, the proportion of records that are split (for which policy

loss is greater than 𝜌) increases, shown on the x-axis. To simplify,

utility increases (y-axis distributions shift downward) as privacy

loss increases (x-axis boxplots shift to the right). The plots show

that ARE improves significantly, while policy loss for most records

remains the same as the global zCDP counterpart. For example, at

𝜌 = 1 for the simulated data, we can achieve a median 10% ARE
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across queries while ensuring less than 1% of records have policy

loss greater than 𝜌 = 1.

On the right-hand side of Figure 2, we show a more detailed view

of the policy loss functions by visualizing their empirical CDFs:

namely, for any one unit splitting configuration, what proportion

of records (y-axis) have policy losses less than a particular value (x-

axis)?We show this for different STs and 𝜌 . As 𝜌 increases, the CDFs

shift to the right, as expected since less noise injection increases

policy loss uniformly across records. Larger STs correspond to

more conservative unit splitting schemes, ensuring that a greater

proportion of records have the smallest possible policy loss. As ST

decreases, the policy loss grows more rapidly for larger units, which

are split more frequently. These plots demonstrate how 𝜌 toggles

the privacy-utility trade-off for all records, whereas ST toggles how

fast the policy loss grows as records become more skewed.

6.4 End-to-end example: County Business
Patterns dataset

We now turn towards a more complex, realistic application of our

methodology to CBP. The query workload is described in Table 6;

answering these queries requires leveraging more features of our

proposed framework. First, we consider multivariate unit splitting

as a function of multiple attributes per-record. Second, we combine

zCDP with PRzCDP queries. Third, we use both sequential and

parallel composition simultaneously to answer queries about the

full workload.

We consider two different algorithmic approaches for answering

the CBP query workload. First, we consider zCDP mechanisms

using sensitivities defined by three possible sets of “top-codes" in

Table 7, which we name “Conservative", “Moderate", and “Aggres-

sive", in decreasing order. Second, we consider PRzCDP based on

splitting schemes listed in Table 8, which we name “Conservative",

“Moderate", and “Median". The three schemes are listed in increasing

split cardinality order.

Table 7: Top-code scheme description.

Top-code scheme name Attribute Value

Conservative

EMP 10
3

PAYANN 10
5

PAYQTR1 2.5 ∗ 104

Moderate

EMP 3 ∗ 102
PAYANN 10

4

PAYQTR1 2.5 ∗ 103

Aggressive

EMP 10
2

PAYANN 10
3

PAYQTR1 2.5 ∗ 102

In Figure 3 we plot the ARE of each query for the top-coding

algorithm and the establishment splitting algorithm, respectively.

The results are aggregated by attribute, total privacy loss budget,

NAICS level, and algorithmic configuration. The green and red

dashed lines mark the 5% and 20% ARE thresholds, respectively,

representing example fitness-for-use goals. First, we expect the

relative errors for counting attributes (i.e., ESTAB and FIRM) to

Table 8: Establishment splitting thresholds for three different
splitting schemes and their associated percentiles of score in
the simulated CBP data.

SchemeName SplitAttribute SplitThreshold PctScore

Conservative

PAYANN 10000 99%

PAYQTR1 2500 99%

EMP 100 97%

Moderate

PAYANN 500 79%

PAYQTR1 125 80%

EMP 5 66%

Median

PAYANN 104 50%

PAYQTR1 24 50%

EMP 2 47%

have the same distribution for either algorithm, as they are unaf-

fected by establishment splitting. However, when we look at the

magnitude attributes (EMP, PAYANN, and PAYQTR1), none of the

top-coding schemes on the left come close to providing reasonable

AREs, since the majority of the box plot masses for these queries are

above the dashed green line. Alternatively, on the right, we see that

establishment splitting provides far smaller relative errors, even for

more granular queries at finer NAICS levels (although the relative

errors increase as the NAICS level increases, as expected). Like

in Figure 2 we see that the moderate splitting scheme, which has

larger splitting thresholds, results in larger relative error than the

median splitting scheme. While the moderate splitting scheme only

satisfies the fitness for use goals for the ESTAB and EMP queries

(at NAICS level 2) the median splitting scheme satisfies the fitness

for use in all cases.

Similarly, in Figure 5, we plot the policy loss CDFs for each split-

ting scheme, which can be interpreted similarly to the policy loss

CDFs in Figure 2 with a few differences worth highlighting. First,

by PRzCDP’s group composition properties, we can extend the

results from the left column of establishment subplots to the right

column of firm subplots. Since the majority of establishments in

the simulated data have a unique ID, the plots look very similar;

however, the firm-level CDFs sit slightly below the establishment

level CDFs. This demonstrates how establishment-level guarantees

are conferred to firms. Second, we additionally calculate the real-
ized privacy losses for each establishment and firm. Specifically,

this calculates the log-max divergence between the establishment

splitting outputs using the specific simulated CBP dataset with and

without the establishment (or firm) of interest. By construction, the

realized loss is always less than the policy loss, so the blue CDF line

will always be to the left of the orange policy loss line. First, we

observe that for the majority of establishments, the realized privacy

loss is significantly lower than the policy upper bound. Moreover,

because this gap depends on the number of queries answered in

the workload, we can reasonably expect this gap to be larger when

considering the entire CBP workload, not just county-level queries.

Next, we observe that, as the splitting thresholds decrease, the

gap between the realized privacy loss and the policy upper bound

decreases.

Finally, instead of considering the realized relative errors, we

ask: what is the smallest possible policy function which ensures we
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a) Simulated Pareto data

b) USDA Cattle Inventory Study

Figure 2: (Left) distribution of ARE over workload queries (y-axis) by proportion of records with policy loss greater than 𝜌

(x-axis) i.e., as the splitting threshold decreases. (Right) Empirical CDFs of policy loss, i.e., proportion of observed records
(y-axis) with policy loss bounded by 𝑃 (𝑟 ) (x-axis). Columnar subplots show different levels of minimum policy loss 𝜌 . Red line
represents 100% ARE and green line represents 10% ARE.

Figure 3: AREs for the CBP query workload using topcoding and zCDP (left) versus using unit splitting (right) for different
NAICS levels (rows) and splitting schemes (columns). Red line represents 20% ARE and green line represents 5% ARE.

reach a particular fitness-for-use goal? Specifically, we calculate

the smallest policy loss function for each entity where we assume

that for each query in the county workload, we have at theoretical

query relative error of less than 𝛿 with probability at least 95%.

We plot the implied policy loss CDFs in Figure 4. As expected, we

require smaller policy losses for the majority of establishments as

the splitting thresholds get smaller and smaller, since we are incur-

ring larger privacy losses for larger establishments. Additionally,

as expected, when 𝛿 increases, the distribution of the minimum

policy loss subsequently decreases (i.e., the CDFs are shifted to

the left). All this demonstrates that with these splitting schemes,

fitness-for-use goals are more feasible than under the traditional

top-coding assessment.
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Figure 4: Theoretical minimum policy function CDFs to achieve different fitness-for-use goals on 95% of the COUNTY by NAICS
code query workload. The green dashed line represents the total unsplit privacy loss budget of 1.

Figure 5: CBP policy losses grouped by establishment (left)
and firm (right)

7 CONCLUSION
To summarize, we introduced PRzCDP to transparently encode

dependencies between per-record privacy loss and confidential

records. This relaxation of traditional DP notions helps answer

SQL-style queries over skewed data, where approaches like zCDP

may fail to offer reasonable privacy-utility trade-offs. Bymaking the

policy function public, we offer a new way of describing privacy

loss in cases where a small minority of records pose exorbitant

privacy risks that aren’t representative of the entire dataset. Such

policy functions are particularly useful when the unit of privacy

analysis is not an individual person, but a group of people in a

business establishment or other organization. We additionally offer

a way of indirectly setting the policy function through unit splitting,

a pre-processing step that composes with DP algorithms to provide

PRzCDP guarantees by construction. Our experiments applying

this technique to simulated and real data demonstrate how PRzCDP

can better answer realistic SQL-style query workloads on skewed

data without relying on zCDP’s worst-case analysis.

Note that choosing how to implement PRzCDP using our algo-

rithms requires subjective policy choices about how to set privacy

loss, just like in standard DP. Because our proposed unit splitting

methods involve two such choices, one for the baseline privacy loss

and one for how to implement splitting, there is no one “optimal"

policy function for a particular data utility goal. That is, fixed data

utility goals for our queries can be achieved by either increasing

the baseline privacy loss or by more aggressively splitting records,

producing policy loss functions that necessarily differ on smaller

or larger records.

Future work beyond the scope of the article could more formally

characterize the semantic guarantees offered by PRzCDP. Tech-

niques like unit splitting intrinsically leak more information about

confidential records when records are split with finer granularity.

Understanding the kinds of queries that could be leveraged to learn

confidential information via the policy function require further

investigation.

Future work could explore different techniques for choosing

how privacy loss scales with record values. While we considered

quadratic dependence between record values and policy loss, using

𝜖-DP style semantics could yield linear dependence instead.
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