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ABSTRACT
We present TabEE, Tabular Embedding Explanations, a framework
designed to generate explanations for interpreting tabular embed-
ding models. Our framework aims to furnish both local and global
explanations for the original data, facilitating the detection of poten-
tial flaws in embedding models. TabEE is versatile and compatible
with any tabular embedding algorithm, as it adheres to the black
box perspective of embedding models. The generated explanations
also enable comparisons between multiple embedding models. This
demonstration illustrates the effectiveness of TabEE in providing
interpretable insights into tabular embedding models, contributing
to improved model understanding and credibility assessment.
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1 INTRODUCTION
Tables serve as vital structures for data organization across a range
of domains, from scientific research to business applications. In
recent times, the emergence of tabular embedding techniques has
introduced a novel approach to analyzing tables and dataframes, of-
fering more intricate data representations. Tabular embedding seeks
to capture both structural and semantic aspects of dataframes in a
lower-dimensional vector space, enhancing the efficacy of data analy-
sis and processing. In this work, we are focused on the most common
type of embedding, where each row or column in a dataframe can
be represented as a vector.

Diverse landscape of tabular embedding models. The landscape
of tabular embedding techniques has been rapidly advancing, offer-
ing diverse options for generating continuous vector representations
of tabular data. These methods encompass static and contextual-
ized word embedding methods (i.e. [10]), graph-based approaches
(i.e. [3]), and neural network-based methodologies (i.e. [1]), each
with distinct strengths. Tabular embeddings have proven valuable in
various applications, including table retrieval, entity linking, table
completion, and classification tasks, enabling efficient and accurate
data analysis ([1, 3]).
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Motivation. While many studies explore tabular embedding tech-
niques, a gap remains in coherently associating between the vector
representations and the original attributes. In addition, as models
become more complex, understanding and interpreting their mecha-
nisms becomes increasingly difficult. Comprehending these models
is crucial for pattern exploration, model comparison, hyperparameter
tuning, error analysis and bias identification.

Proposed Solution. Our novel system, Tabular Embeddings Ex-
planations (TabEE), introduces an explanation methodology tailored
to dataset-embedding model pairs. By identifying closely grouped
data cohorts in the embedding space, we unveil latent patterns within
these cohorts by discovering major shifts in distribution across spe-
cific original attributes.

Example 1.1. Consider the Cover Type dataset [2], which in-
cludes cartographic variables used for predicting forest cover types.
In this context, a tabular embedding model is utilized to represent
each row of the dataset with a vector, aiming at the classification
of the cover type. The primary goal is to interpret patterns encoded
within the embedding model and understand their potential implica-
tions for tasks, such as error analysis. Figure 1a presents a segment of
TabEE’s explanation for the provided embedding model and dataset.
On the left, clusters are generated using our metric, maximizing
aggregated explanation scores, and visualized in a 2-dimensional
plot using UMAP [9]. On the right, the distribution of the Aspect
attribute in the original dataset is illustrated by orange bars, reveal-
ing a uniform spread. Conversely, blue bars portray the attribute
distribution in the embedding space. Noteworthy is that, for Cluster
0 in the embedding space, corresponding original points predomi-
nantly exhibit higher values of the Aspect attribute. This observation
unveils how the embedding model captures Aspect for this cluster,
suggesting the formation of a distinctive pattern within this group.
Such insights contribute to a deeper understanding of embedding
model patterns, indicating that the grouping in the embedding aligns
with the values of the Aspect attribute.

Demonstration. Our live demonstration presents the function-
ality of TabEE in generating explanations of real-world tabular
datasets and embeddings, as initially detailed in our accepted work
for SIGMOD 2024 [4]. TabEE effortlessly integrates with widely-
used exploratory data analysis (EDA) platforms, providing users
with valuable insights into crucial learned patterns. Demonstrating
its compatibility, participants engage with TabEE through Jupyter
notebooks, facilitating the exploration of datasets and their selected
embedding models. This interactive session allows users to observe
explanations, enabling in-depth comparisons between distinct em-
bedding models applied to the same dataset (Section 3).

Related work. One way to improve interpretability is by adapting
established techniques from black-box machine learning explana-
tions. While these methods work for model explanations, they often
can’t fully reveal patterns in tabular embedding models. Existing
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methods like TabNet’s [1] task-oriented interpretation might not
capture the core nature of the underlying embedding model. Also,
no prior research systematically compares interpretative abilities of
embedding models. Despite connections to related fields like data
summarization and exploration tools [5, 12], customized explana-
tions for tabular embeddings are unexplored, highlighting a research
gap in addressing interpretability in this context.

2 APPROACH AND METRIC
The intricacies of our algorithm are comprehensively outlined in [4]
and briefly summarized here for the purposes of this demonstration.

We consider a dataset represented as a dataframe d, consisting
of a list of rows over a schema A d. Each row r ∈ d represents a
tuple, where A ∈ A d specifies a dataframe attribute. We denote
the dataframe column associated with attribute A as dA, which rep-
resents the multiset of all rows’ values associated with attribute
A in the dataframe d. Given an embedding model M, we denote
the representation created for the dataset as Md, also referred to
as d̂. The embedding representation d̂ has a different schema than
the original dataset d, such that A d̂ ≠ A d. As this work focus on
row-level embeddings, each datapoint in the original dataset r has a
corresponding embedding representation r̂ in the embedding space.

We define a cohort of size n as a set of rows C = {r1,r2, ...,rn} ⊆
d that are grouped closely together in the embedding space Ĉ =

{r1̂,r2̂, ...,rn̂} ⊆ d̂; the set of cohorts partition d.

2.1 Creating Cohorts’ Explanations
The vectors generated by the embedding model originate in the
embedding space, with no direct connection to the original dataframe.
Consequently, it is necessary to establish a connection between these
two spaces and quantify the changes occurring within. Inspired by
[7], we provide an explanation for a cluster of vectors (cohort), based
on their contribution to a pre-defined measure. The Algorithm (fully
described in [4]) takes as input an embedding model and the original
dataset, and produces a global explanation comprising of several
cohort explanations.

The algorithm iterates over values of k from 2 to Kmax (as ex-
plained in the full paper, 10 is a reasonable choice for Kmax) and
performs the following steps for each value of k:

(1) Applies a clustering method, by default K-means, to gener-
ate the cohorts, and generates the candidates for the cohort
explanation (elaborated in Section 2.2).

(2) Evaluates the quality of each possible combination of candi-
dates (one per cohort), using the metric described in 2.3.

(3) Picks the combination that maximizes the score - this is set
to be the explanation for k cohorts.

After generating the explanations for all number of cohorts op-
tions, the algorithm selects the number of cohorts that maximizes
the score and returns the explanation associated with that number of
cohorts. In addition, a 2-dimensional plot of the embedding space is
presented, generated using UMAP algorithm [9], in order to create a
broader context of the explained cohorts.

2.2 Explaining a Single Cohort
Now, we present the algorithm responsible for generating expla-
nation candidates for the cohorts discovered by the previously de-
scribed Algorithm. Given a cohort C = {r1...rn} ⊆ d, we aim to
measure the significance of the change in the distribution of values
of a specific attribute A between the original dataset and the cohort
C. The deviation, with respect to attribute A ∈ A d, is defined as
the difference between the values in dA and CA, which represent
the column associated with attribute A in the original dataframe d
and the cohort C, respectively. To quantify this deviation, we utilize
the Jensen-Shannon (JS) distance, a well-known statistical test that
measures the difference between two distributions, including cate-
gorical values. Note that this metric is defined both for numerical and
non-cardinal categorical attributes, enbaling a comparison between
attributes of different types.

First, we define the column probability distribution PrdA based on
the relative frequency of its values. We then calculate the described
deviation in distributions, denoted by DA,C,d := JSPrdA,PrCA.

Finally, the algorithm selects the m attributes with the largest
distances, indicating substantial differences in distribution between
the cohort and the original dataset. The algorithm outputs the com-
parative distributions of attribute values for both the cohort and the
original dataset, as illustrated in Figure 1a.

2.3 Metrics for Evaluation
We present a new method for assessing the quality of the expla-
nations generated by TabEE. A complete explanation consists of
multiple cohort explanations, each capturing unique model patterns.
This metric comprises sufficiency and interestingness metrics for
individual cohort explanations and diversity metrics for the overall
set of explanations. Later on we prove the connection between the
proposed metrics and the ability to capture important patterns of
the embedding models, using objective and human-centered experi-
ments.

Sufficiency. To ensure that a given explanation is relevant only
to its associated cohort, we define the sufficiency metric, based on
the sufficiency metric in [6]. Given an explanation for a cohort, we
seek to maximize the number of examples that are assigned with this
explanation, from all examples that "correspond" to the distribution
of the attribute used in the explanation. Let x be a data tuple from
the original dataset d, with its corresponding embedding vector
x̂. We denote the cohort assigned to x̂ as Cx̂, and the explanation
assigned to the cohort as ExpCx̂. The explanation is represented as a
probability distribution over the values of attribute A ∈ A d. Then,
the probability that the instance x is drawn from the distribution
of the explanation e is denoted as the relation Rx,e. This relation
quantifies the extent to which the explanation holds for the instance
x, taking into account the probability value. Now, the sufficiency of
a single example can be formulated as:

msx = x′ 1x′̂ ∈Cx̂ · x′ Prx′∼ExpCx̂ x′Prx′

x′ Prx′∼ExpCx̂ x′Prx′

To obtain the global sufficiency, we calculate the local sufficiency
for each example and average it across all examples.
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Interestingness. This metric gauges the significance of an ex-
planation by comparing attribute distributions in a cohort to the
original dataset. For an explanation ei of cohort Ci, denoting Ai as
the attribute, and PrdAi as its distribution in the original dataset d,
interestingness is the distribution difference between PrCiAi in the
cohort and PrdAi. Using the JS-divergence metric, which accommo-
dates numeric and categorical histograms, this provides a measure
of how unique the attribute’s cohort distribution is compared to the
dataset’s. The global interestingness is the average of these measures
across all cohorts. It quantifies how intriguing the explanation is in
terms of JS-divergence from the overall data distribution.

Diversity. This metric aims to assess the overall quality of mul-
tiple explanations for different cohorts, and, quantifies the amount
of new information and insights gained from each cohort expla-
nation. It measures the marginal gain of knowledge provided by
each new explanation compared to the previously seen explanations.
Given a set of explanations e1, . . . ,ek, where ei represents the i-th
explanation, we define the diversity as the difference between the
knowledge gained from ek1 and the cumulative knowledge gained
from e1, . . . ,ek. If ek1 introduces a new attribute, the diversity is
maximal, represented by a value of 1. If it introduces a different
distribution for an already known attribute, it contributes the distance
between the explanations as a measure of how much of a new knowl-
edge we have gained from the additional explanation. Conversely, if
ek1 provides the same explanation as a previous one (same attribute
and distribution), the diversity is minimal, given value of 0.

To account for the ordering of explanations, we calculate the
average diversity value across all permutations of the orderings,
considering only explanations that share the same attribute.

Overall score. The overall score combines sufficiency, interest-
ingness, and diversity to comprehensively assess explanation quality.
This score is the average of these three components by default,
with adjustable weights option. Although the Silhouette score [11]
and Dunn index [8] were initially considered, ablation experiments
demonstrated their redundancy, leading to their omission.

2.4 External Evaluation
In order to validate the effectiveness of the generated explanations
we conducted external experiments, divided into three parts: (1)
Objective Evaluation: We employ automated methods to analyze
default system parameters, using ablation experiments; assess the
trade-off between running time and explanation quality; evaluate
general alignment of the algorithm with the patterns of the under-
lying embedding model; and evaluate the relevance of the patterns
unraveled by TabEE to downstream tasks, using a comparison to the
explanations generated by common black box explanation methods,
such as SHAP. (2) Baselines Comparison: We explored alternative
methods for creating explanations of the embedding space, instead
of using distributions shifts, such as Association Rules and cluster
representatives. Additionally, our method is compared to other ex-
plainability algorithms, designed for interpreting downstream tasks.
(3) Human-Centered Experiments: We conducted a user study to
validate our metric for measuring explanation quality, by assessing
the increase in user productivity when following machine-produced
explanations versus using traditional data analysis. Additionaly, we

analyze the correlation between our method’s scores and a subjective
preference of the users.

System parameters optimization. The following system parame-
ters were evaluated and optimized through ablation experiments: (1)
Number of candidates per cluster: The default is three, balancing
quality and efficiency. Increasing candidates improves quality but
increases running time. (2) Range of clusters examined: The default
range is 2 to 10. (3) Number of explanations per cluster: By de-
fault, one explanation is output per cluster in the global explanation.
(4) Importance of metric components: by default equal weights are
assigned. (5) Distributions distance metric: Jensen-Shannon (JS)
metric is used. (6) Binning methods: We use FEDEX’s [7] binning
method for discretizing numeric attributes, ensuring equal distribu-
tion within each bin for better comparison and distance calculation.
(7) Clustering method: The default is KMeans, chosen for it’s sim-
plicity and fast runtime.

Although default values are set for these system parameters, they
can be altered by the users, in order to fit their specific needs.

Synopsis of Findings. The comprehensive outcomes of our ex-
periments can be found in [4]. Our results underscore the efficacy of
TabEE in generating explanations that adeptly capture the learned
patterns of the embedding model. Notably, a robust correlation exists
between elevated scores from our metric and the actual quality of
explanations, as corroborated by both objective empirical experi-
ments and subjective assessments from our user study. Every facet
of our proposed metric, including the distance metric for distribu-
tions and configuration parameters such as the maximum number
of scrutinized clusters, has been affirmed as essential and precise.
Additionally, our user study attests that users employing our system
exhibited enhanced objective performance, such as the proficiency
to discern data patterns and comprehend distinctions among diverse
embedding models for subsequent analysis.

The goal of this demo is to affirm the practicality and efficacy
of TabEE in augmenting data analysis and facilitating model
comprehension, through live demonstration in practical scenar-
ios using classical EDA setting.

3 SYSTEM AND DEMO OVERVIEW
We demonstrate TabEE, a user-friendly tool for exploring table
embedding models in EDA through a common scenario for clas-
sification of Cover Type dataset [2]. TabEE integrates pre-trained
embedding models into EDA workflows, such as Jupyter notebooks,
using a local Python 3.8 library. empower users with a detailed
analysis of the model’s performance and patterns. It comes with
default settings, detailed in Section 2.4. The following sections pro-
vide an overview of the demonstration scenarios, starting with an
introduction to the system and its usage, followed by a comparison
of two embedding models. Note that the scenarios depicted, includ-
ing Figure 1, are based on a simplified setup with two embedding
models for the Cover Type dataset, featuring 2-3 cohorts and a single
explanation for each. For other datasets and models, the explanations
may be more involved.

Scenario 1: Initial model exploration with TabEE. Our demon-
stration begins with an interactive exploration of TabEE. Participants
delve into a tabular embedding model, such as TabNet [1], trained on
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(a) VIME embedding example (b) TabNet embedding example

Figure 1: Comparison of two embedding methods applied on Cover Type dataset, generated using TabEE

the Cover Type dataset, used for tasks such as predicting forest cover
types (precalculated for time efficiency). This immersive experience
helps users understand the fundamental patterns uncovered by the
embedding model. For instance, as shown in Figure 1b, TabEE gener-
ates explanations featuring 3 cohorts. These explanations reveal that
the embedding model strongly emphasizes on the Elevation column,
as both of the two largest cohorts capture it prominently, within
different ranges of values. In contrast, the third cluster is smaller in
size, therefore capturing fewer tuples and being less significant for
the embedding model.

Scenario 2: Comparative analysis with TabEE. In the second
scenario, participants select an alternative tabular embedding model
from a curated collection, including VIME [13] and EmbDI [3].
Guided by expert assistance and TabEE’s explanations, attendees
compare the suitability of a new model for a downstream task against
the previously trained model. Participants offer insights into the per-
formance differences and suggest improvements. Additional down-
stream tasks and models are also available for exploration.

To illustrate, both selected embedding models are trained on the
Cover Type dataset. Subsequently, an XGBoost model is trained
separately on these representations, and its performance is evaluated
for each of the models. By examining the explanations generated by
TabEE for both models, as depicted in Figure 1, participants gain
insights into why one embedding model (TabNet) outperforms the
other (VIME) on this downstream task. For example, the VIME
embedding is explained by two cohorts that mainly focus on the
Aspect column capturing two different ranges of values for this
attribute. In contrast, the explanation for the TabNet embedding
highlights the significance of the Elevation attribute. Analyzing the
correlations between Aspect and Elevation attributes to the label
reveals a substantial gap, with the Elevation attribute showing a
significantly higher correlation with the label. This difference in
correlation likely explains the performance disparity between the
models. Although simplistic, this comparison allows us to analyse
the patterns captured by the embedding in a higher level, and as a
follow-up to dig deeper into sub-patterns of the large clusters.

Finally, users can explore the system’s inner workings, adjusting
parameters to see how preferences affect generated explanations.
As detailed in [4], some users might prefer higher diversity values

for broader analysis, while others might prioritize sufficiency for
more precise explanations. Additionally, users get the chance to
tune the number of explanations per cluster, the clustering method,
and the other system parameters detailed in Section 2.4, in order to
understand their possible impact of the generated explanations.
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