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ABSTRACT
The effectiveness of a query optimizer relies on the accuracy of
selectivity estimates. The execution plan generated by the opti-
mizer can be extremely poor in reality due to uncertainty in these
estimates. This paper presents PARQO (Penalty-Aware Robust
Plan Selection in Query Optimization), a novel system where users
can define powerful robustness metrics that assess the expected
penalty of a plan with respect to true optimal plans under uncertain
selectivity estimates. PARQO uses workload-informed profiling
to build error models, and employs principled sensitivity analysis
techniques to identify human-interpretable selectivity dimensions
with the largest impact on penalty. Experiments on three bench-
marks demonstrate that PARQO finds robust, performant plans,
and enables efficient and effective parametric optimization.
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1 INTRODUCTION
Given a query and a set of candidate execution plans, a standard cost-
based query optimizer chooses the plan with the lowest estimated
cost. Errors in cost estimates can lead to suboptimal, and sometimes
catastrophic, plan choices. Research has attributed the main source
of such errors to inaccurate selectivity estimates [34, 43], which
are used by the optimizer to predict the cardinalities of result sets
returned by subplans without executing them. Despite decades
of research on improving selectivity and cardinality estimates, be
it using better data summaries [25, 46], samples [55], or machine
learning models [31, 52], the problem remains unresolved. Since
higher accuracy comes at some cost, such as runtime monitoring
and ongoing maintenance, a database system must strike a balance
between the cost and benefit of accurate estimates. Therefore, cop-
ing with uncertainty in selectivity estimates will likely remain a
long-term challenge. At a high level, this paper studies how uncer-
tainties in selectivity estimates affect plan optimality, and how to
find “robust” plans that work well despite such uncertainties.
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The idea of robust query optimization has been around for years [8,
10, 29]. Despite extensive research that has introduced various no-
tions of robustness and approaches for finding robust plans (see Sec-
tion 7 for more discussion), wide adoption of these results has yet
to happen in practice. To enable impact for this line of research, we
argue that we must address several challenges in a concerted effort.

First, there is no “one-size-fit-all” when it comes to the notion of
robustness. For some applications, robustness may mean that the
chosen plan’s cost is insensitive to errors in cardinality estimates.
Some may care instead about how errors affect the cost optimality
of the chosen plan: if, over all likely estimation errors, a plan still
remains optimal or nearly optimal among all alternatives, whether
its cost is sensitive to any estimate is irrelevant. Others may prefer
more nuanced robustness definitions: e.g., to meet a service-level
agreement, they may want to “penalize” performance degradation
over the optimal proportionally, but only if the degradation ex-
ceeds a threshold. Despite the myriad of application needs, systems
proposed in previous work tend to specialize in one robustness
metric or make design decisions that implicitly encode specific
assumptions about robustness; this limited applicability dissuades
adoption. Instead, we strive for a general framework and techniques
that support flexible and powerful robustness definitions.

Related to this point, the notion of robustness is strongly tied
to the degree of uncertainty. In many settings, we naturally accu-
mulate or can proactively acquire knowledge on how errors are
distributed given the data and query workload. Many previous ro-
bust optimization approaches do not leverage this knowledge and
consequently make overly conservative choices that are forced by
unlikely scenarios and perform poorly in common ones. Instead, we
want a framework that incorporates knowledge about uncertainty
in a principled way when defining and optimizing robustness.

Second, robust query optimization inherits all scalability and
efficiency challenges of traditional query optimization and then
adds more. Real queries often contain many joining tables and
predicates; for example, in the JOB benchmark [34] based on a
real dataset (IMDB), query Q29 is a 17-way join, with two tables
involved in self-joins. PostgreSQL makes more than 13,000 cardinal-
ity estimates when optimizing this query. Such high dimensionality
of the selectivity space makes the problem of robust query opti-
mization very challenging. For many useful robustness metrics, it
is impossible to assess a plan’s robustness by itself, without exam-
ining how other competing plans would perform under uncertainty
in high-dimensional space. Therefore, we must tame the overhead
of robust query optimization in order to justify its use.

Third, practical adoption may also require integration with ex-
isting database systems. Past research has seen many examples
where robust query optimization requires modifications to tradi-
tional database optimizers and execution engines. Coupled with
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the limitation that they only support specific notions of robust-
ness, adoption is a hard sell. Therefore, there is an argument for
solutions that interface with traditional systems to support more
general notions of robustness in a scalable and efficient way.

To address these challenges, we introduce PARQO (Penalty-
Aware Robust Plan Selection in Query Optimization):

• We develop a framework that takes the general approach of
stochastic optimization [45] and defines the robustness objec-
tive as minimizing expected penalty. The key components in
this definition include a flexible user-defined penalty function,
which assesses the penalty incurred by a plan with respect to
the true optimal, and a statistical model of the selectivity esti-
mation errors, which we show how to obtain by profiling the
database workload. This powerful combination allows PARQO
to tailor to a broader range of application needs. To the best
of our knowledge, previous work (Section 7) either does not
follow a stochastic optimization approach to leverage the statis-
tical knowledge about errors, or chooses less general robustness
measures (and/or employs heuristics reflecting such objectives)
that depend only on an individual plan (e.g., whether its own
cost is sensitive to error) but not how it compares with other
alternatives (such as the true optimal).

• On taming high dimensionality of the optimization problem, ex-
isting heuristics for selecting dimensions are not always aligned
to the definition of robustness, and methodically, they rely on
rather rudimentary techniques that analyze dimensions one at
a time. We borrow principled techniques from the sensitivity
analysis literature [42, 50] that account for interactions among
multiple dimensions, and adapt them to our setting. Our selec-
tion of sensitive dimensions considers the given expected penalty
objective, and therefore is fully aware of and tailored to the error
distribution as well as the penalty definition. Finally, selected
sensitive dimensions correspond to selection/join condition com-
binations in the query, which are interpretable and actionable —
for example, a user may investigate a sensitive dimension and
improve its accuracy (by selectively reanalyzing statistics and/or
sampling) in order to obtain a better plan.

• Given a query and its selectivity estimates, we show how to
find a robust plan that minimizes expected penalty, focusing on
the sensitive dimensions. Except for very expensive queries, the
amount of work that goes into finding a robust plan from end to
end (including the identification of sensitive dimensions through
sensitivity analysis) may not justify doing so to optimize just a
single execution. We show how to reuse the work in robust query
optimization and amortize its cost in the setting of parametric
query optimization (PQO) [28], where the optimization overhead
is shared among multiple queries with the same template but
different query parameters, which frequently arise in practice.

• Despite the generality of our framework, PARQO is designed
to work with existing optimizers and cardinality estimation
methods. We have implemented it on top of PostgreSQL and
conducted an end-to-end evaluation using three popular bench-
marks: JOB [34], DSB [12], and STATS-CEB [20].We demonstrate
how PARQO is able to suggest hints that are interpretable and
actionable for understanding and improving query performance,

how resilient PARQO’s robust plans are against inaccurate se-
lectivity estimates and how they soundly outperform traditional
plans, and finally, how PARQO delivers significant benefits to
multiple queries in the PQO setting. We illustrate PARQO’s ef-
fectiveness in these scenarios using an example below.

Example 1. Consider Q17 below from the JOB benchmark [34].
SELECT MIN(n.name) AS member_in_charnamed_american_movie,

MIN(n.name) AS a1

FROM cast_info AS ci, company_name AS cn, keyword AS k,

movie_companies AS mc, movie_keyword AS mk,

name AS n, title AS t

WHERE cn.country_code ='[us]' AND k.keyword

='character-name-in-title' AND n.name LIKE 'B%'

AND n.id = ci.person_id AND ci.movie_id = t.id

AND t.id = mk.movie_id AND mk.keyword_id = k.id

AND t.id = mc.movie_id AND mc.company_id = cn.id

AND ci.movie_id = mc.movie_id AND ci.movie_id = mk.movie_id

AND mc.movie_id = mk.movie_id;

Based on the error profiles on selectivity estimation collected from a
workload (not specifically for this query), PARQO carries out a sensi-
tivity analysis for PostgreSQL’s plan for Q17 and identifies the most
sensitive selectivity dimension to be𝑚𝑘 ⋈︁ 𝑘𝜎 (the 𝜎 superscript on a
table indicates the presence of a local selection condition). This sug-
gestion is interpreted and actionable. Indeed, if we pay extra diligence
to learn the true selectivity of 𝑚𝑘 ⋈︁ 𝑘𝜎 and hint it to PostgreSQL,
the new plan will achieve a 5.84× speedup in actual execution time.
Additional details and more experiments can be found in Section 6.

PARQO can also suggest a robust plan for Q17. To get a sense of
how this plan would fare in real-world situations where selectivity
errors arise inevitably due to data updates, we simulated a scenario of
an evolving database by time-partitioning the IMDB database used by
JOB into 9 different instances (DB1 through DB9), each with titles and
associated data from a contiguous time period. PARQO only has access
to DB5 when choosing the robust plan, and we execute this same plan
on all 9 instances and compare its running time with PostgreSQL’s
plans (each obtained for the specific instance). As can be seen from
Figure 3, PARQO’s single robust plan consistently beats PostgreSQL
on all 9 instances, with a 3.86× speedup on average. This is of course
just one data point—more experiments can be found in Section 6.

Finally, improving the performance of just a single execution would
not justify the overhead of robust query optimization, but PARQO
shines when combined with PQO, where we share the optimization
overhead across many queries with the same template — in this case
queries that differ from Q17 only in the choice of literals (e.g., ’[us]’,
’character-name-in-title’, ’B%’). By caching and reusing the
work done on behalf of Q17, PARQO eliminates the need to call the
optimizer for 66% of the queries with same template. Furthermore, for
these queries, the average speedup over PostgreSQL plans is 7.14×,
resulting in an overall improvement of 2.4× for the entire workload.
Again, we refer readers to Section 6 for additional details.

2 PARQO FRAMEWORK
Preliminaries and Problem Statement. A query template 𝑄 is

a query where literal values in its expressions are represented by
parameters. To optimize a query with template 𝑄 and specific pa-
rameters values, a traditional query optimizer considers a space of
(execution) plans Π(𝑄). For each plan 𝜋 ∈ Π(𝑄), the optimizer uses
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a set of selectivities s = (𝑠1, . . . , 𝑠𝑑 ) ∈ [0, 1]𝑑 relevant to 𝑄 to calcu-
late the cardinalities of results returned by various subplans of 𝜋 and
in turn to estimate the overall cost of 𝜋 , denoted Cost(𝜋, s). The goal
of traditional query optimization is to find the optimal plan given
selectivities s, denoted by 𝜋★(𝑄, s) = arg min𝜋∈Π(𝑄 ) Cost(𝜋, s); we
further denote its cost by Cost★(𝑄, s). When it is clear that we are
referring to a given template 𝑄 , we omit 𝑄 from these notations.

In reality, we do not have the true selectivities s, but only their
estimates instead. Acting on this uncertain information, suppose
the optimizer picks a plan 𝜋 . We would like to quantify the penalty
incurred by executing 𝜋 relative to the real optimal plan, where
their costs are based on the true selectivities s. There are many
reasonable options for defining penalty. For example, it can be
defined using a tolerance factor 𝜏 :

Penalty(𝜋, s) =
{︄

0 if Cost(𝜋, s) ≤ (1 + 𝜏) · Cost★(s),
Cost(𝜋, s) − Cost★(s) otherwise.

(1)

In other words, the penalty is proportional to the amount of cost
exceeding the optimal, but only if it is beyond the prescribed toler-
ance. This particular definition would capture the scenario where
a provider aims to fulfill a service-level agreement under which
any performance degradation above a certain threshold will incur a
proportional monetary penalty. As motivated in Section 1, to make
PARQO more broadly applicable, our framework works with any
user-defined penalty definition, not just the above example. See
the extended version of this paper [57] for other possibilities: e.g.,
probability of exceeding the tolerance threshold, standard deviation
in cost difference, or simply the cost difference itself, etc.

Since we do not know true selectivities s in advance, we cannot
evaluate the penalty directly at optimization time. Instead, PARQO
models selectivities as a random vector S, and evaluates the expected
penalty E[Penalty(𝜋, S) |ŝ]. Let 𝑓 (s|ŝ) denote the probability density
function for the distribution of true selectivities s conditioned on
the current estimate ŝ. We formally define the problem of finding a
robust plan as follows:

(Robust plan)Given a query with template𝑄 , selectivity estimates
ŝ ∈ [0, 1]𝑑 , and a conditional distribution of true selectivities
S ∼ 𝑓 (s|ŝ), find a plan 𝜋 ∈ Π(𝑄) that minimizes:

E[Penalty(𝜋, S) |ŝ] =
∫

Penalty(𝜋, s) · 𝑓 (s|ŝ) ds. (2)

We also define the problem of finding sensitive (selectivity) di-
mensions, informally at this point, as follows:

(Sensitive selectivity dimensions) Given 𝑄 , ŝ, 𝑓 (s|ŝ), and a
plan 𝜋 ∈ Π(𝑄), find up to 𝑘 dimensions among 1, . . . , 𝑑 having
the “largest impact” on Penalty(𝜋, s).

Wedefer a detailed discussion on various options of defining “largest
impact” to Section 4, but as a preview, PARQO prefers defining the
impact of selectivity dimension 𝑖 as the contribution to the variance
in Penalty(𝜋, S) due to uncertainty in 𝑠𝑖 .

Remarks. As mentioned earlier, our framework works with
other penalty definitions, but we choose the one in Equation (2)
for our experiments in Section 6, because this definition is easy to
interpret yet still illustrates two important features supported by
our framework. First, it is defined relative to the would-be optimal
plan, allowing it to model a broader range of notions of robustness

than those that are defined only using the plan 𝜋 itself (such as how
sensitive Cost(𝜋, s) is to variation in s). Second, it is not merely linear
in Cost(𝜋, s), which would make the problem considerably easier
because of linearity of expectation.1 We want to have a framework
and techniques capable of handling more general cases.

Finally, we acknowledge that besides selectivity estimation er-
rors, many other issues also contribute to poor plan quality, includ-
ing inaccuracy in the cost function Cost(𝜋, s) as well as suboptimality
of the optimization algorithm; we focus only on selectivity estima-
tion because it has been identified as the primary culprit [34, 43]. In
the remainder of this paper, we shall assume that Cost is exact and
that we can obtain the optimal plan 𝜋★(s) if given true selectivities.

System Overview and Paper Outline. PARQO is designed to
work with any traditional query optimizer that supports (or can be
extended to support) two primitives: Opt(𝑄, s) returns the optimal
plan 𝜋★(s) for 𝑄 given selectivities s; Cost(𝜋, s) returns the cost of
plan 𝜋 for selectivities s. We followed the strategy of [20] and the
pg_hint_plan extension [39] to inject s and 𝜋 into PostgreSQL
for our implementation. When analyzing the complexity of our
algorithms, we count the number of calls to Opt and Cost. Note that
Cost is much cheaper than Opt.

A prerequisite of our framework is the distribution 𝑓 (s|ŝ) of
true selectivities conditioned on their estimates. While any distri-
bution could be plugged in, including non-informative ones in case
no prior knowledge is available, an informative distribution will
make PARQO more effective. We outline a strategy in Section 3 for
inferring this distribution by collecting error profiles for query frag-
ments called querylets from the database workload. These profiles
are able to capture some errors due to dependencies among query
predicates. Finally, Section 3 also clarifies what relevant selectivity
dimensions are for a given query template.

Next, building on this knowledge of how errors are distributed,
Section 4 tackles the problem of finding sensitive dimensions, for a
given query plan 𝜋 , obtained under selectivity estimates ŝ. We em-
ploy principled sensitivity analysis methods to identify a handful of
selectivity dimensions with biggest impact on the user-defined
penalty function. In particular, PARQO proposes using Sobol’s
method [42, 44], which offers an interpretable measure of “impact”
based on an analysis of the variance in Penalty(𝜋, S) over S ∼ 𝑓 (s|ŝ).
We also show in Section 4.2 how automatically identified sensitive
dimensions can help performance debugging of query plans.

Section 5 describes an algorithm for finding robust query plans by
focusing on the selectivity subspace consisting of only the sensitive
dimensions. By sampling from the distribution of true selectivities
conditioned on their estimates, we build a pool of candidate robust
plans and select the one with the lowest expected penalty. We
show how sample caching and reuse can significantly reduce the
number of Opt and Cost calls. To further mitigate the overhead of

1For example, consider the alternative definition of Penalty(𝜋, s) = Cost(𝜋, s) − Cost★ (s) .
Because of the linearity of expectation, the optimization problem boils down to a much
simpler version of minimizing expected cost E[Cost(𝜋, S) ], which is independent of
the optimal plan costs. While this definition may be appropriate if our overall goal
is system throughput, it does not particularly penalize bad cases, which users with
low risk tolerance may be more concerned with. As another example that is “pseudo-
dependent” on the optimal plan costs, the P-error metric recently proposed in [20]
defines Penalty(𝜋, s) = Cost(𝜋, s)/Cost★ (s) , but let us consider the logarithm of P-error
instead. Because log(Cost(𝜋, s)/Cost★ (s) ) = log Cost(𝜋, s) − log Cost★ (s) , we see that
minimizing expected log-P-error again can be done without regard to the optimal plan
costs by the linearity of expectation.
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robust query optimization, PARQO combines it with parametric
query optimization so that the work devoted to finding a robust
plan can be reused for a different query with the same template. We
develop a principled test for determining when to allow such reuse.
Finally, Section 6 presents a full experimental evaluation of PARQO
using three different benchmarks; Section 7 discusses related work;
Section 8 concludes and outlines future directions.

3 ERROR PROFILING
The goal of this step is to build a model that approximates 𝑓 (s|ŝ)
given a query with template𝑄 and selectivity estimates ŝ, or equiva-
lently, a model of the error between S and ŝ. Some learned selectivity
estimators are able to output estimates as well as some measures of
uncertainty, which we may readily adopt if we deem them reliable.
However, we still need a procedure for obtaining 𝑓 (s|ŝ) in the gen-
eral case where such measures are not already available. Despite
the notation 𝑓 (s|ŝ), which involves the true selectivities s, we do
not want to supplant the original selectivity model; instead, we
simply seek to characterize the errors. Nonetheless, there are some
high-level desiderata. First, we would like this model be informed
by the database workload.2 Second, the independence assumption
made by many traditional optimizers is often blamed for throwing
off cardinality estimates; hence, we need to go further than profil-
ing each selection predicate and join predicate in isolation, so we
can account for the effect of their interactions on estimation errors.
One the other hand, it is impractical to track estimation error for
every possible subquery that shows up during query optimization
— recall from Section 1 that PostgreSQL invokes more than 13,000
cardinality estimates for optimizing Q29 alone. Guided by these
considerations, PARQO adopts the following design.

Querylets. Given a query or query workload, we build one error
profile per “querylet.” A querylet is subquery pattern involving joins
and/or local selection conditions, e.g., 𝑅𝜎 ⋈︁𝑝 𝑆 , where superscript
𝜎 denotes the presence of at least one local selection condition on
a table. Querylets are uniquely identified by the set of tables, join
conditions among them, and the subset of the tables with local
selection conditions. During query execution, for each subquery
matching a querylet, we track the estimated and actual cardinalities
of its result. We maintain a sample of all such pairs observed for
this querylet in a workload, which constitutes its error profile.

We cannot afford to profile all possible querylets, so we choose
the following: all single-table querylets, all two-table querylets, plus
any additional three-table querylet with the pattern 𝑅𝜎 ⋈︁𝑝1 𝑆 ⋈︁𝑝2𝑇 ,
if it appears in some query where none of 𝑆 and 𝑇 has any local
selection. The cutoff at length two to three is for practicality. The
allowance for some three-table querylets is to capture at least some
data dependency beyond binary joins.

For example, in Q17 (Example 1), one querylet would be 𝑛𝜎 ,
which covers all local selection conditions on 𝑛. Another example
is𝑚𝑐 ⋈︁ 𝑐𝑛𝜎 . A third example would be 𝑘𝜎 ⋈︁𝑚𝑘 ⋈︁ 𝑐𝑖: since𝑚𝑘 and

2If no such workload exists to start with, one can generate a random query workload
aimed at coverage, or simply adopt an non-informative error model that conservatively
assumes that true selectivities can be arbitrary in [0, 1], and then redo the process after
a query workload emerges. As query and/or data workloads drift, error distributions
may drift as well. When significant drifts are detected, a straightforward approach
is to redo error profiling and subsequent analysis and optimization. More efficient
handling of such drifts is an interesting direction of future work; see Section 8 for
more discussion.

𝑐𝑖 have no selection conditions, this querylet captures any potential
dependency between the local selection on 𝑘 and the join between
𝑚𝑘 and 𝑐𝑖 . As an example of a 3-table querylet that is not profiled,
consider𝑚𝑐𝜎 ⋈︁ 𝑡 ⋈︁ 𝑐𝑛𝜎 (this case does not arise in Q17), because
both𝑚𝑐𝜎 ⋈︁ 𝑡 and 𝑡 ⋈︁ 𝑐𝑛𝜎 would have been profiled already.

Note that one could choose to further differentiate querylets by
the columns or query constants involved in the selection condi-
tions, at the expense of collecting more error files. For this paper,
we specifically want to keep error profiling simple and practical, so
we did not explore more sophisticated strategies. Despite this rather
coarse level of error profiling, we obtain good results in practice in
Section 6. That said, there are particular cases where we observe
limitation of our current approach (also further explained in Sec-
tion 6). Our framework allows for any error model to be plugged
in, so further improvements are certainly possible.

Relevant Dimensions and Error Distributions. For a query
template 𝑄 , we derive the set of relevant dimensions and corre-
sponding error distributions from the set of querylets contained in
the template. Specifically, for each table 𝑅 with local selection in 𝑄 ,
we use the querylet 𝑅𝜎 (otherwise the estimate should be precise).
For each join condition in 𝑄 , say between 𝑅 and 𝑆 , we select the
most specific two-table querylet matching 𝑄 . For example, Q15 of
JOB joins𝑚𝑐 and 𝑐𝑛 with local selections on both, so the querylet
selected is𝑚𝑐𝜎 ⋈︁ 𝑐𝑛𝜎 . However, if neither 𝑅 and 𝑆 has any local
selection, we look for the most specific three-table querylets we
have profiled. If there are multiple such error files, we simply merge
them. For example, in Q17, neither ci or mc has any local selec-
tion, but two three-table querylets matching Q17 contain ci and
mc: 𝑛𝜎 ⋈︁ ci ⋈︁mc and ci ⋈︁mc ⋈︁ cn𝜎 . We merge the collected error
data according to these two querylets together and build one error
distribution attributed to the join between ci and mc. In the end,
the set of relevant selectivities correspond to the set of selection
and join conditions in the query template.

As a complete example, for Q17, we arrive at 𝑑 = 12 relevant
dimensions as follows. Error profiles for the three local selection
selectivities are readily derived from single-table querylets cn𝜎 , 𝑘𝜎 ,
and 𝑛𝜎 . Note that 4 tables have no local selections in Q17; we do not
consider them relevant dimensions because base table cardinalities
are not estimated. Error profiles for three (out of nine) relevant join
selectivities are derived from two-table querylets 𝑛𝜎 ⋈︁ ci, mc ⋈︁
cn𝜎 , and mk ⋈︁ 𝑘𝜎 . Error profiles for the next three relevant join
selectivities, for 𝑡 ⋈︁ 𝑐𝑖 , 𝑡 ⋈︁ mc, and 𝑡 ⋈︁ mk, are derived from three-
table querylets 𝑡 ⋈︁ ci⋈︁𝑛𝜎 , 𝑡 ⋈︁mc ⋈︁ cn𝜎 , 𝑡 ⋈︁mk ⋈︁ 𝑘𝜎 , respectively.
Finally, for mc ⋈︁ ci, we derive its error profile by merging error
profiles for three-table querylets cn𝜎 ⋈︁ mc ⋈︁ ci and mc ⋈︁ ci ⋈︁ 𝑛𝜎 ;
for mk ⋈︁ ci, we merge 𝑘𝜎 ⋈︁ mk ⋈︁ ci and mk ⋈︁ ci ⋈︁ 𝑛𝜎 ; and for
mk ⋈︁ mc, we merge 𝑘𝜎 ⋈︁ mk ⋈︁ mc and mk ⋈︁ mc ⋈︁ cn𝜎 .

For each selectivity 𝑠𝑖 , we create two models, one for low se-
lectivity estimates and one for high selectivity estimates. In this
paper, we set the low-high cutoff as the median error observed
in 𝑠𝑖 ’s error profile. This simple bucketization is motivated by the
observation that errors tend to differ across low and high estimates:
e.g., high selectivity estimates naturally have less room for over-
estimation. Each model simply uses a kernel density estimator to
approximate the distribution of log-relative errors calculated from
the error profiles. Given an estimate 𝑠𝑖 , we pick one of the two
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models to predict its error depending on how 𝑠𝑖 compares with the
low-high cutoff. We use 𝑔𝑖 (𝜀𝑖 |𝑠𝑖 ) to denote this combined density
estimator for log-relative errors in dimension 𝑖 .

Finally, to put together the error distribution in ŝ in the full 𝑑-
dimensional selectivity space, we assume independence of errors
estimated by the 𝑔𝑖 ’s. Therefore, the conditional pdf in Equation (2)
is approximated using the following factorized form:

𝑓 (s|ŝ) ≈
𝑑∏︂
𝑖=1

𝑔𝑖 (log(𝑠𝑖/𝑠𝑖 ) |𝑠𝑖 ) . (3)

Discussion. It is worth noting that while we assume indepen-
dence among the 𝑔𝑖 ’s above, those 𝑔𝑖 ’s derived from the error pro-
files of two- and three-table querylets already capture dependencies
among the join and selection conditions appearing together in them
in a query workload. This approach follows the same intuition as
the factor-graph representations for high-dimensional distributions
to avoid the high cost of tracking the full distribution. To demon-
strate the effectiveness of this approach, we experimentally validate
in Section 6 its advantage over a baseline where errors for join and
selection selectivities are separately and independently profiled.

Of course, since we cap the size of querylets to profile at 3,
dependencies that span longer join chains are not captured. We also
note that our 𝑔𝑖 ’s are rather coarse: higher accuracy can certainly
be achieved by higher-resolution models and additional profiling
effort, e.g., with finer-grained buckets and separate models for
different forms of predicates. More sophisticated models can be
easily plugged in; PARQO only assumes that we can efficiently
draw samples from the error distribution. Here, we only wish to
demonstrate a simple approach that does a reasonable job; our
overall model size is under 15KB for each of the three benchmarks
tested in Section 6.

A Note on Recentering. A good estimator should not exhibit a
large bias, meaning that its error distribution should have a mean
around 0. After error profiling for PostgreSQL, however, we have
observed that this is sometimes not the case. Since PARQO uses
error profiles, it is fair to ask how much of its overall advantage
simply comes from more careful modeling of errors. To this end, in
Section 6, we also experimented with a simple fix called recentering,
where we calculate the expectation of the true selectivities based on
𝑓 (s|ŝ) and ask PostgreSQL to use them in optimization. As we shall
see in Section 6, while this simple fix shows some improvements,
PARQO overall is able to achieve much more.

4 SENSITIVITY ANALYSIS
Given a query template 𝑄 and selectivity estimates ŝ ∈ [0, 1]𝑑 , con-
sider the plan 𝜋 chosen by a traditional optimizer ŝ: i.e., 𝜋 = 𝜋★(ŝ).
Given 𝑓 (s|ŝ), we want to select a subset of up to 𝑘 out of 𝑑 dimen-
sions as sensitive dimensions. We have two goals. First, wewould like
these dimensions to serve as interpretable and actionable hints that
help user understand and improve the performance of 𝜋 . Second, for
the subsequent task of finding robust plans, we would like sensitive
dimensions to help us reduce dimensionality and tame complexity.
In the following, we will first review previous approaches and basic
sensitivity analysis methods, and then introduce more principled
methods. Then, we briefly discuss how sensitive dimensions can be
used to help tune query performance.

4.1 From Local to Global Analysis
Before presenting PARQO’s approach, we first briefly explain some
alternative approaches for contrast. Given a plan 𝜋 , a number of
previous papers [29, 41, 53] define the sensitivity of a dimension 𝑖
using merely the local properties of the plan’s cost function, e.g., the
partial derivative 𝜕 Cost(𝜋, s)/𝜕𝑠𝑖 respect to dimension 𝑖 evaluated at
ŝ, the current selectivity estimates. One fundamental limitation of
this definition is that it does not address the question “what would
we have done differently.” It may well be the case that the cost of 𝜋
is highly sensitive to 𝑠𝑖 , but the optimality of 𝜋 (or its penalty with
respect to the optimal plan) is insensitive to 𝑠𝑖 for all likely values
of 𝑠𝑖 . Hence, PARQO focuses instead on penalty-aware analysis.

One obvious improvement is to replace the cost function with
the penalty function, which gives us 𝜕 Penalty(𝜋, ŝ)/𝜕𝑠𝑖 as a penalty-
aware sensitivity measure for dimension 𝑖 . We can further improve
it by incorporating our knowledge of the error distribution and con-
sidering the expected penalty incurred by error in each dimension,
resulting in the following definition: 𝜉 local

𝑖
(𝜋, ŝ) = E[Penalty(𝜋, S)) |ŝ],

where S = (. . . , 𝑠𝑖−1, 𝑆𝑖 , 𝑠𝑖+1, . . .) have identical component values
as ŝ except dimension 𝑖 for which 𝑆𝑖 ∼ 𝑔𝑖 (log(𝑠𝑖/𝑠𝑖 ) |𝑠𝑖 ) (see also
Equation (3)). However, such a definition is still limited to One-At-
a-Time (OAT ) analysis, which fails to capture interaction among
errors across dimensions. In the following, we present principled
methods for global sensitive analysis to overcome this limitation.

Two popular methods from the sensitivity analysis literature [42,
50] are Morris and Sobol’s. The Morris Method [38] is global in the
sense that it considers a collection of “seeds” from the whole input
space, but it still relies on local, derivative-based measures (called
“elementary effects”) at each seed that are OAT. We have adapted
this method to our setting to incorporate knowledge of the error
distribution; see [57] for details. However, as wewill see in Section 6,
Sobol’s Method turns out to be more effective; therefore, it will be
our focus in the following.

Sobol’s Method. Sobol’s Method [42, 44], based on analysis of
variance, performs a fully global analysis and accounts for inter-
actions among all dimensions. Given a function ℎ : [0, 1]𝑑 → R,
this method considers its stochastic version 𝑌 = ℎ(X), where X is
a random input vector characterized by pdf 𝑓X. The variance of 𝑌
can be decomposed as follows:

Var[𝑌 ] =
∑︂

1≤𝑖≤𝑑
𝑉𝑖 +

∑︂
1≤𝑖< 𝑗≤𝑑

𝑉𝑖 𝑗 +
∑︂

1≤𝑖< 𝑗<𝑘≤𝑑
𝑉𝑖 𝑗𝑘 + · · · +𝑉1...𝑑 .

In the above, each 𝑉u, where u is a non-empty subset of the di-
mensions, is the contribution to the total variance attributed to
the interactions among the components of u. For each input di-
mension 𝑖 , 𝑉𝑖 = Var[E[𝑌 |𝑋𝑖 ]], where the (inner) expectation, con-
ditioned on a particular value for dimension 𝑖 , is over all vari-
ations in other dimensions, and the (outer) variance is over all
variations in dimension 𝑖 . For each subset of two dimensions 𝑖
and 𝑗 , 𝑉𝑖 𝑗 = Var[E[𝑌 |𝑋𝑖𝑋 𝑗 ]] − 𝑉𝑖 − 𝑉𝑗 , and similarly for larger
subsets of dimensions. Normalizing each 𝑉u by Var[𝑌 ] yields the
Sobol’s index 𝑆u = 𝑉u/Var[𝑌 ] for the combination of input dimen-
sions in u. Of particular interests are the so-called first-order index
𝑆𝑖 = 𝑉𝑖/Var[𝑌 ], which is the portion of the total variance attrib-
uted to 𝑋𝑖 alone; and the total-order index 𝑆𝑇

𝑖
=

∑︁
𝑖∈u⊂[1..𝑛] 𝑆u,

which is the portion of the total variance that 𝑋𝑖 contributes to
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(alone or together with other dimensions). The latter can be com-
puted as 𝑆𝑇

𝑖
= 1−𝑉𝑇

𝑖
/Var[𝑌 ], where𝑉𝑇

𝑖
= Var[E[𝑌 |𝑋∼𝑖 ]], without

summing an exponential number of Sobol’s indices.
Sobol’s indices are computed using a quasi-Monte Carlo method,

using 2𝐾 sample points drawn randomly from 𝑓X. Given two sample
points a and b, it generates 𝑑 more points, one for each dimension,
by replacing the 𝑖-th component of a with the corresponding one in
b, obtaining a new point ab

[𝑖 ] . Given sample points a1, . . . , a𝐾 and
b1, . . . , b𝐾 , the first-order and total-order indices for dimension 𝑖
can be estimated through𝑉𝑖 ≈ 1

𝐾

∑︁𝐾
𝑗=1 ℎ(b𝑗 ) (ℎ(ab

[𝑖 ]
𝑗
) −ℎ(a𝑗 )) and

𝑉𝑇
𝑖

≈ 1
2𝐾

∑︁𝐾
𝑗=1 (ℎ(ab

[𝑖 ]
𝑗
) − ℎ(a𝑗 ))2.

Sobol’s method suits our setting perfectly. Given a plan 𝜋 ob-
tained under selectivity estimates ŝ, we analyze the function ℎ(s) =
Penalty(𝜋, s) by drawing the 2𝐾 samples from 𝑓 (s|ŝ). The first-order
and total-order indices give principled and interpretable measures
of sensitivities that are tailored to the user-defined notion of penalty
and are informed by error profiles observed from the database
workload. There are good arguments for using either first-order
or total-order indices (or even both); our current implementation
simply uses the first-order indices.

We denote the Sobol-sensitivity for dimension 𝑖 as 𝜉 sobol
𝑖

(𝜋, ŝ).
Overall, this analysis uses 𝐾 pairs of sample points, each requiring
evaluating Penalty 𝑑 + 2 times. The total cost of Sobol is 𝑂 (𝐾𝑑) Opt
and Cost calls. We show practical 𝐾 values to reach convergence in
Section 6; Sobol is generally slower to converge than Morris.

4.2 Sensitive Dimensions as Tuning Hints
PARQO uses Sobol-sensitivity by default to identify sensitive se-
lectivity dimensions for a given plan. Practically, as we have found
through experiments in Section 6, the actual Sobol-sensitivity val-
ues of the dimensions make it easy to identify a small number of
dimensions that clearly stand out. For example, for all queries in
JOB, this number varies between 2 to 6. We now describe how these
sensitive dimensions are presented by PARQO to users to help them
understand and fine-tune plan performance.

Recall from Section 3 that all relevant dimensions are pegged to
selection and join conditions in the query, but their error profiles
in fact capture more than a single predicate. Hence, PARQO is
careful in presenting such dimensions to users. For example, the
most sensitive dimension for Q17 is mk ⋈︁ 𝑘𝜎 (Example 1). This
selectivity needs to be understood as the join selectivity between
mk and 𝑘 assuming a local selection on 𝑘 , which is different from the
“plain” join selectivity of mk ⋈︁ 𝑘 (which should have no estimation
error at all by itself since it is a join between foreign and primary
keys). The second, and the only other sensitive dimension for Q17,
is associated with the join betweenmk and 𝑐𝑖 , and will be presented
to users as (mk ⋉ 𝑘𝜎 ) ⋈︁ (ci ⋉ 𝑛𝜎 ). Since neither mk nor ci has any
local selection in Q17, the error distribution is derived from the
error profiles for querylets 𝑘𝜎 ⋈︁ mk ⋈︁ ci and mk ⋈︁ ci ⋈︁ 𝑛𝜎 .

With this information, users may decide to investigate further
and take action in several ways, focusing now on these two dimen-
sions instead of all 12 relevant dimensions originally in Q17. For
example, they may want to devote more resources to collecting sta-
tistics and/or training models relevant to these two dimensions, or
simply do some additional probing to get better selectivity estimates
for these dimensions and ask the optimizer to re-optimize under

these new estimates. Example 1 already mentioned that correcting
the error in the most sensitive dimension (mk⋈︁𝑘𝜎 ) leads to a 5.84×
speedup in actual execution time of Q17. If we instead correct the
error for the second most sensitive dimension (mk⋉𝑘𝜎 )⋈︁ (ci⋉𝑛𝜎 )
alone, the speedup will be 1.38×. Finally, if we correct both errors,
the speedup will be 6.4×.

Beside presenting the sensitive dimensions appropriately to users
and allows them to experiment with different selectivities, PARQO
currently does not offer any additional user-friendly interfaces.
There are abundant opportunities for developing future work and
applying complementary work (e.g., [23, 29, 47, 51]) on visualiza-
tions and interfaces, such as tools for interactively exploring the
penalty and optimal plan landscapes along sensitive dimensions.

5 FINDING ROBUST PLANS
Given a query template 𝑄 and selectivity estimates ŝ, our goal is to
find a plan 𝜋 that minimizes the expected penalty E[Penalty(𝜋, S) |ŝ].
This penalty-aware formulation allows for powerful notions of
robustness that are based on global properties of the plan space
(since penalties are relative to optimal plans with true selectivities),
as opposed to simple measures such as those based on the local
properties of the cost function for 𝜋 itself [53]. This stochastic
optimization formulation further enables optimization informed by
distributions of selectivity estimation errors observed in workloads,
which are more focused and less conservative than formulations
that consider the entire selectivity space, e.g. [1, 8]. In the following,
we first describe the end-to-end procedure for finding a robust plan
for a single query, and then discuss how to reuse its effort across
multiple queries, in the setting of parametric query optimization.

5.1 Finding One Robust Plan
As the first step, PARQO performs the sensitivity analysis in Sec-
tion 4 on the optimizer plan 𝜋★(ŝ) to identify a small subset of
sensitive dimensions. Subsequent steps then operate in the sub-
space consisting of only the sensitive dimensions. In remainder of
this subsection, with an abuse of notation, we shall continue to
use 𝑑 for the now reduced number of dimensions and s, ŝ for their
projected versions; 𝑓 (s; ŝ) would be obtained by Equation (3) in
Section 3 using only 𝑔𝑖 ’s for sensitive dimensions.

Next, PARQO computes a set of plans, called the robust candidate
plan pool, as follows. We draw a sequence of 𝑆 samples from 𝑓 (s; ŝ).
For each sample s, we call Opt with these selectivities to obtain the
optimal plan 𝜋★(s) at s and its cost Cost★(s) at s. We cache the triple
⟨s, 𝜋★(s), Cost★(s)⟩ (whose purpose will become apparent later), and
register each unique optimal plan in the pool.

Finally, in the third step, for all unique plans in the candidate
pool, PARQO estimates their expected penalties and returns the
one with the lowest expected penalty. Note that this estimation
is done using cache populated in the previous step, since its en-
tries were sampled from 𝑓 (s; ŝ) in the first place. Specifically, we
estimate E[Penalty(𝜋, S) |ŝ] as 1

𝑆

∑︁
cached ⟨s★,_,𝑐★⟩ Penalty(𝜋, s★), where

each Penalty(𝜋, s) is evaluated using cached 𝑐★ plus a call for Cost(𝜋, s★).
Overall, not including sensitivity analysis (whose complexity

was given in Section 4), the process takes 𝑂 (𝑆) calls to Opt and
𝑂 (𝑆 × 𝑆) to Cost, where 𝑆 denotes the number of unique candidate
plans. We show the practical 𝑆 and 𝑆 values we used for the JOB
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benchmark in Section 6. Finally, note that opportunities also exist
for caching and reusing the samples acquired during sensitivity
analysis.3 We did not explore these opportunities in this paper
because we did not want to introduce extra dependencies across
components that may complicate understanding of performance.

5.2 Parametric Robust Query Optimization
PQO works by caching several plans for the same query template
as candidates. Given an incoming query with the same template,
PQO would select one of the cached candidates instead of invoking
the optimizer, which is far more expensive. It is natural for PARQO
to combine robust query optimization and PQO, not only because
PQO helps amortize the overhead of robust query optimization
across multiple queries, but also because robust query optimization
involves significant effort beyond optimizing for a single point in
the selectivity space, which intuitively should help PQO as well.
This combination allows PARQO to both reduce the optimization
overhead and deliver better plans than a traditional optimizer.

Suppose that PARQO has already done the work of optimizing
a query with estimated selectivity ŝ. Now consider an incoming
query with the same template but different parameters and hence
different estimated selectivity ŝ′. Many opportunities exist to reuse
earlier work: we could assume the same set of sensitive dimensions;
we could reuse the cached optimal plans and costs collected while
finding the most robust plan for ŝ (Section 5.1); or we could go as
far as returning the same robust plan. While the last option is the
cheapest, it would either require a stringent reuse condition that
limits its applicability, or give up any form of guarantee on the
actual robustness under the new setting. Hence, PARQO takes a
more measured approach, as described below.

First, it would be unrealistic to assume that set of sensitive dimen-
sions always stays the same. Recall from Section 4 that sensitivity
analysis is done for an optimizer plan at a particular setting of
selectivity estimates. We can only expect sensitivity analysis to
yield same or similar results if the penalty “landscapes” around
ŝ and ŝ′, induced by estimation error, are similar. We use the KL-
divergence between the distributions 𝑓 (s|ŝ) and 𝑓 (s|ŝ′), denoted
KL(𝑓 (s|ŝ) ∥ 𝑓 (s|ŝ′)) as a test.4 (Importantly, these distributions in-
clude all dimensions, not merely the sensitive dimensions selected
for ŝ.) If the KL-divergence is low (we will discuss how to set this
threshold shortly), we allow the set of sensitive dimensions for ŝ to
be reused for ŝ′ and continue with other reuse opportunities. Oth-
erwise, we look for an different ŝ to reuse, analyze/optimize ŝ′ from
scratch, or simply fall back to the traditional optimizer. We argue
that the KL-divergence between distributions of true selectivities
(conditioned on the estimates) is a more principled and effective
reuse test than those based on surrogates such as similarity among
query parameter values.

Now, assuming ŝ′ has passed the KL-divergence test for reusing
ŝ, we reuse the 𝑆 cached samples and the 𝑆 candidate plans when
we optimized for ŝ. One complication is that the cached samples
3Strictly speaking, there is a slight difference in their distributions: samples inMorris and
Sobol (Section 4) were drawn from the original 𝑓 (s; ŝ) with all dimensions, whereas
samples in this subsection are drawn from 𝑓 (s; ŝ) restricted to only the sensitive
dimensions. This difference can be corrected if needed.

4These distributions are conditioned on the estimates; even if the error profiles relative
to ŝ and ŝ′ are the same, the distributions of true selectivities will have little in common
if ŝ and ŝ′ are far away.

were drawn from 𝑓 (s|ŝ) instead of 𝑓 (s|ŝ′). Hence, when comput-
ing expected penalty for a candidate plan 𝜋 at the ŝ′, we apply
importance sampling [32], which lets us evaluate properties of a
target distribution using samples drawn from a different distribu-
tion. Specifically, the expected penalty of candidate plan 𝜋 can
be estimated as: 1

𝑆

∑︁
cached ⟨s★,_,𝑐★⟩

𝑓 (s★ | ŝ′ )
𝑓 (s★ | ŝ) Penalty(𝜋, s★), where the

fraction 𝑓 (s★ | ŝ′ )
𝑓 (s★ | ŝ) reweighs the sample to account for the difference

between distributions. Among the 𝑆 candidates, we then pick the
one with the lowest expected penalty. With this technique, no Opt
or Cost calls are needed to find the robust plan for ŝ′.

If the two distributions are very different, however, importance
samplingwill requiremore samples to provide a reasonable estimate.
The lower bound of the sample size required to ensure estimation
accuracy through importance sampling is discussed in detail in [7].
This lower bound is indeed determined by the KL-divergence be-
tween the two distributions. According to this lower bound, we
derive the maximum KL-divergence under which 𝑆 samples are able
to provide acceptable accuracy. We use this threshold for the reuse
test described earlier in this subsection, ensuring that it is safe to
also reuse the same samples for expected penalty calculation.

6 EXPERIMENTS
We have implemented PARQO on top of PostgreSQL V16.2. We
modified PostgreSQL to expose Opt and Cost calls, with no changes
to its optimizer or executor otherwise; plan and selectivity injection
is done as hints to PostgreSQL, with help of [20] and [39]. We have
open-sourced our implementations in [56].

We use three benchmarks in evaluation. JOB (Join Order Bench-
mark) [34] contains 33 query templates and 113 query instances,
with real-world data from IMDB. This benchmark includes skewed
and correlated data distributions as well as and diverse join rela-
tionships, all of which contribute to selectivity estimation errors.
DSB [12] is an industrial benchmark that builds upon TPC-DS [40]
by incorporating complex data distributions and join predicates.
STATS(-CEB) [20] features a real-world dataset from the Stats Stack
Exchange. This paper will focus on evaluation results on JOB, and
only summarize the results on DSB and STATS; additional details
are available in [57]. Each experiment setup involves two query
workloads. First, a profile workload is used by PARQO to build error
profiles as described in Section 3; example result error distributions
can be found in [57]. Second, a separate evaluation workload con-
tains queries that are targets of our evaluation. We will describe
these workloads when discussing specific experimental setups.

Unless otherwise specified, PARQO uses the penalty function
in Equation (1) with 𝜏 = 1.2, a setting that is widely used in the
robust query optimization literature, e.g., by [11, 14, 21, 53]. When
using Morris and Sobol for sensitivity analysis (Section 4.2), we
sample until convergence, so the parameter 𝐾 varies across queries;
the number of sensitive dimensions depends on the distribution
of scores and also varies. To find robust plans (Section 5.1), we
use 𝑆 = 100 samples to build the candidate plan pool for each 𝑄 ;
the number of unique candidate plans per query varies. We report
summary statistics on these varying quantities later in Table 1,
along with other useful measures such as the memory footprint of
the error models, the number of relevant dimensions per query, etc.
All experiments were performed on a Linux server with 16 Intel(R)
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Table 1: Summary of PARQO on three benchmarks.

JOB DSB STATS

# of samples 𝑆 100 100 100
Physical size of 𝑓 (s | ŝ) 13.8 KB 13.66 KB 5.84 KB
# of relevant dimensions 𝑑 6-34 8-25 6-20
# of sensitive dimensions 2-6 2-4 1-4
# of seeds 𝐾 of Morris 20-160 10-80 20-80
# of seeds 𝐾 of Sobol 8-128 8-64 8-64
Avg # of unique plans �̀� 18 14 10
Up-front overhead of PARQO 2.13 h 0.99 h 0.74 h
Overall speedup per query 3.23× 2.01× 1.36×
Workload size in PQO 33,000 15,000 22,000
Average reuse fraction 37% 93% 43%
Execution time saved by PQO 2.25 h 0.68 h 11.47 h
Optimization time saved by PQO 0.03 h 0.09 h 0.01 h

Core(TM) i9-11900 @ 2.50GHz processors. To reduce noise when
measuring execution time, we execute each plan multiple (no fewer
than 5 and up to 101) times and record the median latency.

Traditional vs. Robust Plans on Current Database Instance.
As a warm-up, consider a setup where given each query, we com-
pare the actual execution times for the following plans: PostgreSQL
denotes the plan found by the PostgreSQL optimizer with its de-
fault selectivity estimates ŝ (after refreshing all statistics on the
current database instance);WBM denotes the plan obtained using
the approach of [53]5; Recentering refers to the baseline introduced
in Section 3, where we correct PostgreSQL’s estimates using the
expectation of 𝑓 (s|ŝ) derived from the error profiles; PARQO-Morris
and PARQO-Sobol refer to the plans chosen by PARQO for ŝ, using
the Morris and Sobol’s Methods for picking sensitive dimensions,
respectively. Before proceeding, we note that this setup is not ideal
for evaluating robust plans. The advantage of robust plans should
be their overall performance over a range of possibilities, but the
current database instance only reflects one of these possibilities.
Nonetheless, given a benchmark database, users inevitably wonder
how different plans perform on it, so this setup is natural. Instead
of fixating on one particular query’s performance, however, we can
get better insight on robustness with an overall comparison over all
queries in the workload. We also will follow up with additional ex-
periments later to examine each plan’s performance under different
errors and different database instances.

Figure 1 summarizes the results on JOB6: the 𝑥-axis is labeled
by queries; on top we show execution times on a log-scale 𝑦-axis;
on bottom we additionally show speedup/regression factors on the
𝑦-axis. Among the 33 queries in the evaluation workload, PARQO-
Sobol outperforms PostgreSQL in 19 of them (with an overall
speedup7 of 4.51×) but underperformed in 5 of them. For clarity, we
group them into (a) and (b) in Figure 1. The remaining 9 queries are
omitted because PostgreSQL and PARQO-Sobol plans have nearly
identical times, and WBM is no faster either.

From Figure 1, we see that PARQO-Sobol outperforms others
in most cases. The most notable improvements are in Q17, where
PARQO-Sobol takes 620ms while PostgreSQL and WBM take more

5 [53] proposed three robustness metrics; we show only the plan with the fastest
execution time. WBM sets a threshold (120%) relative to the cost of the optimizer plan
at ŝ; it would not consider robust plans with cost higher than this threshold.

6In JOB, we use the 33 instances labeled “(a)” (one for each query template) as the
evaluation workload and all other 80 instances as the profile workload.

7Note here and after that we calculate the “overall” speedup/regression for a collection
of queries as the speedup/regression in the total execution time over all queries (as
opposed to the arithmetic mean of the speedup/regression factors of individual queries),
so speedup/regression in slower queries contribute more than faster queries.

than 5,000ms, and in Q20, where PARQO-Sobol achieves a speedup
of 12× over PostgreSQL. PARQO-Morris, although not as effective
as PARQO-Sobol, still surpasses WBM in most cases.

WBM fails to offer much improvement over PostgreSQL here,
because it by design avoids plans that cost much higher than Post-
greSQL for the original estimates ŝ, but this cutoff overlooks the
(sometimes likely) possibility that ŝ is far off from reality. As an ex-
ample, for Q17, the PostgreSQL plan costs 4.6k (in PostgreSQL cost
unit) at ŝ while PARQO-Sobol’s plan costs 12.5k; therefore, WBM
did not consider PARQO-Sobol’s plan at all, but instead picked a
plan similar to PostgreSQL. However, it turns out ŝ is really off: in
reality, PostgreSQL andWBM ran more than an order of magnitude
slower than their cost predicted at ŝ, while PARQO-Sobol ran > 8×
faster than them. This example highlights the need to consider
errors instead of relying purely on decisions local to ŝ.

As for Recentering, it sometimes provides impressive speedups
(e.g., Q2, 26, and 30), which indicates that our error profiling, de-
spite its simplicity, can already deliver some benefits by correcting
biased estimates. However, Recentering is still far less effective than
PARQO-Sobol overall (e.g., Q7, 18, 20, and more), which is evidence
that bias correction along is not sufficient — other components of
PARQO also play a significant part in its overall effectiveness.

We now turn to queries where PARQO-Sobol underperforms
PostgreSQL. As argued above, a better way of evaluating robust
plans is to examine their performance over a range of situations.
Indeed, in later experiments such as PQO, we will see that PARQO-
Sobol plans are robust despite their misfortune on the current
database instance. For example, Q6 is the worst case for PARQO-
Sobol in this experiment, but in the PQO setting we are able to
achieve a 2.57× speedup (Figure 6). Nonetheless, it is instructive to
study why the robust plans underperform in these particular cases.
Delving deeper, we believe the reason lies in the uncertain nature
of selectivity estimates. For instance, Q1 has a sensitive dimension
matching it𝜎 ⋈︁ mi_idx with it.info = ‘top 250 rank’; it happens that
the estimate was not bad, but our error profiling thought the error
would be large. Similarly, for querylet mk ⋈︁ 𝑘𝜎 in Q3, 4, and 6,
and cn𝜎 ⋈︁ mc𝜎 in Q15, the actual errors were somewhat unlikely
according to our error profiles. Such discrepancies could arise due
to uncertainty, which is inevitable, or due to poor error profiling;
it is hard to tell which on the basis of a few particular cases. As
our later experiments that examine many possibilities in aggregate
generally produce good results, we believe our error profiling is
adequate if still imperfect.

The overall speedup for the entire evaluation workload of JOB
is 3.23×. Detailed results for DSB and STATS can be found in [57].
As a brief summary here, the overall speedups for all queries in
DSB and STATS are 2.01× and 1.36×, respectively. For DSB, PARQO
outperforms PostgreSQL in 8 out of 15 queries, with a maximum
speedup of 8.8×; for STATS, PARQO outperforms PostgreSQL 10
out of 26 queries, with the highest speedup of 425.7× observed. The
only regression across these benchmarks occurs in S120 (↓ 1.87×);
however, the benefits can still be evident in the PQO experiments.

Demonstrating Robustness over Error Distribution. Next,
we demonstrate the robustness of various plans by showing their
costs in excess of the optimal (as found by PostgreSQL given ac-
curate selectivities) over possible errors in selectivity estimates.
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(a) Speedup (19 out of 33)
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(b) Regression (5 out of 33)

Figure 1: Actual execution times for different plans selected by various methods on JOB. (a) and (b) separate queries for which PARQO-Sobol
outperforms or underperforms PostgreSQL; queries for which they perform similarly (9 out of 33) are omitted.
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Figure 2: Cumulative density of cost exceeding the optimal by plans for Q2, 17, 26 and 15 in JOB.
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Verifying Robustness: Q2 (Based on DB5)
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Verifying Robustness: Q17 (Based on DB5)
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Verifying Robustness: Q26 (Based on DB5)
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Verifying Robustness: Q15 (Based on DB5)

Figure 3: Actual execution times of JOB queries on multiple instances by time-slicing IMDB. DB5 is the base instance.

Continuing with the previous setup, for each plan and the initial
selectivity estimates ŝ, we sample true selectivities s according to
Equation (3) obtained by our error profiling (hence, the results here
do not validate the quality of error profiling itself), and cost the plan
at s. The resulting costs are shown as a cumulative density function
in Figure 2.8 There are too many queries to show, so we choose
four as representative examples: Q2, 17, 26, and 15. They represent
a range of complexities, from simpler 5-table joins to more com-
plex 12-table joins, and Q15 is intentionally chosen as it showed a
regression in our first experiment (Figure 1). Since PARQO-Sobol is
generally more effective than PARQO-Morris, we focus on PARQO-
Sobol here. As shown in Figure 2, PARQO plans indeed demonstrate
robustness: they have substantially lower chance of incurring large
cost differences compared with plans selected by alternative meth-
ods. For example, for Q17, PARQO is never worse than the optimal
by more than 106, while PostgreSQL and WBM exceed that margin
30% of the time. For Q15, we see that robustness comes with a
price in the low-penalty region: 30% of the time, PostgreSQL and
WBM have costs exceeding the optimal by ≤ 102, while PARQO
can reach 104. However, the protection offered by PARQO shines
in the high-penalty region: PostgreSQL and WBM have non-trivial
probabilities of incurring catastrophic costs exceeding the optimal
by 106 to 108, while PARQO only reaches 105 to 106 at worst.

8Figure 2 only shows the CDFs of costs in excess of the optimal plan found by PostgreSQL.
It does not show when PARQO’s plan costs even lower than the PostgreSQL optimal.
In fact, for example, that happens 17.4% of the time for Q17.

Verifying Robustness using Multiple Database Instances.
The above demonstration assumes that estimation errors follow the
distribution obtained using our profiling method, but we also wish
to test robustness in less controlled settings encountered in real-
world scenarios where additional errors arise as databases evolve.
To simulate such settings, for JOB, which has a static snapshot of
the IMDB dataset, we create multiple database instances by slicing
the original dataset into smaller pieces. We choose one of these as
the base instance, and apply PARQO (and alternatives) to choose
the best plan using information on this instance alone (e.g., error
profiling is done only on this instance). Then, we execute and time
the same plan on the other instances, without knowledge of or
regard to selectivities or estimation errors on these instances. For
comparison, we also run the same PostgreSQL plan chosen for
the base instance on these instances, as well as the PostgreSQL
plan optimized specifically for each instance (which has the advan-
tage of seeing its statistics). We use the latter as the reference for
speedup/regression factors.

We consider two ways to slice the IMDB dataset used by JOB.
The first is time-slicing, where we sort the the title (𝑡 ) rows by
production_year and use a sliding window on them to create 9 in-
stances labeled DB1–DB9. Each instance contains 20% of the title
rows along with associated data from other tables, and two consec-
utive instances have 10% of the title in common. The results for the
same four representative queries from JOB are shown in Figure 3,
with DB5 as the base instance. For Q2, 17, and 26, we see that the
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Figure 4: Comparison of
error profiling methods.
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Figure 5: Improvements by correcting
estimates for sensitive dimensions.

plan chosen by PARQO with the knowledge of DB5 outperforming
PostgreSQL plans not only for DB5 but also for all other instances; it
even outperforms the instance-optimized PostgreSQL plans, which
were obtained with access to better information on their corre-
sponding instances. For Q15, PARQO is just slightly worse than
the base PostgreSQL plan (for DB5) on 3 instances (DB5, DB6, and
DB7, which are consecutive in time and may have similar statistics)
out of the 9; however, it is much more robust overall, avoiding
the significant performance degradation experienced by the base
PostgreSQL plan on DB1, DB2, and DB9. It is able to outperform
the instance-optimized PostgreSQL plans on DB3, DB4, and DB9,
despite not having any knowledge about these instances.

The second way to create multiple instances for JOB is category-
slicing, where we partition the IMDB dataset by item categories
(kind_type.kind) such as “Movie” and “TV Series”, and name each of
the 6 result instances by the category. We intended this partitioning
to create more challenging scenarios than time-slicing, because
items in these categories follow very different distributions. The
results, detailed in [57], point to similar conclusions as above.

Impact of Error Profiling Strategies. We further explore the
impact of various approaches to error profiling on PARQO’s per-
formance. First, the traditional PostgreSQL optimizer can be seen
as taking an extremely simple approach of assuming no estima-
tion error. The second approach, UniFull, encodes the assumption
in [1, 8, 10] that true selectivities are drawn uniformly at random
from the entire selectivity space. The third approach, Indep, assumes
that join and selection selectivities are estimated independently and
their estimation errors are also independent; hence, we only need
to profile errors for each selection and join condition in isolation.
The fourth approach, Gaussian, is identical to PARQO’s method de-
scribed in Section 3, except that it fits a single Gaussian distribution
to each bucket of collected errors instead of using kernel density
estimation. We run PARQO-Sobol with error models obtained un-
der these strategies to optimize the four representative JOB queries,
and the resulting plans are timed. The results, shown in Figure 4, in-
dicate that UniFull yields marginal improvement over PostgreSQL,
underscoring the importance of incorporating better knowledge on
errors in robust query optimization. Indep does better than UniFull
but still much worse than Gaussian and PARQO’s default method,
highlighting the need to profile dependencies among selectivities
as we described in Section 3. Finally, Gaussian further improves
upon Indep but sometimes underperforms PARQO’s default, be-
cause its single-Gaussian model is crude compared with PARQO’s
default. For this experiment and all other experiments including
those on DSB and STATS, the memory footprint of PARQO’s error

model is always under 15KB. This low memory usage leaves con-
siderable room for improving model accuracy; it will be interesting
future work to investigate how much additional improvement can
be gained with more sophisticated error modeling.

Effectiveness of Sensitive Dimensions in Prioritizing Cor-
rections of Estimates. To show that PARQO can identify a good
set of sensitive dimensions (Section 4), we consider the following
setup, motivated by [9, 33]. Given a plan optimized by PostgreSQL
with estimates ŝ, and a list of sensitive dimensions recommended
by different methods, we would acquire the true selectivity values
for these dimensions9 and ask PostgreSQL to reoptimize the query
based on the accurate selectivities instead of their estimates. We
process the list of sensitive dimensions iteratively and obtain a
new plan after correcting one additional dimension at a time; all
plans are executed and timed. We consider the three most sensitive
dimensions found by the Morris and Sobol’s Methods, sorted by
their sensitivity. We compare them with WBM’s choice of sensitive
dimensions, which include all non-key-foreign-key join selectivi-
ties; these dimensions are ordered using 𝜕 Cost(𝜋, s)/𝜕𝑠𝑖 , based on
one of their robustness metrics. We also note that WBM’s behavior
in this experiment is not affected by the 120% threshold.

Figure 5 shows the results on the full IMDB database, with the
progression of bars showing how quickly query performance is
improved by following each recommendation. The extra last bar for
WBM shows the final plan after processing all of WBM’s sensitive
dimensions. For Q2, 17, and 26, we see that correcting the top three
sensitive dimensions with both Sobol and Morris results in signifi-
cant speed improvements, but Sobol “converges” quicker. WBM is
only able to match the same improvement for Q26 after correcting
all its sensitive dimensions; for Q2 and 17, it never reaches the
level of Sobol and Morris. Finally, for Q15, none of the methods
improves upon the original PostgreSQL plan, indicating that this
plan is already very good for the given database instance.

There is also a trade-off in how expensive these methods are.
The slope-based metric in WBM only require 𝑑-1 calls to Opt, as it
is local and OAT. Morris and Sobol perform better but require far
more Opt calls. As an example, for Q17, Morris requires 520 calls
(𝐾 = 40) to its solution, while Sobol requires 1,664 calls (𝐾 = 64).
In fact, the cost of finding sensitive dimensions dominates that
of robust query optimization — once the sensitive dimensions are
identified, finding the robust plans only requires additional 𝑆 = 100
Opt calls (we also experimented with 𝑆 = 1,000 but did not find
obvious improvement in overall performance). The total overhead
is considerable, averaging at several minutes per query, which ren-
ders the approach applicable only to very slow queries. Luckily, the
complexity of robust query optimization depends only on query
complexity and not on data complexity, so it is more appealing to
massive databases. For faster queries, instead of sacrificing solu-
tion quality and principality, we argue for combining robust query
optimization with parametric query optimization, such that the
overhead of optimization is amortized over many queries sharing
the template. Next, we present results from the PQO experiments,
along with a more detailed analysis of overhead.

9For the purpose of this experiment, we simply run a COUNT subquery for each selectivity
of interest, but in practice one can instruct the database system to refresh statistics
relevant to the selectivities or use sampling method to answer the COUNT subqueries
quickly but approximately.
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Figure 6: PQO results of JOB. The x-axis shows the template ID and the average reuse
fraction of each template.
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Figure 7: Cumulative density function of execution
time in PQO: for Q6, Q4, Q17 and Q18

Parametric Query Optimization. The PQO experiment setup
for JOB requires a bigger evaluation workload of queries beyond the
113 included in the benchmark. Here, we use all 113 queries as our
profile workload and collect all literals therein by their attribute
domains. The multiset of literals from the same domain defines
the distribution to be used when generating new queries requiring
literals from this domain. For each of the 33 templates, we generate
1000 random query instances for the evaluation workload, where
each literal is replaced with one randomly drawn from the same
domain. We treat the 33 JOB queries labeled (a) as anchors, perform
robust query optimization on each, and populate the PQO plan
cache with 100 samples and up to 3 robust plan candidates obtained
when optimizing the anchor (Section 5.2). While it is certainly
possible to use more than one anchor per template or to cache more
per anchor, we have found this modest level is already sufficient to
achieve satisfactory performance.

Overall, the total time for PostgreSQL to execute the entire eval-
uation workload of 33,000 queries is 6.59 hours. PARQO’s PQO
setup reduces this time to 4.34 hours (not yet including the upfront
overhead of populating the cache, which we discuss later). Figure 6
summarizes the results by query template. We use the term reuse
fraction to represent the proportion of queries that trigger reuse (by
passing the KL-divergence test with respect to the anchor associated
with its template). The average reuse fraction over all templates is
37%. For each template, Figure 6 compares the average execution
time over queries that reused a cached PARQO plan against plans
that PostgreSQL chooses. We omit templates with a reuse fraction
below 5% (Q10 and 33) because the numbers are too low to draw
reliable conclusions.10 Among the remaining 31 templates, PARQO
plans achieve a speedup in 28 of them. Notably, template Q18 has
a 17.8× speedup. For the 3 templates with no speedup, Q4, 5, and
14, the worst regression is only ↓ 1.1×. Recall that besides Q4, in
the earlier experiment in Figure 1b, PARQO also underperformed
PostgreSQL on Q1, 3, 6, and 15; however, here with PQO, we see
that queries with templates Q1, 3, 6, and 15 have an overall speedup.

Additionally, Figure 7 shows the distribution of query execution
times for queries in four representative templates. The four are
chosen for different reasons. Q6 was the “worst” query for PARQO
in the earlier experiment in Figure 1b. Here, we see that while Post-
greSQL is slightly faster than PARQO for 20% of the queries with
running time below 250ms, PostgreSQL causes 15% of the queries

10For these and other templates with relatively low reuse fractions, it seems that their
anchors’ selectivities are quite different from most of the queries from the evaluation
workload. A smarter way of picking anchors that adjusts to the query workload should
be a helpful future work direction.

to to run significantly longer than PARQO; overall PARQO in fact
provides a significant speedup (Figure 6). Next, Q4 is the “worst”
query template for PARQO in Figure 6. Even in this case, PARQO
provides protection against some long-running times incurred by
PostgreSQL. Finally, Q17 is also one of the representative queries
chosen in earlier experiments, and Q18 is the “best” query template
for PARQO in Figure 6. As can be seen from Figure 7, PostgreSQL
oftentimes makes disastrous choices for queries with these two
templates, yet PARQO’s robust plans help avoid these situations.

In closing, we present a detailed analysis of the various overheads
incurred by PARQO in robust PQO compared with traditional query
optimization. First, for JOB, PARQO incurs a one-time, upfront cost
of 2.13 hours to populate its PQO cache for all 33 query templates,
which averages at about 4 minutes per template.11 Recall that Post-
greSQL runs the entire evaluation workload in 6.59 hours while
PARQO runs it in 4.34 hours; the saving of 2.25 hours is already
more than the initial overhead of 2.13 hours. A simple calculation
reveals that it takes on average about 934 JOB query instances per
template to break even the upfront optimization cost. This target is
not difficult to reach in production settings where there is a data-
base application with a limited set of query templates and many
users, or when queries are more expensive than the benchmark
setting we experimented with. Delving deeper, PARQO saves time
not only by having better plans, but also by reducing runtime op-
timization overhead. PARQO’s runtime overhead depends on the
number of cached plans and samples. Under our experimental set-
ting, over all query instances that triggered reuse, PARQO has an
average optimization overhead of 5.58ms per query, which is much
lower than PostgreSQL’s optimization overhead of 14.9ms. Over all
queries instances, PARQO has an average optimization overhead
of 55.6ms,12 which is still better than PostgreSQL’s average opti-
mization time of 58.8ms. There are ample opportunities for future
work on selectively picking anchors for PGO to maximize reuse
and avoid those with low reuse.

Here, we briefly summarize the results of PQO experiments on
DSB and STATS; see details in [57]. The average reuse fraction over
all templates is 93% for DSB and 43% for STATS. PARQO improves
0.68 and 11.47 hours in executing the entire evaluation workload
for DSB and STATS respectively. Besides, PARQO reduces the opti-
mization overhead by 0.09 hours for DSB and 0.01 hours for STATS.

11While this is a considerable amount of overhead, it depends on the complexity of the
query rather than the size of data, and if the query template is used often, the initial
investment pays off quickly.

12This number includes the time spent on KL-divergence testing and the time to fall
back to PostgreSQL when the test fails.
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7 RELATEDWORK
Robust Query Optimization How to improve the ability of error
resistant and avoid sub-optimal risks has been widely discussed
[6, 19, 22]. RQO can be regarded as part of robust query processing
and is classified by the number of plan provided by a recent survey
[58]. For single-plan based approach, LEC [10] was among the
first to utilize probability density for estimating selectivity, aiming
to identify plans with the lowest expected cost. However, LEC
restricts the search space of plans and lacks a clear methodology
for constructing probability measures. Similarly, [1, 8] pick a plan
that has low variance and minimum average cost over extremes for
the entire parameter space. In contrast, RCE [4] tries to quantify
the uncertainty, but requires random samples from real data at
runtime to infer the distribution of actual selectivity. Rio [5] and its
extension [3, 17] leverage bounding boxes or intervals to quantify
selectivities, and collect the plan as a candidate if the cost is close to
optimal over the bounding box. The idea of adaptive processing, i.e.
collecting running time observations and then switching the current
plan to another is also leveraged in [14, 16, 48, 54]. [54] identifies
cardinality "ranges" where the original plan remains optimal. When
the "ranges" are broken during execution, re-optimization will be
triggered. This line of work generally requires runtime adaptation
and is complementary to our approach, which focuses on compile-
time optimization of standard execution plans. These interval-based
approaches need to assume that predicate selectivity is known with
in a narrow intervals, which is often violated in practical situation
[24, 34]. Besides, research on plan diagrams [21, 29] aims to identify
a fine-grained set of plan candidates for a query template across
the selectivity space, each candidate can be regarded as a robust
plan for certain area. Subsequent works [11, 41] present methods
to reduce the complexity of the diagram, but they still necessitate
time-consuming offline training through repeated invocations of
Opt. Additionally, their plan selection is still reliant on ŝ, which
may lead to sub-optimal outcomes. Risk Score [27] employs the
coefficient of variation to measure the robustness of execution
plans. However, this metric requires real execution times under
various actual selectivity values. MSO [14, 29, 30, 41] is widely
used in robust query processing that quantifies the worst-case
sub-optimality ratio across the entire selectivity space. It relies
on the availability of the real optimal plan, which is typically only
known to the optimizer after the query execution has begun. [35, 36]
learn from real executions to make the optimizer more robust by
improving the mapping between “plan” to “execution time”, and
DbET [35] shares a similar idea that predicts the latency of a plan
as a distribution. [33] analyzes the tolerance of a plan to cardinality
errors posteriorly, requiring true cardinality for all sub-queries
and extensive real execution. WBM [53] presents three alternative
metrics (based on the slope or integral of the cost function) to
measure the robustness. The robustness metrics in PARQO follow
this direction that are only based on estimation without executing
the query and independently evaluate each plan.

Parametric Query Optimization PQO has been a subject of study
for three decades [26, 28]. The primary focus is to minimize the
optimizer’s invocation by utilizing cached plans while ensuring
the plan’s cost remains acceptable. According to [15], current PQO
methods can be classified by the plan identification phase, which

includes online and offline-based methods. Online-based methods
are widely used in commercial DBMS [37]. [2, 18] build a density
map by clustering executed queries to select stored historical plans
for new query. Idea of storing the optimality ranges for plans [54]
can also be applied. A recent study [15] introduces "re-cost" to
efficiently calculate Cost(𝜋, s), thereby reducing overhead. "re-cost"
is demonstrated effective [11] and also employed in PARQO. For
offline-based methods, the objective is to identify a set of plans
work for the entire selectivity space [26, 28]. Plan diagram [21,
23] is applicable in this setting. A novel framework [13, 49] uses
actual execution times for all candidate plans to train a model for
each template and predict the best plan for new queries. Candidate
plans are searched from executed queries [49], or generated by
randomly perturbing different dimensions [13], which is similar
to our candidate plans searching. However, PARQO focuses on
the samples from the sensitive dimensions space and does not
require any real execution of candidate plans. [13, 49] demonstrate
that learning from real executions can accelerate PQO, offering a
promising avenue for future research.

8 CONCLUSION AND FUTUREWORK
Besides various future work directions already mentioned earlier
(such as better error profiling and visualization/interfaces aided by
sensitive dimensions), we outline several more below. First, we still
do not have a theoretical guarantee on PARQO’s solution optimal-
ity with respect to robustness. We feel that principled sensitivity
analysis proposed by PARQO is a promising approach to the prob-
lem from the angle of reducing dimensionality, but more work is
still needed . Another angle that needs to be further investigated
to achieve any optimality guarantee is the identification of robust
plan candidates. Our current approach intuitively looks for can-
didates among optimal plans at different points in the selectivity
space, but what if the most robust plan is not optimal (or even
among the top optimal) for any single point? New methods are
needed for surfacing such elusive candidates and/or determining
that they are unlikely to exist. To make progress, we may need
to reconsider the limited ways of interacting with existing query
optimizers (which was done by PARQO for practicality), and in-
stead seek tighter integration with the optimizer core. Finally, while
having an error distribution enables stochastic optimization, what
if the error distribution changes? It can be argued that whenever
we notice a significant change in error distribution, the first course
of action should be to refresh statistics and retrain models. If that
first line of defense is able to restore the error distribution back to
acceptable levels, it will help make changes to error distribution
smaller or less frequent. Some of the techniques we already employ
in PARQO (e.g., KL-divergence tests, caching, and importance sam-
pling) can help detect changes and lower the cost of adaptation, but
a comprehensive solution for handling such changes still needs to
be developed and evaluated.
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