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ABSTRACT
Data Lakes deployed in the cloud are a go-to solution for enterprise
data storage. While the pay-as-you-go cost model allows flexible
resource allocation and billing, it mandates an efficient use of re-
sources like CPU hours, network traffic, and used storage. The
distributed nature of cloud environments necessitates partitioning
the data and processing these partitions separately. In this work, we
put forward a practical solution to improve the efficiency of com-
pression algorithms on Dremel-encoded data by clustering similarly
structured nested data at ingestion time, such that compressible par-
titions can be created. We propose a clustering approach inspired
by decision trees that outpaces even the naive partition-then-sort
approach by up to factor 17.44 while also boosting the compression
by up to factor 2. We further show that when sorting the individual
buckets, a compression boost that is competitive with the well-
established increasing-cardinality heuristic can be achieved, but at
a lower ingestion time.
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1 INTRODUCTION
Data Lakes [7, 27] in the cloud have established themselves as
the go-to solution for enterprise data storage. Data is read from
distributed filesystems, processed in the cloud environment, and
subsequently written back to cloud storage. Consequently, the de-
velopment of efficient methods for both writing to and retrieving
data from such storage systems has become increasingly crucial.
In the pay-as-you-go model of cloud providers, billing is based on
a diverse set of resources used, ranging from CPU hours to speed
and usage of network storage, to in- and outbound network traffic
costs. In general for cloud computing, but in particular, for disag-
gregated compute environments, data compression can directly
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Figure 1: The Time vs. Efficiency Tradeoff

reduce two prominent cost factors, data storage and retrieval band-
width. For a database system, it is possible to freely choose how
records are materialized regarding the order of rows and columns.
This has been leveraged for decades to enhance compression [50].
The most prominent example is Run-Length Encoding (RLE) [53]
where grouping identical values reduces the number of runs that
need to be stored [39]. The same principles apply to other com-
pression approaches as well [13, 40]. Unfortunately, the problem of
determining the optimal row order is NP-complete [39].

Traditionally, research on row reordering focuses on relational
data. However, many datasets instead use nested formats like JSON
due to their flexibility. In practice, columnar representations are
often preferable since they are beneficial to analytical workloads. To
transform nested data into a columnar representation in a lossless
manner, Dremel encoding [43, 44] is employed. Its most widely used
implementations are Apache Parquet [3] and ORC [32]. Columnar
formats alignwell with compression techniques [1, 42]. For example,
Parquet utilizes various methods including an RLE variant, dictio-
nary encoding, and Snappy compression [25]. Notably, the columns
encoding structural information are typically of low cardinality
[64], highly correlated [29], and encoded using RLE. This renders
them ideal candidates for enhancing compression efficiency.

In Big Data environments, such as Data Lakes, data is typically
processed by distributed systems. That necessitates partitioning
the data between multiple worker nodes. The key motivating point
of this paper is that the potential of compression depends vastly
on the way partitions are formed. The fastest conceivable partition-
ing strategy is to just focus on even sizes, e.g., using round-robin
partitioning. However, it has no potential to form buckets that
would be beneficial for RLE. It can even be actively harmful by
distributing formerly long runs between multiple partitions. A dras-
tically different approach is to globally sort data in a preliminary
step, as suggested by Lemire et al. [40]. In contrast to round-robin
partitioning, RLE inside the individual partitions is very effective.
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Unfortunately, it requires three passes over the dataset: one to de-
termine the sort order, one to determine the ranges for partitioning,
and a final one to perform the actual sorting. The aforementioned
approaches can be seen as extreme points in the tradeoff between
fast ingestion speeds required for archiving high-velocity data and
high compression ratios beneficial to long-time storage. This trade-
off is visualized in Figure 1.

1.1 Problem Statement and Approach Sketch
We propose a clustering approach to partition data based on struc-
tural similarity. Given an input dataset 𝐷 of structurally heteroge-
neous JSON documents, we strive to find a complete partitioning
of 𝐷 into disjoint buckets 𝑏1, 𝑏2, . . . such that

(1) the storage requirement of the individually encoded and
compressed buckets is minimized,

(2) the ingestion time, i.e., the total time to decide on the
partitioning and to perform partitioning and compression
is minimized

As discussed above around the interpretation of Figure 1, these
aims are connected and conflicting. To balance this tradeoff, we
suggest a decision-tree-inspired clustering approach that groups
structurally similar records from 𝐷 based on the lowest expected
number of run boundaries, estimated using Gini Impurity. This
alone already reduces the overall size. Optionally, we apply the
increasing-cardinality heuristic to order bucket contents after par-
titioning, but any alternative heuristic could be employed here.

Our approach also provides a query-agnostic way to improve
data skipping if we posit that similarly structured records tend
to be queried together. This assumption can be substantiated by
considering that a selection predicate can typically only be satisfied
if the value of the column in question is present. While specialized
algorithms exist that provide more skipping opportunities for a
known query workload, that information may not be available
apriori in a data lake setting.

In the remaining paper, we use the terms bucket and partition
interchangeably to refer to a batch of data deemed promising to
store together in one Parquet file. This may differ frommore specific
concepts in frameworks such as Spark [4], Iceberg [5], or Delta [7].

1.2 Strengths and Limitations
Our approach is meant to work with structurally heterogeneous
nested data that is stored in a schema-on-read manner. It capital-
izes on how dremel-encoded formats like Parquet or ORC store
the structure and exploits the fact that there typically are much
fewer structural variants than records in a dataset. This makes our
approach especially well-suited for use with data lakes.

However, it also makes the approach not applicable to data
that has already been transformed, e.g., into a relational form for
databases or a star schema for data warehousing. Such normaliza-
tion steps eliminate the structure our approach works with. By
extension, homogeneously structured data is also not a good candi-
date for our approach, even if it is nested.

Compression Boosters in general are computationally expensive
and hence usually not suitable for frequently changing data. Instead,
they are ideal for use cases like data lakes, where the dataset is

stored for a longer time for later analysis. Our approach reduces
the ingestion runtime overhead and thereby pays off earlier.

In general, there is also a tradeoff between optimizing the parti-
tioning for compression efficiency or data skipping. These skipping-
optimized partitions may once again split long runs and thereby
sacrifice compression efficiency. However, this relationship is not
as straightforward: On the one hand, our approach already pro-
vides query-agnostic data skipping means based on the structure.
Additionally, better compression also improves query latency by
reducing the transfer times between the distributed storage and the
worker nodes. On the other hand, rows that qualify for the same set
of queries must also have common columns and hence be similarly
structured to some extent. Hence, a more thorough investigation
of the interplay between these aspects is warranted. In practice,
there may be a hybrid approach that optimizes the combined cost.
However, such an approach is beyond the scope for this paper.

1.3 Contributions and Outline
For the above reasons, we investigate partitioning-based heuristics
as compression boosters for cloud data ingestion pipelines. In our
previous work [28], we have provided a preliminary investigation
into the applicability of partitioning as a compression booster. In
this paper, we go beyond that and focus on ingestion speed and
correlated data. We contribute:

• A novel clustering heuristic for boosting compression of
nested data based on its structure

• Based on it, a fast data ingestion pipeline
• An extensive evaluation of the involved parameters and

tradeoffs on two real-world datasets and TPC-DS.
The remainder of this paper is structured as follows: In Section 2, we
go over the necessary background for this work before reviewing
preexisting research in Section 3. We give a birds-eye overview of
our approach in Section 4 before we give more details about the
statistical model we employ in Section 5 and the data structure
we employ to manage it in Section 6. Section 7 gives details about
the partitioning process. An analysis of our algorithm’s runtime
complexity is given in Section 8. We then evaluate our approach in
Section 9 and draw our conclusion in Section 10.

2 PRELIMINARIES
Run-Length Encoding. Run-length encoding (RLE) is a widely-
known lightweight lossless compression scheme [53]. It works by
storing the number of consecutive occurrences of an item rather
than each item individually. Therefore, it is susceptible to changes
in efficiency based on the order of the data, as detailed in Section 3.

For example, consider the integer sequence (0, 0, 0, 0, 2, 0, 0, 0, 2, 2).
Storing it as plain 4-byte integers takes 40 B. With RLE, we instead
store a sequence of (value, frequency) pairs that report how often
a value is repeated in the input. The values represented by one
such tuple are called a run. In the example, the sequence becomes
((0, 4), (2, 1), (0, 3), (2, 2)). As a result, the space consumption of
our example is reduced to 32 B, i.e., a compression ratio of 1.25.

A higher compression is achievable if the order of the items can
be altered. If we sort the example sequence before compressing
it, we can encode it as ((0, 7), (2, 3)), i.e., using only 16 B with a
compression ratio of 2.5. Thus, we have boosted the compression
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{ " B " : { "C" : 5 , "D" : 2 } }
{ " B " : { "C" : 3 , "D" : 7 , " E " : { " F " : 5 , "G" : 2 } } }
{ "A" : 6 }
{ " B " : { "C" : 8 , "D" : 4 } }
{ "A" : 7 }

(a) Example JSON Data

? ≡ optional

.

B?

E?

GF

DC

A?

(b) Schema

A B.
C

B.
D

B.
E.
F

B.
E.
G

0 1 1 1 1
0 1 1 2 2
1 0 0 0 0
0 1 1 1 1
1 0 0 0 0

(c) Definition Level Columns

Figure 2: Example for Dremel encoding

ratio by a factor of 2. If the sequence is a column in a database or a
Dremel-encoded file, this becomes more complicated as we need
to find an order that globally minimizes the size of all columns, a
problem that is NP-complete [39].
Dremel Encoding. Originally introduced for Google’s Dremel sys-
tem [43, 44], this encoding provides a structure-preserving trans-
formation to store nested data, such as JSON or Google’s Protocol
Buffers, in a columnar format. Since columnar formats are especially
well suited for OLAP tasks and compression [1, 42], it has found
widespread use in open source file formats such as Apache Parquet
[3] and ORC [32], as well as many data analytics and processing
tools such as Apache Spark [4].

Dremel-encoding works based on a tree-shaped schema where
each node is marked as required, optional, or repeated. For simplic-
ity, we omit the types of the leaf nodes. The schema for our running
example can be seen in Figure 2b. At the top level, it shows two
optional nodes A and B. While A is a leaf, there are three further
nodes nested below B, namely C, D, and E. The latter is optional as
well and has further nodes nested below it. The example schema
does not have any repeated nodes. To transform records, such as
the examples in Figure 2a, into columns, Dremel encdoing proceeds
as follows for every root-to-leaf path 𝑝 in the schema [43]:

Firstly, create one column to keep the actual values. Additionally,
create one definition level column which stores the number of
optional nodes in 𝑝 that are present for the given record. Figure 2c
shows these definition level columns of our example documents.
Consider the path B.E.G in the example schema. It has two optional
nodes, namely B and E. The first JSON document contains B but
not E. Hence, the definition level for that path is 1. In the second
document, both of these nodes are present and we end up with
the maximum definition level of 2. Finally, neither of the nodes is
present in the third document which leads to a definition level of
0. Repeated nodes are encoded using an additional repetition level
column. However, since the order of items in an array may carry
meaning, we cannot reorder their contents. Therefore, the specifics
of the repetition level column are irrelevant to this paper, and we
defer to the original article for an explanation.

In Apache Parquet [3], definition level columns are stored us-
ing RLE. Since they are also typically correlated depending on the
data’s schema [29], they are a good candidate for reordering tech-
niques. For example, by just considering the definition level of B.C,
we can improve the compression rate of all children of B. Since
nested schemas are not very deep in practice [64], focusing on these
columns first agrees with typical reordering techniques such as the
increasing-cardinality heuristic.
Decision Trees and Hunt’s Algorithm. Decision trees [48, 62]
are a well-established and explainable model for data classifica-
tion. Each inner node of a decision tree holds a split condition (e.g.,
salary ≤ 10 000) and data records are assigned to the leaves based
on whether they fulfill these conditions. A key problem when con-
structing decision trees is to decide which splits to do, for which
several so-called impurity measures exist. Intuitively, impurity is
high if the data records that would be assigned to a child node after
split belong to many classes and low if they belong to one or very
few classes. Popular choices include the Shannon entropy and the
Gini Impurity, the latter of which is defined as follows:

Gini𝐶 (𝐿) = 1 −
∑︂
𝑐∈𝐶

𝑃 (𝑐 | 𝐿)2 (1)

Here, 𝑃 (𝑐 | 𝐿) is the probability of observing class 𝑐 on a ran-
domly chosen data record in set 𝐿. Since a split creates two or
more child nodes, the quality of the entire split (all child nodes)
is computed based on the so-called gain, which is essentially the
difference in impurity of the parent node and the weighted sum
of impurity values of the child nodes. The decision tree induction
algorithm can then greedily choose the split with the highest gain.

3 RELATEDWORK
Compression Boosters. The order in which rows and columns
of database tables are stored can be altered without affecting the
results of a query. This observation has been harnessed for decades
to improve the efficiency of compression algorithms like RLE.

The problem has been proven NP-complete [39]; thus, in practice,
heuristics are used. Pinar et al. [51] suggest using gray code orders
to reorder the tuples, which they show to be optimal for bitmap
indexes if all possible value combinations are present. Another
common approach is the increasing-cardinality heuristic, which
sorts the tuples lexicographically in the increasing order of their
number of distinct values. Lemire and Kaser [39] show it to be
3-optimal on uniform distributions. Improvements over it include
a tie-breaker based on column skewness [52], adapted traveling-
salesperson heuristics [40], and soft-computing approaches [35].
Vo and Vo [63] have suggested sorting columns individually using
their correlation to another column.

We have suggested a solely schema-based approach [29], and
have preliminarily investigated partitioning rather than sorting
as the means of rearranging runs [28]. Other partitioning-based
approaches include vertical partitioning [12, 13], Bimax-Clustering
[59], and disabeling RLE for columns far back in the sort-order [58].

Melnik et al. [44] have integrated an unpublished algorithm into
the file format driver of their Dremel-encoded file format. Due
to its placement in the file format driver, it can only affect the
order after partitioning and thereby loses valuable optimization
opportunities compared to our approach. While we cannot directly
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compare against their implementation, we will compare against
an approach that partitions evenly and then locally employs the
increasing-cardinality heuristic.
Space Filling Curves. Space-filling curves map 𝑑-dimensional
space into one dimension. The most well-known such curves are
the Hilbert [31], and Morton [46] curves. Aside from their long-
established use for multi-dimensional indexes [55], they have also
been applied as a reordering heuristic, especially in conjunction
with differential encoding. The areas include medical images [41],
point clouds [14], and data warehouses [18]. In general, Hilbert
curves are preferred due to their superior locality properties [34].
For our use-case of reducing RLE runs, Lemire and Kaser [39] have
shown that Hilbert curves are not competitive.
Ingestion Pipelines. Several pipelines have been suggested which
aim to optimize how data is stored. Many, like the one introduced
by Sun et al. [61], aim to reduce the query runtime by allowing the
query processor to aggressively skip buckets that do not contain
relevant data. This is especially interesting in disaggregated settings
where the buckets must be transferred from the data node to the
processing node. Data skipping techniques have been applied to
and specialized for many settings, including non-rectangular parti-
tions [36], correlated columns [60], joins [16], faster JSON query-
ing [17], multidimensional layouts [15], and HTAP systems [2].
Amoeba [57] finds a good initial partitioning for data skipping with-
out knowing a query workload and then specializes it in a cracking-
like [33] manner. For querying arbitrarily partitioned Data Lake
tables, Weintraub et al. [66] propose an approach that improves
latency by calculating tight covering sets of files using an index.
To allow effective data skipping for known query workloads, ap-
proaches like Iceberg [5] and the so-called liquid clustering in Delta
Lake [7] allow the organization of data according to attribute values,
e.g., used as folder names in HDFS. In contrast, our approach does
not make any workload assumptions.

Orthogonal to data skipping, some authors also focus on the read
and write costs. Bian et al. [10, 11] optimize the physical layout
of wide tables in columnar files to reduce the read costs. Delta
Lake [7] balances performance for incremental inserts by writing
small files which are later compacted into larger files. Mukherjee
et al. [47] minimize the monetary costs when placing data in a
tiered architecture for given latency bounds.

Some systems have also been developed which consider the in-
tegration of reordering heuristics. As the simplest solution, Melnik
et al. [44] suggest including a reordering heuristic in the file format
driver. It has been suggested to create one partition per pattern
[65], or to employ Locality Sensitive Hashing [23] to group sim-
ilar records [20, 21]. Both approaches are designed for a single
machine and would cause load-balancing issues in a distributed
setting. Apaydin et al. [6] employ an extensible hashing scheme on
the record’s gray code order rank. In our distributed setting, the
central entity governing such a scheme could quickly become the
bottleneck. Lemire et al. [40] have argued that sorting and then
partitioning the data is a good way to employ more computation-
ally intensive heuristics. However, in our use case, sorting itself is
the bottleneck, so this advice does not solve the underlying issue.
Our solution to all these problems is to instead employ a statisti-
cal model to determine a good partitioning upfront. Then, we can
ingest the data in a bulk-synchronous manner.

JSON Schema Extraction. Schema extraction strives to determine
a human-understandable schema from a given dataset. Often, simi-
lar patterns as we use to boost the compression are analyzed. The
granularity in which they do so varies. Some approaches treat all
variants as distinct [8], maintain one version per object [54], or aug-
ment the schema with additional information such as occurrence
counts [9], distinct value counts [45], or structural outliers [38].
Frozza et al. [19] present an approach that pre-groups the discov-
ered schemas similar to the fingerprints we employ. More advanced
techniques identify tagged unions [37], or disambiguate structs,
maps, and lists [59]. Gallinucci et al. [22] employ a decision-tree-
based approach to cluster schemas under two variants of entropy.
Unlike us, they prioritize understandability, not compression.

4 APPROACH
Our main goal is to provide a fast partitioning heuristic that groups
structurally similar rows together. This way, long runs remain in
the same bucket and are still available to exploit for boosting com-
pression. Such a grouping alone will already boost the compression
because it decreases the entropy within each bucket. This enables
compression algorithms to achieve a higher compression ratio. Af-
terward, the partitions can be reordered locally.

Clustering comes up as a natural solution for our goals. Since we
need a means of identifying which row could be in which bucket for
data skipping, the interpretability of the clusters matters. Therefore,
we employ a variation of Hunt’s algorithm. Further details on it
can be found in Section 7. It recursively splits the source dataset
based on candidate splits that relate to the dataset’s properties. The
best split is chosen based on the lowest information content, which
we derive using the Gini Impurity as discussed further in Section 5.
We chose this measure because it corresponds to the expected run
count under run-length encoding. Finally, the induced tree can be
used to partition the source data and later on for data skipping.

Given the potential size and width of datasets, it becomes in-
feasible to consider all possible values in all columns for splitting,
especially if we were to rescan the source dataset for each candi-
date. Instead, we follow the suggestion of the increasing-cardinality
heuristic and focus on splits for low-cardinality columns. In the case
of Dremel-encoded data, the definition level columns are among the
lowest cardinality columns because most real-world datasets are
not deeply nested [64]. Therefore, we focus on these and hence on
the structure of the data rather than its contents. To manage their
correlation without rescanning, we devise a novel data structure
coined Fingerprint Set, introduced in detail in Section 6.

As we will see in the experiments, our approach without sorting
beats the partition-then-sort approach by a large margin in both
compression and runtime. If we add sorting to our approach as
a stand-in for a more elaborate heuristic, we obtain competitive
compression ratios with a decreased ingestion time. Hence, the
approach we will present in the following sections alleviates the
tradeoff and can be an integral part of cloud data ingestion pipelines.

We implement our approach in Apache Spark [4] by gathering
metadata, computing the partitioning scheme locally on the con-
troller node, and writing the partitioned data using their DataFrame
API. Our approach works in four steps.
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(i) Generate the fingerprint set from the source data using the
DataFrame API (Section 6.4) and transfer it to the controller
node. Optionally, sampling can be employed to decrease
the statistics gathering time.

(ii) Locally induce the decision tree (i.e., Hunt’s algorithm).
(iii) Optionally, determine a sort order.
(iv) Use the resulting partitioning tree and order to materialize

the dataset to be ingested.

For the final step, we have implemented a UDF that maps documents
to their buckets’ IDs. This allows us to read the input data using
the DataFrame API and then distribute it to the worker nodes using
hash partitioning by the bucket ID. Optionally, the workers sort
the partitions to increase the compression ratio. Afterward, they
materialize the buckets in the Parquet format.

5 MODELING RUNS UNDER PARTITIONING
In order to find an efficient partitioning scheme that minimizes the
number of runs generated, we need to find a statistical model that
accurately captures the dataset structure. To this end, we focus on
the expected number of run boundaries, i.e., runs starting in a row.
We derive this quantity for individual columns and then generalize it
to entire datasets. Finally, we discuss handling correlation between
columns bymaintaining a collection of fingerprints per document in
Section 5.1. Assuming independence between rows, we calculate the
occurrence probability of a boundary based on the distribution of
the values within a column and naturally obtain its Gini Impurity.

To see this, let𝑉𝐶 be the set of distinct values of a column𝐶 and
𝑃 (𝑣 | 𝐶) the probability that value 𝑣 ∈ 𝑉𝐶 occurs in a row of 𝐶 .
We want to determine the expected number of boundaries 𝐵(𝐶) in
rows of𝐶 . Let now 𝑣1, 𝑣2 ∈ 𝑉𝐶 be values of𝐶 in consecutive rows. A
new run starts whenever 𝑣1 ≠ 𝑣2. Hence, 𝐵(𝐶) can be characerized
as 𝐸 (1𝑣1≠𝑣2 | 𝐶). Under the assumption that data values inside a
column are independent and with 1𝑣1≠𝑣2 = 1 − 1𝑣1=𝑣2 , we obtain

𝐸 (1𝑣1≠𝑣2 | 𝐶) = 1 −
∑︂
𝑣∈𝑉𝐶

𝑃 (𝑣1 = 𝑣 | 𝐶) · 𝑃 (𝑣2 = 𝑣 | 𝐶) (2)

Since we assume column values are identically distributed, both
these probabilities are equal to 𝑃 (𝑣 | 𝐶), and we finally obtain

𝐵(𝐶) = 1 −
∑︂
𝑣∈𝑉𝐶

𝑃 (𝑣 | 𝐶)2 (3)

Note that Equation 3 is identical to Equation 1 if we equate the
distinct values of column 𝐶 with the classes in a decision tree. In-
tuitively, this makes sense: In a decision tree, we try to separate
records from different classes from each other. To optimize com-
pression, we want to separate different values from each other to
reduce the number of runs. This similarity inspires our approach:
We induce a partitioning tree by selecting the split with the highest
gain at each level.

Now, consider not only one column but 𝑛 columns𝐶1, . . . ,𝐶𝑛 . As
before, the goal is to quantify the expected number of boundaries.
For a row, the total number of started runs is the sum of runs started
in each column. While these are not necessarily independent, the
linearity of the expected value also holds for dependent values,
which leads to

Table 1: Transforming Fingerprints into a Fingerprint Set

(a) Fingerprints

A B E

0 1 0
0 1 1
1 0 0
0 1 0
1 0 0

=⇒

(b) Fingerprint Set

A B E #
0 1 0 2
0 1 1 1
1 0 0 2∑︁
2 3 1 5

𝐵(𝐶1, . . . ,𝐶𝑛) =
𝑛∑︂
𝑖=1

𝐵(𝐶𝑖 ) =
𝑛∑︂
𝑖=1

Gini𝑉𝐶𝑖
(𝐶𝑖 ) (4)

We will use this equation as our impurity measure. Unfortunately,
it does not directly yield a way to obtain the best split.

5.1 Handling Correlation Using Fingerprints
In practice, the assumption of independent columns is too strong,
especially for definition level columns, as they are inherently de-
pendent between siblings in the schema [29]. Thus, assuming inde-
pendence can lead to splits that cause empty buckets. For instance,
assume we have already split the example dataset from Figure 2a
based on the presence of A and now consider splitting one of the
resulting buckets further by path B.C. The presence of these two
paths is not independent. A is absent whenever B.C is present and
vice versa. Hence, the split on B.C would result in an empty bucket.
The model cannot detect this if it assumes independence. This is
particularly problematic if such a situation happens early (i.e., close
to the root of the tree) as the model will suggest further splits of
the already empty bucket, creating many more empty buckets.

To avoid such infeasible splits, we maintain a collection of finger-
prints of the documents in the dataset. A fingerprint is a tuple that
contains one Boolean value for each optional node in the schema.
That value tells us whether the respective node is present in the
document. For example, Table 1a shows the fingerprints for the
documents in Figure 2a. In the first document, the node B is present
while A and E are absent. Hence, its fingerprint is [0, 1, 0] as shown
in the first row of the table. The fingerprints for the other documents
are constructed accordingly.

A collection of fingerprints contains all information necessary
to calculate the number of boundaries and can be partitioned to
obtain the fingerprints after a split. At the same time, it cannot lead
to errors such as discussed above: We know a node can be both
present and absent if the set contains at least one fingerprints for
both variants. If a fingerprint is missing from the collection, e.g.,
due to sampling, it will introduce errors in the estimated sizes and
amounts. At worst, a possible split will not be considered, but an
impossible split will never be used.

6 THE FINGERPRINT SET
We now introduce the Fingerprint Set, the data structure we use
to efficiently calculate the Gini Impurity after split operations. It
maintains a collection of unique fingerprints and how often they
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1 f i n a l c a s e c l a s s F i n g e r p r i n t S e t (
2 names : IndexedSeq [ S t r i n g ] ,
3 f i n g e r p r i n t s : Seq [ ( IndexedSeq [ Boolean ] , Long ) ] ,
4 l e a v e s : IndexedSeq [ S t r i n g ] ,
5 l e a fMe t a d a t a : IndexedSeq [ Opt ion [ ColumnMetadata ] ] ,
6 f r e q s : IndexedSeq [ Long ] ,
7 t o t a l : Long
8 ) / / . . .

Listing 1: Fingerprint Set Data Structure in Scala

are observed, as well as metadata to identify individual columns.
The complete data structure can be found in Listing 1.

A fingerprint is an array with a Boolean value for each optional
node in a document, which denotes whether it is present or absent.
Alongside, we store the names array (Line 2) that contains the paths
to each optional node such that the position matches the position
of the corresponding Boolean in the fingerprint. We keep them, and
hence also the entries in the fingerprints, in a fixed sorted order.
By doing so, we can perform the mapping efficiently using binary
search on names. This will allow us to check a node’s presence in
the fingerprints, e.g., for performing a split.

In Big Data, datasets contain too many rows to store a fingerprint
for each one. Fortunately, in practice, there are much fewer distinct
fingerprints than rows. Therefore, we store an array of tuples of
unique fingerprints and their absolute frequency (fingerprints,
line 3). For further speedup, we also maintain precomputed values.
Firstly, we store the total (Line 7) number of fingerprints in the
set, i.e., the sum of counts of each distinct fingerprint. Secondly,
for each optional node, we store the number of rows where that
node is present (freqs, Line 6). This avoids recalculateing them
regularly by iterating through the list of fingerprints.

For example, consider the fingerprints of our running example in
Table 1a. The Fingerprint Set containing all of them is visualized in
Table 1b. Each row except for the header and the last row contains
one fingerprint. Each time, the last column shows the number of
occurrences of the fingerprint. The fingerprint [0, 1, 0] occurs twice
in our example, so the first row’s last entry is 2. The last row of the
table shows the precomputed fingerprint counts. For example, node
B is present in the first and second fingerprints. They occur twice
and once, respectively, so the entry in the last row is 3. Finally, the
last entry in the last row contains the total number of fingerprints.

The fingerprint set also maintains metadata like the number
of distinct values for the value columns. These are omitted in the
aforementioned figure for clarity. Currently, we only use them as
a weight for the present columns. In the future, this could also be
used to implement value-based splits in the fingerprint set model
if the correlation issues detailed in Section 5.1 are addressed. In
a similar manner to the fingerprints, we store a sorted array of
leaf paths (leaves, Line 4) and keep the metadata in an identically
ordered array (leafMetadata, Line 5). With all this in place, we
now look into using the fingerprint set for the operations needed
to partition in the following sections.

6.1 Calculating Gini Impurity
Using a Fingerprint Set, we can now calculate the Gini Impurity of
the bucket it represents in one traversal of the document schema.

As part of the Gini Impurity computation, we need to determine the
probability 𝑃 (𝐴) that node𝐴 is present. To this end, we first look up
the node’s index in the names to then obtain its absolute frequency
from freqs and divide it by the total number of fingerprints.

The total sum of the Gini Impurities of all columns consists of the
value columns and the definition level columns. For the former, we
iterate through all columns with knownmetadata in leafMetadata.
We estimate the Gini Impurity for column 𝐶 , assuming uniform
distribution, from the number of distinct values |𝑉𝐶 |:

𝐵(𝐶) = |𝑉𝐶 | − 1
|𝑉𝐶 |

(5)

For definition level columns, we iterate over all paths in leaves
and compute the absolute probability of each prefix 𝑛0, . . . , 𝑛𝑖 of
column 𝐶 . Here, 𝑛𝑖 is the full path of 𝐶 and 𝑛0 is the empty prefix
which has a presence probability of 1. Since the definition level
is 𝑑 if and only if 𝑛𝑑 is present but 𝑛𝑑+1 is absent, we can obtain
the probability of each definition level from the difference of the
presence probabilities. Using Equation 1, we arrive at the following
formula for the Gini Impurity of a definition level column:

𝐵(𝐶) = 1 − 𝑃 (𝑛𝑖 )2 +
𝑖−1∑︂
𝑘=0

(𝑃 (𝑛𝑘 ) − 𝑃 (𝑛𝑘+1))2 (6)

Note that the presence probability of each node is required once for
each of its descendants which are leaves. Here, the preprocessing
pays off. Without it, we would have to iterate the fingerprints
sequence each time instead of simply looking up the frequency in
freqs. Using Equations 5 and 6, we can now calculate the total
number of boundaries as the sum of the Gini Impurities of all
columns as per Equation 4. The result will be used in Section 7 to
pick the best candidate split.

6.2 Determining a Sort Order
Reordering and partitioning are not exclusive. Any reordering ap-
proach can further decrease the size of the buckets resulting from
our partitioning.

One of the most commonly recommended reordering heuristics
is the increasing-cardinality heuristic. It sorts the rows lexicograph-
ically and considers the columns in the order of their increasing
number of distinct values. Applying this heuristic alone typically
requires one pass over the input data to determine estimates of the
cardinalities. However, the fingerprint set already contains all the
information needed. It explicitly stores the cardinalities for all value
columns. For definition level columns, the cardinality can be derived
from the fingerprints. For a given root-to-leaf path, determine all
its prefixes, query the fingerprint set for their presence probability,
and then count the number of non-zero distinct probabilities. The
pseudocode for this operation can be found in Algorithm 1. Now
that we have all column cardinalities, we can determine a column
order for lexicographical sorting.

6.3 Split Operations
Recalculating the model from the source dataset for each candidate
split incurs a too-costly performance penalty. Instead, we obtain the
model after splits by partitioning the fingerprints. The pseudocode
for the procedure can be found in Algorithm 2.
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CARDINALITIES(p, fp)
input: the root-to-leaf path p, the fingerprint set fp
result: the cardinality
1 R := ∅
2 for each prefix pref of p
3 prob = presence probability of pref in fp
4 if prob > 0
5 𝑅 := 𝑅 ∪ {𝑝𝑟𝑜𝑏}
6 return |𝑅 |

Algorithm 1: Cardinalities using Fingerprint Sets

Assume we want to calculate a split based on whether the node
with path 𝑛 is present or absent. First, we need to identify its asso-
ciated index 𝑖 in the fingerprint using binary search on the names
field. Then, we iterate through the fingerprints sequence and
build two new sequences from it: one containing all tuples where
the fingerprint’s 𝑖-th value is true and one with all others. These
become the new fingerprint sets of the buckets after the split. We
assume independence between the column values and the structure,
so the leaf metadata does not need to be touched.

Finally, only freqs and total need to be recalculated for both
newly created sets. Instead of recreating both from scratch, we only
sum the values for the present side. Then, the values for the absent
side can be calculated as the difference between the old value and
the value for the present side. This roughly halves the number of
additions we need to perform.

Table 2 shows the fingerprint sets that result from splitting our
running example from Table 1b by the presence of node B. All
fingerprints where it was marked as present were moved to the set
in Table 2a, the others in Table 2b. Note how this has automatically
captured the fact that A is only present when B is not.

6.4 Generating a Fingerprint Set
This section discusses how to initially obtain a Fingerprint Set in one
scan of the source dataset. We first extract all optional nodes from
the schema and sort them by their paths as described in Section 6.
In Spark, the fingerprint can then be derived as the array of whether
these paths are not null in a document. Using this, we can obtain

SPLIT(fp,a)
input: the fingerprint set to split fp, the path to split by p
result: the fingerprint sets where p is present/absent

⊲ split fingerprints
1 i := index of p in fp.names
2 (pres,abs) := partition fp.fingerprints by index i

⊲ precalculate frequencies
3 pTotal :=

∑︁
f∈pres 𝑓 .𝑐𝑜𝑢𝑛𝑡

4 pFreqs := recalculate freqs from pres
5 aTotal := fp.total - pTotal
6 aFreqs := fp.freqs - pFreqs

⊲ build sets
7 fpPres := build FingerprintSet from pres, pTotal, pFreqs
8 fpAbs := build FingerprintSet from abs aTotal, aFreqs
9 return (fpPres, fpAbs)

Algorithm 2: Splitting a Fingerprint Set

Table 2: The Fingerprint Set from Table 1b partitioned by B

(a) B Present

A B E #
0 1 0 2
0 1 1 1∑︁
0 3 1 3

(b) B Absent

A B E #
1 0 0 2∑︁
2 0 0 2

the respective counts as a simple query for the count grouped by
the fingerprint. If we wanted to employ sampling, we could include
a sampling operator before the grouping operation.

Additionally, we need to collect the distinct values for each value
column, i.e., each leaf in the schema. Again, we extract these paths
and sort them as described before. We then use Spark’s [4] im-
plementation of the HyperLogLog++ algorithm [30] to obtain the
cardinality estimates. To prevent a second scan over the data, we use
Spark’s observe function to collect the aggregates as the grouping
of the fingerprint counts consumes them.

As we will see in Section 9, gathering statistics contributes ma-
jorly to the runtime overhead of our approach. To counter this, we
can employ sampling on our first pass over the input and, thus, ap-
proximate the fingerprint set from a subset of the data. The second
pass, which transfers the data to the storage remains unaffected.

However, traditional randomized sampling adds every document
to the sample with a probability 𝑝 . Since this is also true for the
last document, it still requires parsing the entire file. Hence, it does
not deliver the desired speedup on read- or parsing-intensive data
sources like JSON documents. Instead, we sample by only reading
the first 𝑘 documents in every JSON file. Thereby, we can stop
parsing after 𝑘 documents. The risk is that these initial records may
not be representative of the entire dataset, e.g., if the dataset comes
presorted in some manner.

7 FINDING A PARTITIONING SCHEME
We model the partitioning scheme as a tree structure and then
use Hunt’s algorithm to derive such a tree from the previously
generated fingerprint data. Similar to prior work [28], we represent
a partitioning scheme as a non-symmetrical tree and materialize it
alongside the data. Each of its leaves corresponds to a collection of
Parquet files in the underlying storage, which it references using a
path. In our case, we employ HDFS, but the same principles apply
to, e.g., cloud storage. Inner nodes represent split operations. The
most relevant version represents a presence-based split. It stores a
path from the schema’s root to an optional node in the schema. All
documents for which the path is present will reside in a bucket in
its left subtree. Conversely, all documents where the path is absent
end up in the right subtree. This structure allows us to efficiently
identify relevant buckets given a query that uses the path in one of
its predicates. For more details on read operations, see [28].

Additionally, we support another type of inner node called an
𝑛-way node. It can have arbitrarily many children and imposes no
further restrictions on the contents or structure of its subtrees. We
use it to represent random or round-robin partitioning. For our
use-case, its children will only ever be buckets.
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We adapt Hunt’s algorithm for inducing decision trees to con-
struct a partitioning tree from our model. Initially, we can consider
the input dataset to be one large bucket. Since it contains the entire
dataset, we can obtain its fingerprint set using the procedure pre-
sented in Section 6.4. From here on, we recursively split buckets
by considering all optional schema nodes as candidate splits. For
each candidate split, we split the bucket’s fingerprint set using the
procedure outlined in Section 6.3. Then, we estimate the number
of boundaries using the Gini Impurity as outlined in Section 6.1
and pick the split that results in the lowest estimate. Thereby, we
essentially treat each fingerprint as one class.

However, it is not desirable to continue the process until a clean
separation is achieved. In many cases, fingerprints only encompass
a single document. For such small buckets, the overhead of storing
the Parquet metadata alone makes them unattractive. While ex-
perimenting with purity-based termination criteria, we found that
the largest bucket dominates the runtime for data ingestion. The
purity does not give us any guarantee for its size. Hence, we instead
terminate the recursion based on the size of the buckets. To this
end, our algorithm has two parameters. First, theMAX parameter
controls the maximum size of a bucket in terms of documents. For
easier comparison to sorting approaches, we express it in terms
of buckets: WhenMAX is set to 100, we continue splitting until a
bucket is at most as large as a bucket when evenly partitioning into
100 buckets, i.e., at most 1 % of the total documents.

Second, we introduce theMIN parameter which controls the
minimum size of buckets. We express it as a percentage of MAX
WhenMIN is set to 50 %, the smallest allowed bucket is half as large
as the maximal allowed bucket. The higherMIN is, the more evenly
the buckets will be sized. If a candidate split would result in a bucket
smaller than the minimum size based on the fingerprint set, we do
not consider it for the split. If there are no valid split candidates for
a bucket 𝑏 that is larger than the maximum size, we instead perform
a random 𝑛-way split. We choose 𝑛 such that it is the smallest value
that satisfies theMAX boundary, i.e., 𝑛 =

⌈︁
|𝑏 | · MAX

𝑡𝑜𝑡𝑎𝑙

⌉︁
.

The changed termination criterion essentially transforms the
algorithm into a divisive clustering algorithm. As opposed to other
clustering algorithms such as 𝑘-means or LSH, we can control the
size of the clusters. Besides, retaining the partitioning tree enables
us to do data skipping as it encodes how the documents were
matched to the clusters.

8 COMPLEXITY
In this section, we analyze the complexity of our approach. Let 𝑛
be the number of rows, 𝑠 be the number of nodes in the schema, ℎ
the height of the schema, and 𝑓 the number of distinct fingerprints
the data contains. In the following, we will look at each of the steps
as listed in Section 4.

In step one, we initialize the fingerprint set. The dominant oper-
ation in this step is grouping the fingerprints. This can be done by
sorting in O (𝑛 log𝑛) comparisons, each of which requires O (𝑠)
time. Hence, the initial fingerprint set can be constructed in one
scan with O (𝑠𝑛 log𝑛) time.

For the partition tree induction, we first look at the runtime
of testing an individual candidate. We can calculate the split in
O (𝑓 𝑠) time. On the resulting sets, the gini impurity is calculated

Table 3: Dataset Metadata

Twitter GitHub TPC-DS
Records 45.95 M 29.63 M 188.544 M
Columns 371 611 1524
Fingerprints 177.9 K 3338 > 1.4 M
JSON SIZE (GiB) 108.1 112.1 681.6
Parquet Size (GiB) 26.24 29.22 89.99
Ingestion Time (min) 5.4 5.61 102.2

using a O (log 𝑠) lookup for all O (ℎ) prefixes of the O (𝑠) defini-
tion level columns. Hence, the overall time for one candidate is in
O (𝑓 𝑠 + 𝑠ℎ log 𝑠). We need to test O (𝑠) candidates, which can be
done in parallel. Since all candidate splits are binary and the algo-
rithm creates at most 𝑙 = MAX

MIN leafs, we arrive at a total runtime of
O

(︁
𝑙
(︁
𝑓 𝑠2 + 𝑠2ℎ log 𝑠

)︁ )︁
for step two.

If sorting is applied, we extract column cardinalities from a fin-
gerprint set. For each of the O (𝑠) root-to-leaf paths, and their O (ℎ)
prefixes, we retrieve their probabilities in O (log 𝑠) time. This is
more expensive than sorting, so we end up with O (𝑠ℎ log 𝑠) time.

In the final step, we perform a second and final scan of the
data. For each of the 𝑛 rows, we need to look up which partition it
belongs to in the partition tree. That incurs a worst-case overhead
of O (𝑙). Naturally, the optional sorting step also induces a time
cost of O (𝑛 log𝑛) per partition.

In practice, 𝑓 ≪ 𝑛 since every row can contribute at most one
fingerprint. Further, we can assume that the dataset is large, i.e.,
𝑠 ≪ 𝑛, and hence ℎ ≪ 𝑛. Therefore, steps 1 and 4 dominate the
overall ingestion time because they directly depend on 𝑛. This is
confirmed by our experiments in Section 9.1.

9 EVALUATION
We conduct our experiments in a dockerized Spark cluster hosted on
8 servers, each with Intel® Xeon® E5-2603 v4 CPUs and 126GiB of
RAM. The data resides on HDD with a read rate of about 180MB/s.

Each physical server hosts two docker containers: one spark
worker as a compute node and one HDFS data node as a storage
node. The two containers are unaware they are co-located and can
only communicate via the 10Gbit/s network. Two servers addition-
ally run the HDFS namenode and the Spark controller, respectively.
HDFS is configured to use a blocksize of 128MiB and threefold
replication. The input data resides on network-attached storage
which is accessible by all workers at the slower speed of 1Gbit/s.
Datasets. We evaluate our results on two real-world JSON data-
sets. First, a collection of tweets scraped from the service formerly
known as Twitter in the first seven days of May 2017. Second, a
collection of GitHub API events [24] from January to March 2015
that was downloaded from GH Archive [26]. An overview of the
metadata can be found in Table 3. Both datasets are around the
same size in GiB, but the GitHub dataset is wider and in turn, has
fewer documents. It also has fewer distinct fingerprints and thus
offers fewer opportunities for compression to our approach. Addi-
tionally, its contents naturally are in a better-than-random order for
compression which diminishes the performance of all approaches.
Hence, it serves as an example of a dataset that is hard to boost.

3463



0 50 100 150 200 250
0

5

10

15

20

𝜓

sl
ow

do
w
n
fa
ct
or Global Builtin

Gini Gini+

(a) Twitter

0 50 100 150 200 250
0

50

100

𝜓

sl
ow

do
w
n
fa
ct
or Global Builtin

Gini Gini+

(b) GitHub

Figure 3: Overall Ingestion Time

We further evaluate our approach on the TPC-DS benchmark
[49]. It consists of a normalizedmultiple-star schema and is typically
used to evaluate relational data warehouses. As our approach works
with heterogeneous JSON data, we have adapted the data in a
manner similar to Durner et al. [17]. First, we have stripped the
unique prefixes from the column names. We then transformed
each row of the fact tables into a JSON object whose keys are
the former column names. The referenced dimension entries were
transformed analogously and recursively merged into the object
as nested objects. Finally, we extended the fact objects by a new
key which identifies the source table and then shuffled all objects
into a single dataset. The resulting JSON collection for scale factor
10 is by far our most challenging dataset and almost exhausts our
cluster’s memory. Its characteristics can be found in Table 3.
Competitors. In our evaluation, we compare four different ap-
proaches. We refer to our approach as Gini, and Gini+ when op-
tional sorting is enabled. The competitor coined Global follows the
suggestion by Lemire et al. [40] and creates a global sort order by
sampling the dataset and then creating evenly sized range-based
partitions, which it eventually sorts. Sorting is done using Spark’s
sort functionality. For the other end of the investigated spectrum,
we follow the suggestion by Melnik et al. [44] and mimic the be-
havior of a compression booster integrated into a file format driver.
To this end, we partition the data evenly and then locally sort each
bucket. We refer to this baseline as Builtin.

In all cases, sorting is done using the increasing-cardinality
heuristic for value and definition level columns. As such, the two
baseline approaches also include a statistics-gathering phase, which
estimates all column cardinalities using HyperLogLog++ [30].
Comparing Partition Sizes. The runtime of sorting and material-
izing buckets both depend on the partition sizes. Since partitions are
also the unit of distribution in Spark, the determining factor of our
runtime is the size of the largest partition. Each of the approaches
has a parameter that controls this property. When comparing them
in the following, we will always consider alternatives where these
partition size indicators are set to the same value and refer to it as𝜓 .
Since each approach works with approximately even-sized buckets,
the bucket count is indicative of the sizes, albeit not determining it
precisely. For Builtin, we can directly set the number of partitions
to𝜓 . We set the spark.sql.shuffle.partitions parameter to𝜓
for Global, but we have found that Spark does not precisely follow
the set value. For our approaches, we setMAX to𝜓 as it determines
the maximum size of buckets.

Unless otherwise stated, we set𝜓 to 150,MIN to 50 %, and disable
sampling. For TPC-DS, we only run𝜓 = 250 and aggressively sam-
ple the first 5000 rows per input file. To warm up the caches, we run
Spark’s schema detection multiple times before the experiments.

9.1 Ingestion Time
In this experiment, we want to evaluate the time it takes to import
new data into the system. To this end, we have run all four ap-
proaches and measured the time between the DataFrame creation
and the completion of the materialization The numbers reported
always refer to the median of 10 executions for Twitter. Due to the
generally longer execution times on GitHub, we only report the
average between two executions on it. We have supplied a prede-
termined schema to Spark to avoid running its schema detection.
End-to-end Runtime. All Compression Boosters inherently invest
runtime when the data is ingested to achieve a better compression
ratio. As such, we measure the ingestion performance as the relative
increase in ingestion time compared to using no such booster. These
slowdown factors on Twitter for𝜓 between 10 and 250 can be found
in Figure 3. As can be seen, the slowdown always diminishes as𝜓
increases as expected. Our Gini approach is the fastest for all values
because it does not rely on sorting. On Twitter, we obtain a 3.34
times speedup over Builtin for𝜓 = 10 and factors between 1.14 and
1.67 for all other values. Compared to Global, Gini is considerably
faster, and the speedup factors range between 2.12 and 3.68. On
GitHub, the slowdown of all sorting-based approaches is worse
by an order of magnitude. Yet, the purely partitioning-based Gini
approach still performs very well and hence obtains even more
drastic speedups. For𝜓 = 10 it is 17.44 times faster than Builtin and
16.89 times faster than Global. For higher values of𝜓 the speedup
ranges between 4.12 and 8.50.

If we add sorting, our Gini+ approach starts as the slowest but out-
paces Global as𝜓 increases. On Twitter, this happens very quickly
and we then observe a speedup of up to factor 2.35. On GitHub, we
only outpace Global at𝜓 = 190 for a maximum speedup of factor
1.22. However, all sorting-based approaches are prohibitively slow
on that dataset with at least a 14.67-fold slowdown. A potential
reason for the slow start is the assignment of partitions to Spark
workers. Our approach generates more partitions than the given
𝜓 . If a node gets predominantly large partitions, this straggler’s
longer runtime determines the overall performance. On GitHub,
this effect is emphasized due to the overall poor performance of
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Figure 4: Ingestion Time Composition on Twitter for𝜓 = 150

sorting. We will discuss this further in Section 9.3. This aside, our
approach is meant for cases where the ingestion process is highly
parallelized, so the smaller cases are less relevant.

Since the TPC-DS dataset is extremely wide, it puts a heavy strain
on our cluster and we frequently see tasks fail due to memory or
garbage collection issues. This especially affects the Gini+ approach
which requires the memory for both the very large fingerprint
set and the data to sort. As a result, it ends up slower than all
other approaches with a slowdown of factor 8.57. As expected, Gini
beats all other approaches with a slowdown of only factor 3.3. This
includes the Builtin approach which is slowed down by factor 4.36.

Overall, we see that our Gini approach significantly outperforms
the baseline sorting approaches in terms of ingestion time. In many
cases, this still holds if sorting is applied afterward.
Runtime Composition. To further analyze the composition of
the approaches’ runtimes, we have measured the runtime of the
steps from Section 4 individually. The results are summarized in
Figure 4. The numbers shown reflect each step’s median runtime.
We have omitted the runtime of determining a sort order in the
plot as it is below 50ms for all approaches.

As can be seen, the time needed to determine the split is insignif-
icant compared to the overall runtime thanks to the algorithmic
optimizations we applied. Gathering statistics takes constant time
regardless of the desired partition counts. It takes about as long
for the baseline approaches as for ours. The majority of the time
is spent in the execution step. In cases with intensive sorting over-
head, such as Global in the figure, it is so dominant that even the
contribution of the gathering step becomes insignificant. However,
for the Gini approach or higher values of𝜓 , it can make up as little
as 45 % of the total time. This validates our application of sampling
to speed up the gathering step in Section 6.4.

9.2 Compression Ratio
In this experiment, we investigate the achieved compression boost,
i.e., the compression ratio compared to the compressed size without
applying a booster. We use the same experimental setup as for the
runtimes in Section 9.1.

The results on the Twitter dataset can be seen in Figure 5. There,
we can see the filesize of the Builtin approach increases with 𝜓

as expected. For GitHub, not using it at all would yield better re-
sults. This is because the records in that dataset are already in an
order which benefits compression. If we randomize their order, the
size without booster increases to 37.13GiB—1.27 times more. On
Twitter, the filesize resulting from our Gini approach decreases
with𝜓 because more splits can be performed. For small values our
approach starts worse than Builtin by a factor of 1.12, but for high

values ends out better by a factor of up to 1.16. This again under-
lines that our algorithm is ideal for highly parallelized use cases.
On GitHub, the Gini approach can hardly improve over the already
highly correlated input. Note that this corresponds to a boost factor
of 1.33 relative to the randomized size of the dataset—much closer
to the improvements we see on Twitter. However, it also does not
worsen it like the Builtin approach. We attribute the marginal im-
provements to the much lower number of distinct fingerprints in
the GitHub dataset.

If sorting is considered, our Gini+ approach yields compression
very close to the Global approach. We are always within 5 % of it on
Twitter. As𝜓 increases, more fingerprints occur more often than
the maximum size of a partition. Therefore, our splitting algorithm
has to resort to 𝑛-way splits more often. That again splits long runs
between buckets and hence deteriorates the compression rate. Since
GitHub has fewer fingerprints, the effect is more pronounced in
that dataset. A potential solution to this would be to incorporate the
values of further low-cardinality columns into the fingerprint at the
expense of a combinatorial explosion of the number of fingerprints.
We leave an investigation of this effect to future work.

On TPC-DS, the highest boost factors are achieved overall. As
expected, Builtin is the worst with only 1.56. Our Gini approach
obtains a boost of factor 1.95 and thereby improves over Builtin by
factor 1.25. The best approach is Global as expected with a boost of
2.74, and Gini+ comes in second with a boost of 2.22. Overall, these
results confirm our expectations.

9.3 Algorithm Parameters
Influence of theMIN Parameter. In this experiment, we evaluate
the impact of the MIN parameter on the ingestion time and the
resulting compressed size. To this end, we have fixedMAX to 50, 150,
or 250 while varying MIN from 10% to 90 % on the Twitter dataset.
The results show that the boost factor increases as MIN decreases.
Lower values forMIN allow for the creation of smaller partitions.
Thereby, more efficient splits can be chosen that would otherwise
be eliminated due to the size requirement. However, the change is
only marginal. DecreasingMIN by 10 percentage points improves
the boost by between 0.6 and 0.8 percentage points depending on
𝜓 for Gini. With Gini+, we see a slightly higher change of between
0.8 and 1 percentage point.

The respective slowdowns do not reveal a consistent change in
ingestion time as the MIN parameter changes. However, we notice
that runtimes for lowMIN values vary more than for high values
and the variant with sorting varies more than the one without. We
again attribute this to the assignment of partitions to worker nodes.
Lowering MIN from 90% to 10% results in a 30% increase of the
partition count and leads to more uneven sizes. If a worker ends
up with mostly above-average-sized partitions, it will take longer
to complete its workload and hence slow down the overall compu-
tation. Since sorting is a superlinear operation, it exaggerates this
issue. This is evident from the fact that the variance of the sorted
approach is consistently higher than its unsorted counterpart. If
this is indeed the issue, a more sophisticated worker assignment
algorithm may offer great benefits. The fingerprint sets our algo-
rithm creates contain ample information to infer the partition sizes
and hence to estimate the runtime cost of each partition.
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Figure 5: Achieved Compression Boost
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Figure 6: Attribute Allocation for Attributes sorted by Occurrence Frequency in the Dataset

Sampling. As we have seen in Section 9.1, gathering statistics
can make up a significant portion of the ingestion runtime. In this
experiment, we want to determine the extent to which we can
alleviate this using the sampling approach detailed in Section 6.4.
To this end, we sample between the first 2000 and 26000 documents
of each source JSON file of the Twitter dataset. Note that the upper
bound corresponds to reading the entire dataset. In the unsorted
case, the ingestion time grows linearly with the sample size by
0.2min per 1000 rows. In total, this amounts to is a significant
decrease of factor 1.37. In the sorted case, the trend shows a similar
improvement in absolute terms. As we have seen in Figure 4, the
gathering step makes up a lower proportion of the total runtime
when sorting is enabled. Therefore, the lower relative improvement
of 1.04 was as expected.

We also observe a non-linear effect on the sorted case. We again
attribute this to the assignment of partitions to workers. As the
sampling rate changes, so does the induced partitioning tree and
with it the worker assignment. It is worth reiterating that all rep-
etitions with the same sample size produce the same partitioning
tree because we deterministically sample the first 𝑘 records from
every input file. We have also measured the corresponding boost
factors and do not see a significant impact on the compression ratio.
For both approaches, we do not see a more than 0.6% increase
in the size from sampling. As a result, we recommend employing
aggressive sampling to decrease the statistics gathering time.

9.4 Query Processing Performance
Data Skipping. One of the main advantages of using our decision-
tree-based approach over other clustering methods and our base-
lines is that the assignment of rows to buckets is explainable. The

inner nodes of our partition tree retain the split conditions, i.e.,
presence information, which enables the use of data-skipping when
reading the data. In this section, we want to evaluate the extent to
which we can eliminate buckets from query processing.

We have materialized one partitioning for each of the approaches
with 𝜓 = 150. For each bucket, we determined which of the at-
tributes are present in at least one row in the bucket. Assuming
perfect information, this means we would have to download and
process that bucket for a query involving this attribute. Figure 6
shows the percentage of rows we have to read this way for each at-
tribute. The resulting measure is similar to the Attribute Allocation
introduced by Shanbhag et al. [57]. The attributes on the x-axis have
been sorted by frequency of occurrence in the dataset. Note that
Gini+ only differs from Gini in the order of rows within a bucket
and therefore performs identically to the unsorted variant. As can
be seen in the figure, the Builtin approach performs worst by a huge
margin. Blindly assigning rows to partitions spreads each structural
variant over all buckets and hence forces us to almost always read
all of them. Global performs better, but the further back an attribute
occurs in the sort order, the more its occurrences are spread over all
buckets. As a consequence, our Gini approach achieves a tighter fit
which outperforms sorting for all but 16 columns (4.31 %) on Twit-
ter. There, we achieve an up to 11 times improvement in the rows
that need to be processed over Global and 253 times over Builtin.
Conversely, in the bad cases, we are at most 3.37 times worse. On
average, we save 3.35% additional rows. On GitHub, we perform
slightly worse. We still universally outperform the Builtin approach
by up to factor 188. Compared to Global, our approaches are better
for all but 51 columns (8.35%). In the best case, we improve by
factor 2.83. In the worst case, our approach needs to read 14 times
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Figure 7: Total Query Latencies on the Partition Schemes

as much data. Overall, we save 0.9 % rows on average. All in all, our
approach does not sacrifice skipping opportunities to achieve its
ingestion performance. On the contrary, it improves the skippable
data drastically in many cases, especially compared to the Builtin
approach. The common structure in the partitions is sufficient to
skip more than 80 % of rows for many columns.
Data Analysis Workloads. To evaluate the query performance of
our partitioning scheme, we have employed the BETZE benchmark
generator [56]. It simulates the behavior of a data analyst during
data exploration. We have generated two runs for each real-world
dataset on the intermediate preset with aggregation enabled us-
ing a 5% sample resulting in 20 queries for each dataset. Due to
differences in the data model between BETZE and Spark, we have
disabled the is_string predicate. Where applicable, we have em-
ployed data skipping [28]. Note that it only considers the column
chosen for the split and not all information from the fingerprints
that remain in the final buckets. The implementation of a more
precise skipping technique is beyond the scope of this paper and is
left for future work.

Figures 7a and b show the total runtimes for each approach both
with and without data skipping. Each measurement is repeated 10
times and the median value is reported, with error bars indicating
the minimum and maximum values. As can be seen, data skipping
is very effective at reducing the query times on Twitter: Without
it, our approaches result in runtimes similar to Global. With skip-
ping, our approach becomes between 1.88 and 2.48 times faster and
thereby beats all other approaches. On GitHub, the employed skip-
ping technique cannot pick up the predicates of the least selective
queries and hence only yields smaller improvements of up to factor
1.13. Except for low choices of 𝜓 , we still outpace the baselines
up to 1.53-fold. The query times without skipping increase signifi-
cantly for lower values of 𝜓 . This aligns with the decrease of the
ingestion time and the increase of the Gini approach’s boost factor
we have seen in the previous experiments. Therefore, we conclude
that we can tune our algorithm’s parameters for ingestion time
and compression rather than query time without sacrificing perfor-
mance later on. The good performance of the Builtin approach on
Twitter comes as a surprise to us. It beats the query times of the
Global approach by a large margin despite producing larger files
that occupy more HDFS blocks and present fewer data-skipping
opportunities. However, we notice significantly higher errors for

the other non-skipping approaches. We believe this is a property
of the dataset and the queries generated for it because GitHub does
not show this behavior.
TPC-DS Workload. We have also evaluated the query latency
on the resulting layouts of our approaches on TPC-DS. Since our
data transformation eliminates all dimension tables, some of the
benchmark’s queries are not immediately applicable anymore. We
have adapted and run the first 10 queries which fit the new repre-
sentation and visualize the results in Figure 7c, i.e., Queries 1-5, 7,
11-13, and 15. Unfortunately, the partition tree has not picked up
any predicates directly used by the queries, so we only report the
runtimes without skipping. However, the Parquet-level skipping in
conjunction with the changed file sizes still makes Gini+ the fastest
approach. Gini’s runtime is competitive with the other approaches.
It beats Builtin and in some cases even Global.

10 CONCLUSION
In this paper, we presented a clustering approach for integrating
compression boosters into cloud data ingestion pipelines which
partitions the data based on the Gini Impurity of the documents’
structure. We showed that it outpaces even the fast Builtin approach
by up to factor 17.44 while at the same time also providing up to
1.95-fold lower filesize. If the created buckets are further sorted, we
obtain a compression boost competitive with the well-established
increasing-cardinality heuristic applied on the entire dataset, but at
lower ingestion times. Additionally, the partitioning tree generated
by our approach can be employed for data skipping when querying
the data later on. There, we achieved an up to 11 times tighter fit
than the increasing-cardinality heuristic. For many columns, more
than 80% of rows can be skipped based on the structure which
improved the query latency by up to factor 2.48. That makes our
approach the best choice for structurally heterogeneous datasets
and emphasizes the need to already consider compression boosters
in the ingestion pipeline and not only in its last step as part of the
file format driver.
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