
Caerus: Low-Latency Distributed Transactions for
Geo-Replicated Systems

Joshua Hildred

Cheriton School of Computer Science

University of Waterloo

jthildred@uwaterloo.ca

Michael Abebe

Cheriton School of Computer Science

University of Waterloo

michael.abebe@uwaterloo.ca

Khuzaima Daudjee

Cheriton School of Computer Science

University of Waterloo

khuzaima.daudjee@uwaterloo.ca

ABSTRACT
Distributed deterministic database systems achieve high transaction

throughput for geographically replicated data. Supporting trans-

actions with ACID guarantees requires deterministic databases to

order transactions globally to dictate execution order. In a geo-

graphically distributed environment, ordering transactions globally

can take multiple wide-area network (WAN) round trips of messag-

ing, which adds significant latency to transaction response times,

leading to poor user experiences. To improve the response time

of transactions in deterministic databases, we propose an order-

ing protocol that can include a transaction in the global order in

a single WAN round trip to the primary regions of the data items

within the transaction’s read and write set. The protocol reduces

the cost of determining the global order for all transactions by

leveraging deterministic merging of partial sequences of transac-

tions per geographic region. We implement the protocol in Caerus,

our geo-replicated deterministic database system that serializably

commits and replicates transactions after a delay of only a single

WAN round trip of messaging. Using popular workload bench-

marks over geographically replicated data in Azure, we show that

Caerus outperforms state-of-the-art comparison systems to deliver

low-latency transaction execution.

PVLDB Reference Format:
Joshua Hildred, Michael Abebe, and Khuzaima Daudjee. Caerus:

Low-Latency Distributed Transactions for Geo-Replicated Systems.

PVLDB, 17(3): 469 - 482, 2023.

doi:10.14778/3632093.3632109

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/josh-hildred/Caerus.

1 INTRODUCTION
Geographically-replicated database systems are used in industry as

the backbone to provide both good performance and fault-tolerance

for a range of global client services: advertising platforms [15],

banking [28], global travel operations [4] and online games [17].

Replication of data across geo-distributed data centres provides

two benefits when compared with data that is replicated within only

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 3 ISSN 2150-8097.

doi:10.14778/3632093.3632109

a single data centre. First, geo-replication allows copies of data to be

placed geographically closer to clients. The locality of clients and

data supports low-latency access to deliver improved performance

[22]. Companies can leverage geo-replicated databases to place data

closer to clients for low latency access of their global services [52].

For example, a Yahoo trace revealed 85% regional locality for user

data accesses [14].

Second, geo-replication allows database systems to be tolerant to

data centre unavailability through zone/region-aware replication.

In comparison, replication within a single data centre can protect

only against machine-level failures. The level of fault tolerance pro-

vided by geo-replication is key for being able to handle large-scale

failures such as those caused by natural disasters or core network

infrastructure failures [5]. For example, Amazon reportedly lost 99

million dollars of revenue when their e-commerce site experienced

an hour of downtime during peak shopping time [21]. To mitigate

such serious revenue losses due to failures, companies have started

implementing engineering policies stating a service must be able

to survive some number of geographically distributed availability

zone failures plus one machine failure, placing greater importance

on having performant geo-replicated database systems [18, 20].

Distributing work across data replicas requires coordination

and communication that can pose significant challenges for geo-

graphically replicated database systems compared to on-premise

(non-geo-replicated) systems. Performant ACID transactions over

geo-replicated data have become desirable for users of these sys-

tems [33, 47]. To provide strong consistency and global atomicity,

transactions need to be coordinated across geo-distributed regions

or sites, resulting in multiple rounds of communication over a wide-

area network (WAN) that incur significantly higher latency than

over a local-area network (LAN). Although the latency of a LAN

round-trip time (RTT) is usually in the order of milliseconds, the

latency of a WAN RTT can be 200× higher (Table 1). Unless a geo-

distributed system canmitigate these largeWAN latencies, they will

translate into high transaction response times and lower through-

put, leading to poor overall distributed system performance [47].

Early work on geo-replicated database systems that support

strong consistency for transactions uses a combination of Paxos [31]

and Two-Phase Commit (2PC) to provide ACID transactional guar-

antees. For example, Spanner [15] uses Paxos and 2PC which can

take blue at least 4 WAN round trips to coordinate distributed

transaction commit and consistent replica maintenance [33]. The

number of WAN round trips for a transaction to commit can be

reduced to 2 by running 2PC within each region while using Paxos

to agree on the outcome of 2PC [33]. A geo-replicated database

system can use a primary site architecture in which a designated

region (primary) is responsible for enforcing ordered access to data

469

https://doi.org/10.14778/3632093.3632109
https://github.com/josh-hildred/Caerus
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3632093.3632109
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Table 1: Azure inter- and intra-continent latency [35]

WAN RTT

Continent NA AP EU

NA < 6 ms > 200 ms > 82 ms

AP > 200 ms < 34 ms > 159 ms

EU > 82 ms > 159 ms < 12 ms

items. This architecture can reduce transaction latency within the

primary’s region in which communication will happen over a LAN.

However, transactions outside the primary region will still incur

high latency when communicating with the primary over a WAN

[2, 43, 47]. Thus, the challenge of ameliorating the high cost of

transaction latencies in geo-distributed database systems remains.

Systems that rely on consensus approaches such as Paxos for

coordination and fault tolerance over largeWAN latencies generally

do not perform well. For example, using Paxos requires commu-

nication with at least a majority of replicated sites, and even the

minimum latency within a majority quorum can result in large la-

tency overheads in the system. Consider a scenario with 5 replicas

in Azure Cloud, one in each of East US, East US 2, France Cen-

tral, West EU and East Asia [35]. Based on these regions, the best

case RTT for communication between a majority quorum in Paxos

would be at least 82 ms (East US, East US 2, France Central) with a

worst case of 191 ms (East Asia, France Central, West EU) resulting

in high latencies for geo-replicated transactions.

Deterministic database systems have improved upon the per-

formance of geo-replicated database systems that use distributed

commit protocols, such as 2PC, by predetermining a global order for

transaction execution [43, 47]. An observation for distributed deter-

ministic database systems is that much of a transaction’s latency is

from the WAN communication required to include the transaction

in the global order, as once the transaction is in the global order, no

further coordination is needed [42, 43, 47]. For example, Paxos is

used by Calvin to facilitate the creation of the global order, resulting

in 2 round trips over the replicas to reach an agreement to add a

transaction to the global order. We discuss deterministic databases

in more detail in Section 2.

1.1 Contributions
In this paper, we present Caerus, our geo-replicated deterministic

database system that significantly reduces transaction latencies by

exploiting locality, and determining regional transaction orders

that are consistent with global transaction execution schedules. We

provide a transaction ordering protocol that requires, at most, a

single WAN round trip to order any transaction, allowing Caerus

to commit and replicate transactions within a single WAN round

trip. The ordering protocol deterministically merges partial transac-

tion orders into a globally consistent merged order that preserves

correctness for serializable transaction isolation and replica con-

sistency. The deterministic merging of partial transaction orders

allows any replica to begin executing a transaction as soon as all or-

dering information for the transaction is received at the replica. The

ordering information enables transactions with locality to begin

executing with little or no delay as a transaction waits for only the

dependent ordering information (and not all ordering information).

Figure 1: Architecture of a replicated deterministic database

We evaluate Caerus’ performance using the TPC-C [49] and

MovR [50] benchmarks. We demonstrate that Caerus outperforms

the comparison systems SLOG [43] by 6× and Calvin [47] by up

to 38× on transaction latency. Finally, we demonstrate that Caerus

provides a lightweight mechanism for region-level fault tolerance

and high-availability.

2 BACKGROUND
Deterministic database systems enforce determinism for transac-

tion execution to eliminate communication during execution and

commit [1, 47]. When transaction execution is deterministic, as

long as a transaction executes on a consistent database state, the

transaction’s result will always be the same. This means replicas

can independently commit transactions without coordination as

long as they can guarantee that the transactions execute on consis-

tent database states. Thus, deterministic databases generally create

a predetermined global order for transaction execution using trans-

actions’ read and write sets [47] to ensure that transactions execute

on consistent states. A deterministic database system will execute

transactions according to the global order to ensure transactions

are globally serializable1 across replicas.
Once a replica obtains a transaction’s position in the global order,

the replica can execute and commit the transaction in that order

without further WAN communication. Distributed deterministic

database systems therefore avoid expensive distributed commit

protocols by eliminating nondeterminism within the system [47].

Deterministic database systems generally assume that transactions’

read and write sets are known a priori. In practice, static analysis

of transaction code can be used to deduce a transaction’s read and

write set [44]. Protocols such as OLLP can used when static analysis

cannot [44, 46, 47]. Distributed deterministic database systems typi-

cally have three core components; sequencer, deterministic scheduler,
and storage layer (Figure 1).

The sequencer is responsible for generating the global transaction
order, thus the sequencer is where all coordination among replicas

occurs. When a deterministic database system is geo-replicated,

much of the transaction latency comes from the sequencer com-

ponent needing to communicate across a WAN to create a global

transaction order before execution can begin
2
[42, 43, 47]. Typi-

cally, the global order is created through agreement by a consensus

protocol such as Paxos [37, 47]. The consensus protocol would

provide fault tolerance for the sequencer component and a mecha-

nism for all replicas to agree on a global ordering of transactions.

Consensus-based approaches come at the cost of multiple round

1
Formally, concurrent transactions executing on multiple copies of a data item appear

as if they have executed on a single copy of the data item in a serial order [9].

2
Transactions that do not wait on WAN communication can execute in as little as 5

ms whereas a single round trip of WAN communication can be more than 200 ms.

470

trips to a majority quorum of replicas, which typically add large

latency overheads.

Alternatively, the sequencer can use primary-based ordering; the

simplest implementation is a system with a single machine creat-

ing a global order [47]. However, primary-based ordering schemes

are more susceptible to failure than consensus-based approaches.

Consensus protocols replicate both the transaction execution sched-

ule and transaction logic; if a replica fails, this information can be

safely recovered by reading from a majority of surviving replicas.

If the primary fails in primary-based ordering, the order may not

persist past failures, or the time to recover may be large, leaving

the system in an inconsistent state or nonoperational for possibly

long time periods.

The deterministic scheduler ensures that each replica determinis-

tically schedules and executes each transaction across the replica’s

data partitions. Each deterministic scheduler knows that all counter-

part schedulers at other replicas will execute transactions according

to the chosen global transaction order. Thus, once the deterministic

scheduler at a replica knows a transaction’s position in the global

(serializable execution) order, the transaction can be scheduled for

execution and committed independently of other schedulers while

ensuring a valid global serialization order [47].

The Calvin system [47] uses Paxos as the core of its sequencer

to totally order all transactions. The scheduler is a per replica dis-

tributed lock manager. The lock manager guarantees deterministic

execution if locks are acquired by transactions in conformance to

the global transaction order and guarantees serializability through

a deterministic locking scheme. The storage layer is an in-memory

key-value store that can create, read, update, and delete data items.

SLOG [43] attempts to mitigate high transaction latency in geo-

replicated deployments through the use of a dual approach to trans-

action sequencing. A replica is designated as the primary replica for

each data item. A transaction is single-region if all data items in the

transaction’s read and write sets are located at a single (primary)

replica. Otherwise, the transaction is multi-region. Single-region

transactions can be executed immediately and committed at the

region’s replica through the ordering in a per replica local log.

Multi-region transactions must fall back to being totally ordered

against all other multi-region transactions that have an added com-

plexity: they must be broken up into pieces and ordered against all

other conflicting transactions in the appropriate local logs. These

transaction pieces represent lock requests for a partition of the

transaction’s read and write set at a given primary replica. Fur-

thermore, the position of a multi-region transaction’s pieces in a

local log shows the ordering among conflicting operations of multi-

region and single-region transactions for data at the primary replica

for which the local log belongs. The local logs must be synchro-

nized at all replicas, up to the position of each transaction piece

for the multi-region transactions, before a transaction’s execution

can be completed [43]. This means that a multi-region transaction

in SLOG incurs an extra half round trip of WAN communication

compared to the same transaction in Calvin (Figure 2).

Our Caerus system uses a different design for the sequencer

that allows the merging of partial transaction orders into a globally

consistent order that preserves correctness for serializable transac-

tion isolation and replica consistency. The deterministic merging

of partial transaction orders allows transaction execution to begin

(a) Caerus

(b) SLOG

(c) Calvin

Figure 2: Example of Calvin, SLOG and Caerus sequencer
message passing

as soon as all ordering information for the transaction is received

at a replica.

3 CAERUS OVERVIEW
This section presents an overview of Caerus’ system model and

transaction ordering. We also present some basic terminology used

in the rest of the paper followed by an example that shows how

Caerus delivers transaction execution latency savings over its com-

petitors.

3.1 System Model
There are 𝑁𝐷 (unique) data items in the system. The data items

are partitioned into 𝑁𝑃 partitions. Each partition of data is fully

replicated at all of the 𝑁𝑅 regions. One replica is designated as

a data item’s primary (copy). The remaining copies of the data

item are referred to as its secondaries or replicas. The set of data
items for which replica 𝑅 is the primary is termed 𝑅’s primary set.
Furthermore, we assume that each transaction 𝑇 has a globally

unique ID.

When presenting Caerus’ sequencer protocol, we consider a

single replica and a single sequencer component per region, which

is not a requirement but simplifies the presentation. Therefore, if

the replica at a region 𝑅 contains the primary copy of a data item 𝐷 ,

we refer to 𝑅 as 𝐷’s primary region or primary. Thus, the set of data

items that region 𝑅 is the primary for is 𝑅’s primary set or ps(𝑅).
We refer to a transaction𝑇 as being a single-region (SR) transaction

when the data items that it accesses (reads and/or writes) have

471

their primary copies located at a single region. Otherwise, 𝑇 is a

multi-region (MR) transaction.

A Caerus sequencer has two key responsibilities per region:

(1) A region 𝑅 is responsible for ordering all transactions that

access data items whose primary copy is at 𝑅. We refer to

this order as 𝑅’s partial sequence, and for a Transaction 𝑇 ,

we say 𝑅 sequences𝑇 , or 𝑅 is a sequencer for𝑇 .𝑇 will appear

in the partial sequence of all regions that are the primary

for a data item in 𝑇 ’s read or write set.

(2) A region 𝑅 performs deterministic merging of all partial
sequences into a merged transaction order that is consistent
with the global order for transaction execution. The par-

tial sequences are merged independently at each region,

with no further communication after the partial sequence

is received. The merging means that each region’s merged

order of transactions may differ from the merged orders

in other regions. However, importantly, if any two transac-

tions conflict, then their relative (conflict equivalent) order

is preserved in the merged order at each region (Defini-

tion 4.1).

3.2 Transaction Ordering
Per region deterministic merging creates a consistent merged trans-

action order for serializable transaction execution across regions.

Deterministic merging can result in transactions being added to the

merged order and executed in different orders at different regions.

In particular, as long as a region has transaction 𝑇 ’s dependency
information defined as𝑇 ’s position in all relevant partial sequences,

along with any preceding conflicting transaction’s positions, 𝑇

can be added to the globally consistent transaction order at the re-

gion. Deterministic merging allows a region to execute transactions

while bypassing some or all of the delay incurred by coordination

between regions to create a total global order. For example, a region

𝑅1 can add 𝑇 to its transaction order and execute 𝑇 before another

region 𝑅2 knows 𝑇 exists. We detail the sequencer in Section 4.1

and discuss deterministic merging in Section 4.2.

A fundamental beneficial property of Caerus’ ordering protocol

is that it incurs at most a single round trip of communication to

include a transaction into a globally consistent merged transaction

order; thus, the transaction can execute and commit with a single

RTT delay. As mentioned above, a region can add a transaction 𝑇

to the merged order once it has𝑇 ’s position in all partial sequences.

The transaction requires half a round trip to send it to each region,

and another half round trip to propagate partial sequences to all

regions.

Furthermore, the latency can be reduced significantly if locality

exists among regions that contain the primary copy of data items in

the transaction’s read and write set. In particular, for a transaction

𝑇 , region 𝑅 must wait for communication from only regions that

contain the primary copy of data items in 𝑇 ’s read and write set

before execution can begin. If 𝑇 is an SR transaction, no communi-

cation will be performed before 𝑇 can executed at 𝑅. If 𝑅 holds the

primary copy of only part of 𝑇 ’s read and write set with another

region 𝑅′ containing one or more primary copies for the rest, 𝑅

must wait on communication with only 𝑅′, which significantly

reduces transaction latency if these regions are close to each other.

3.2.1 Example. We exemplify the performance advantages of the

above-mentioned properties using Figure 2a. In this example, data

is fully replicated at all regions, i.e., each region holds copies of

all 3 data items while being the primary for 1 of the 3 data items.

Region 𝑅1 holds the primary copy of𝐴, region 𝑅2 holds the primary

copy of 𝐵, and region 𝑅3 holds the primary for 𝐶 . For simplicity,

we assume that the round trip latency between any two of these 3

regions is the same.

Multi-region Transaction 𝑇1, that updates data items 𝐴 and 𝐵,

can be committed at 𝑅1 after only a single round trip of commu-

nication with 𝑅2. Once 𝑇1 has been added to 𝑅1 and 𝑅2’s partial

sequences, and the partial sequences have been propagated to 𝑅1,

𝑇1 can be added to 𝑅1’s merged order of transactions. Once the

transaction is part of the merged transaction order at 𝑅1, it can

be executed and committed without communication with other

regions. 𝑇1 runs and commits independently at 𝑅2 and 𝑅3 once it

has been added to each region’s respective merged orders (again

without any communication).

Single-region transaction 𝑇2 that originates at 𝑅3 and updates

only data item 𝐶 can run and commit at 𝑅3 with no WAN round

trips. As 𝑇2 is singe-region, 𝑇2 needs to be sequenced by only 𝑅3’s

partial sequencer, 𝑇2 can be added to the merged transaction order

at 𝑅3, executed, and committed with no WAN trips. Similar to 𝑇1,

𝑇2 will be executed at 𝑅1 and 𝑅2 after the partial sequence from 𝑅3
has been received, and𝑇2 has been added to the merged transaction

order at the respective regions.

As multi-region transaction 𝑇3 originates at 𝑅3 and updates all

three data items, each partial sequencer must sequence it. 𝑇3 must

wait on concurrent round trips to 𝑅1 and 𝑅2 before being committed

at 𝑅3. While such a transaction incurs the worst-case latency as all

regions must be contacted, 𝑇3 will still benefit by executing in a

single round trip of WAN communication delay, possibly with just

a larger latency.

Figure 2b shows SLOG’s sequencer operation. Transaction 𝑇2 is

single-region and can execute without aWAN round trip because𝑇2
will appear in a single local log and thus does not need to be totally

ordered. 𝑇1 and 𝑇3 are MR and must be totally ordered against

all MR transactions before the transaction pieces can be added

to the local logs. Two round trips are needed if Paxos is used for

global ordering. Furthermore, waiting for transaction pieces to be

propagated in local logs requires an extra ½ round trip. Thus, in

SLOG, MR transactions require 2½ WAN round trips before they

can be committed, compared to only 1 round trip in Caerus.

Figure 2c shows how Calvin must order all three transactions

using Paxos. In general, Paxos incurs two round trips, which means

that before a replica can execute and commit a transaction, a delay

of two round trips is required.

As the (Figure 2) example demonstrates, Caerus achieves sig-

nificant latency savings over both SLOG and Calvin. SLOG and

Calvin wait 2× longer than Caerus for 𝑇1 to commit. Calvin waits

2× longer and SLOG waits 2.5× longer than Caerus for 𝑇3 to com-

mit. Caerus’ performance gains over SLOG and Calvin result from

Caerus needing at most a single round trip to order transactions.

472

4 THE CAERUS SYSTEM
In this section, we describe the design of the Caerus system with

a focus on its sequencer and related components including the

provision of fault tolerance. To provide distributed low-latency

geo-replicated transactions, we present a novel protocol that the

sequencer in Caerus utilizes to generate a serializable global trans-

action order without needing to know the total order of all transac-

tions. Caerus is implemented into the Calvin codebase [12]. Caerus

uses the Calvin deterministic scheduler and storage engine. The

Caerus sequencer was implemented in C++ from scratch.

4.1 Sequencer Architecture
Caerus’ sequencer has 3 components; the transaction batcher, the

partial sequencer, and the sequence merger (Figure 3). The transac-

tion batcher receives transactions from clients, creates batches of

transactions and sends the batches to all partial sequencers (1 in

Figure 3). In particular, transactions are sent to a region’s partial

sequencer only if they access at least one data item for which that

region is the primary.

The partial sequencer for a region 𝑅 orders all transactions with

at least one data item for which 𝑅 contains the primary copy. The

partial sequencer sends the partial sequence to the sequence merger

at each region (2 in Figure 3). Formally, given the read set rs(𝑇𝑖)
and write set ws(𝑇𝑖) of transaction 𝑇𝑖 and the set ps(𝑅) of all data
items for which region 𝑅 contains the primary copy, the partial

sequence for region 𝑅 is an ordering of (all) transactions 𝑇𝑖 s.t.

(ws(𝑇𝑖) ∪ rs(𝑇𝑖)) ∩ ps(𝑅) ≠ ∅. As an optimization, the partial

sequencer orders batches of transactions rather than individual

transactions.

The sequence merger creates a globally consistent merged trans-

action order by performing the deterministic merging of all partial

sequences from each regions’ partial sequencer (3 in Figure 3).

The merged ordering of transactions is conflict equivalent [9] to all

other merged orderings of the transactions at other regions (created

by the regions’ sequence mergers).

Definition 4.1. For two orderings of transactions,𝑂1 at region 𝑅1
and 𝑂2 at region 𝑅2, 𝑂1 and 𝑂2 are conflict equivalent [9] if for all
pairs of transactions 𝑇𝑖 and 𝑇𝑗 s.t. [ws(𝑇𝑖) ∩ (ws(𝑇𝑗) ∪ rs(𝑇𝑗))] ∪
[ws(𝑇𝑗) ∩ (rs(𝑇𝑖) ∪ ws(𝑇𝑖))] ≠ ∅, 𝑇𝑖 and 𝑇𝑗 appear in the same

relative order in each of the transaction orderings 𝑂1 and 𝑂2.

A key idea behind the sequencer in Caerus is that a transaction

𝑇 will appear in the partial sequence of a region 𝑅 if and only if

𝑅 is the primary for a data item that 𝑇 accesses. This means that

a region’s sequence merger needs to wait for only 𝑇 to appear

in the partial sequences for the primary of data items in 𝑇 ’s read

and write set before 𝑇 can be added to the globally consistent

transaction order. Thus, if 𝑇 ’s read and write sets have primary

copy locality (primary copy is held by region locally), 𝑇 can be

added to the merged transaction order with no messaging delay,

and if the regions are geographically close then the messaging delay

will be small. In contrast, systems such as Calvin [47] must incur

the WAN messaging delays of Paxos before a transaction can be

executed at any region.

Next, we describe how the merging of partial sequences creates

a globally consistent merged transaction order. Furthermore, we

Figure 3: Caerus sequencer architecture with three regions
(follows the running example from Figure 2).

show that the conflict equivalent orderings of transactions in the

merged orders at each region guarantee global serializability for

transaction execution.

4.2 Sequence Merging
Sequence merging in Caerus allows transactions to be added to

a region’s globally consistent merged transaction order without

incurring extra communication with other regions. Caerus takes

advantage of this property to exploit any existing geographic lo-

cality to reduce transaction latency. To create a globally consistent

merged transaction order through deterministic sequence merging,

each region’s sequence merger keeps a copy of a global directed
conflict graph that is used to keep track of conflicts between trans-

actions. Sequence mergers use the ordering provided by the partial

sequences to dictate the direction of the edges in this conflict graph.

As all sequence mergers will see identical orders of transactions

within each partial sequence (and thus the same order of transac-

tion conflicts), the global directed conflict graph is the same at each

region. Thus, this graph allows the sequence mergers to reach an

identical view of the ordering of all conflicting transactions.

In the directed conflict graph, each transaction is represented

as a vertex, and each conflict is represented as a directed edge

(𝑉𝑖 ,𝑉𝑗) where vertices 𝑉𝑖 and 𝑉𝑗 represent conflicting transactions

𝑇𝑖 and𝑇𝑗 . The direction of the edge between two vertices represents

which transaction comes first in a partial sequence. As transactions

are received in the partial sequences, sequence mergers continu-

ously add vertices and edges to the directed conflict graph. When

a sequence merger has received all of a transaction’s dependency

information, the transaction’s vertex is removed from the graph,

and the transaction is added to the merged transaction order.

When a sequence merger at region 𝑅 receives a partial sequence

(batch) of transactions, the sequence merger runs Caerus’ insert

algorithm (Algorithm 1) that parses the batch and inserts transac-

tions into the graph in the order of the partial sequence. When the

insert algorithm encounters a transaction, it does the following:

473

(1) The first time the sequence merger at 𝑅 encounters trans-

action 𝑇 in any partial sequence, a vertex representing 𝑇 is

added to the graph.

(2) Each time the sequence merger at 𝑅 sees a transaction in a

partial sequence, edges representing conflicts are added to

the graph. The edges added depend on the current state of

the graph and the partial sequences (Section 4.3).

By running Algorithm 1 on transactions in the partial sequence

orders at each sequence merger, conflicts will be discovered in the

same order at all regions. Thus, the order of conflicting transactions

will also be the same at each region, meaning each region will

independently construct the same global directed conflict graph, as

each region will add the same edges to their respective copies.

Sequence mergers continuously remove vertices from their copy

of the directed conflict graph in topologically sorted order and add

the corresponding transactions to the globally consistent merged

order. We discuss how a sequence merger can independently know

when a transaction can be added to the topologically sorted merged

order in Section 4.5. In creating the merged transaction order, cyclic

dependencies can form in the directed conflict graph, in which

case a topological ordering may not exist. To derive a topological

order, sequence mergers must remove the cycles from their copies

of the directed conflict graph. These cycles are removed determinis-

tically to preserve the equivalence of global directed conflict at each

region. Sequence mergers monitor for strongly connected compo-

nents (SCC) [16] and replace them with a single representative

vertex, creating the condensation [16] of the directed conflict graph

to ensure a topological order exists. We describe next the three

main steps of deterministic sequence merging – inserting trans-

actions, resolving cyclic conflicts, and removing transactions in

topologically sorted order. Subsequently, we show the correctness

of the above approach.

4.3 Conflict Graph
When a sequence merger receives transactions as part of a region’s

partial sequence, the sequence merger updates its copy of the global

conflict graph (Algorithm 1) to reflect the new conflict information

in the partial sequence. When a sequence merger receives a transac-

tion𝑇 , any conflicts among data items in𝑇 ’s read and write sets are

discovered (lines 8 and 14 in Algorithm 1) and the corresponding

edges are added to the graph (lines 10, 17, and 22, Algorithm 1).

This gives Property 4.2, which ensures that sequence mergers will

eventually build identical copies of the global conflict graph:

property 4.2. All sequence mergers will identify the same set of
transaction conflicts.

There are three types of conflicts between transactions that must

be considered: read follows write (RW), write follows read (WR),

and write follows write (WW). Edges are added for only the most

recent conflicts, whereas older conflicts are captured implicitly

through a directed path in the conflict graph. Sequence mergers

handle the different types of conflicts as follows:

• For each data item 𝐷 in a transaction𝑇 ’s read set and write

set where the primary copy of 𝐷 is at region 𝑅, a directed

edge is added from 𝑇 ’s vertex to the vertex of the most

recent transaction 𝑇 ∗ that appears before 𝑇 in the partial

Algorithm 1: Insert Algorithm for transactions in the par-

tial sequence of region 𝑅, being run by region 𝑅′

1 𝑇 ←− next transaction in the partial sequence from 𝑅;

2 ps(𝑅) ←− primary set for 𝑅;

3 𝐺 ←− the global conflict graph copy at 𝑅′;
4 if vertex(T) ∉ G then
5 addVertex(𝑇 , 𝐺);

6 end
7 for 𝐷 in 𝑇 .ReadSet ∩ ps(𝑅) do
8 𝑇 ∗←−MostRecentWriter(𝐷);

9 if !𝑇 ∗.removed then
10 addEdge(𝑇 , 𝑇 ∗, 𝐺);
11 end
12 end
13 for D ∈ 𝑇 .WriteSet ∩ ps(𝑅) do
14 𝑇 ∗←−MostRecentWriter(𝐷);

15 Readers←− GetReaders(𝐷) ;

16 if 𝑇 ∗.removed then
17 addEdge(𝑇 , 𝑇 ∗, 𝐺);
18 end
19 if Readers ∩ ps(𝑅)≠ ∅ then
20 for 𝑇 ∗∗ in Readers ∩ 𝑝𝑠 (𝑅) do
21 if !𝑇 ∗∗.removed then
22 addEdge(𝑇 , 𝑇 ∗∗, 𝐺);
23 end
24 end
25 end
26 end

sequence at 𝑅 and writes 𝐷 , (lines 10 and 17, Algorithm 1).

This edge ensures that a transaction’s read/write opera-

tion must come after any conflicting write operation on 𝐷

already represented in the conflict graph.

• For each data item𝐷 in a transaction𝑇 ’s write set, a directed

edge is added from 𝑇 ’s vertex to all transactions that read

𝐷 between 𝑇 and 𝑇 ∗∗ in the partial sequence at 𝑅, (line 22

in Algorithm 1). These edges ensure that a transaction’s

write operations on 𝐷 will come after transactions already

represented in the conflict graph that read 𝐷 .

The distinction among different types of conflicts allows concur-

rent reads on the same data item to execute in any order at different

regions provided they do not appear out of order with respect to

conflicting writes. A running example is given in Figure 4 with the

same setup as in Figure 3 – three regions with each data item’s

primary copy at a distinct region. Consider Figure 4a.𝑇3 appears in

all three partial sequences. When the sequence merger encounters

𝑇3 in any particular partial sequence, an edge is added between 𝑇3
and the most recent conflicting transactions in the partial sequence,

except when an edge already exists (as would be the case when a

second edge would be added from 𝑇3 to 𝑇1).

If transactions 𝑇1 and 𝑇2 are submitted (at different regions)

concurrently, they may appear in different relative orders in each

of the two different partial sequences, resulting in the cycle in the

474

global conflict graph as shown in Figure 4b. The edge (𝑇3, 𝑇2) is

added because 𝑇2 is the most recent conflicting transaction on data

item𝐴 in the partial sequence at 𝑅1 when𝑇3 is added. Finally, Figure

4c shows how reads are handled. 𝑇1 writes 𝐴, whereas 𝑇2 and 𝑇3
read only𝐴. Thus, no edges are added between𝑇2 and𝑇3, but edges

are added to 𝑇1 from both 𝑇2 and 𝑇3. As 𝑇4 also writes 𝐴, edges are

added from 𝑇4 to 𝑇2 and 𝑇3.

4.4 Resolving Cyclic Conflicts
We describe how cycles in the directed conflict graph of Figure 4b

are eliminated by the sequencemerger at each region independently

and with no communication with other regions. The challenging

task is to deterministically choose which cycle to reorder at each

region. Caerus uses the global conflict graph’s SCCs rather than

individual cycles to deterministically resolve cyclic conflicts at each

region. Rather than have each sequence merger choose a cycle to

be reordered, sequence mergers choose an SCC (containing one or

more cycles) to reorder. We leverage two properties of graphs that

allow the sequence merger to reorder conflicts deterministically:

property 4.3. Any set of strongly connected components in a
graph is unique [16].

property 4.4. The condensation of a directed graph is a directed
acyclic graph (DAG) [16].

Property 4.2 together with Property 4.3 ensure that the set of

SCCs will be the same at each region, and therefore the conden-

sation graph will also be the same at each region. Property 4.4

shows a topological order can exist when SCCs form. Thus, if the

sequence mergers identify SCCs, they can create a transaction or-

der at each region that corresponds to a topological order of the

condensation of the global conflict graph. Sequence mergers use

Tarjan’s algorithm [45] to independently find the SCCs in the global

conflict graph. Sequence mergers are continuously adding and re-

moving vertices and edges from the conflict graph as they receive

transactions in the partial sequences. Thus, the algorithm executes

continuously in a loop over the (evolving) global conflict graph.

After an SCC has been identified, topological sort (Algorithm 2) is

used to assess whether the SCC can be safely reordered and added

to the globally consistent transaction order or if the SCC must

wait for further transaction ordering information. This procedure

is discussed further in Section 4.5.

If Caerus detects that the global conflict graph has grown past a

(tunable) threshold value, the transaction batchers will throttle back

sending to the partial sequencers. This throttling allows sequence

mergers to prevent formation of large SCCs.

4.5 Generating Merged Transaction Orders
The sequencers implement a modified version of Khan’s algorithm

[26] to create a topologically sorted order from the condensation

of the global conflict graph (Algorithm 2). The algorithm assesses

whether a sequence merger can add a transaction to its globally

consistent merged order independently of the other regions. Since

the number of partial sequences a transaction will appear in is

extracted from a transaction’s read/write sets, a sequence merger

knows when no more outgoing edges will be added to its copy of

the global conflict graph for a transaction 𝑇 . Since Caerus assigns

each transaction a globally unique ID, this is used to identify a

fixed deterministic order for transactions within an SCC. Thus, the

following two properties hold:

property 4.5. If a transaction 𝑇 exists in each region’s partial
sequence for which the region holds 𝑇 ’s primary data items, then no
new outgoing edges from 𝑇 will be added to any region’s copy of the
global conflict graph. We refer to 𝑇 ’s vertex in the graph as being
complete.

property 4.6. If all vertices in an SCC are complete and no out-
going edges exist from a vertex within the SCC to a vertex not in the
SCC, then the SCC is maximal. We call such an SCC complete.

If an SCC is complete, transactions in the SCC can be added

to the global order deterministically by the sequence merger. The

transactions are added in sorted order based on their globally unique

transaction ID. Furthermore, if the vertex for a transaction has no

outgoing edges and is complete, meaning it is in a complete SCC

of size 1, the transaction can be immediately added to the globally

consistent merged transaction order.

Figure 4 provides an example. Both𝑇1 and𝑇2 in Figure 4a have no

outgoing edges, meaning they do not conflict with any transactions

in the graph. Furthermore, as both 𝑇1 and 𝑇2 are complete, they are

in SCCs of size one. Thus, sequence mergers can add both transac-

tions in any order to their globally consistent merged transaction

order.𝑇3 conflicts with both𝑇1 and𝑇2 and therefore must wait until

𝑇1 and 𝑇2 are added to the merged transaction order. Hence,𝑇3 will

appear after 𝑇1 and 𝑇2 in all merged orders, which gives (𝑇1,𝑇2,𝑇3)
and (𝑇2,𝑇1,𝑇3) as valid conflict equivalent merged transaction or-

derings. A cycle exists in Figure 4b, resulting in the SCC containing

𝑇1 and 𝑇2. 𝑇1 and 𝑇2 will be added to the merged order in sorted

order based on their globally unique transaction IDs. Again, as 𝑇3
conflicts with the transactions in the SCC, it must appear in all

merged orders after all transactions in the SCC, which results in a

single valid merged ordering (𝑇1,𝑇2,𝑇3) for transactions. Finally, in
Figure 4c, as𝑇3 and𝑇2 are read operations, they can be added to the

merged transaction order in any order after 𝑇1 is added. 𝑇4 must

be added after both 𝑇2 and 𝑇3 are added to the merged transaction

order, which results in both (𝑇1,𝑇2,𝑇3,𝑇4) and (𝑇1,𝑇3,𝑇2,𝑇4) being
valid, conflict equivalent, merged orderings of transactions.

As each sequence merger independently runs Algorithm 2 to

create the merged sequence from the conflict graph, transactions

may be added in different orders at each replica due to the merg-

ing algorithm being able to select any transaction (or SCC) with

no outgoing edges. These merged orders will result in a globally

serializable transaction schedule at each region, as proved in the

next section.

4.6 Correctness
We prove the correctness of the aforementioned Caerus protocols.

We show that each merged ordering of transactions is conflict

equivalent to all possible merged orderings at other replicas. We

also show that this property, coupled with the Calvin determinis-

tic scheduler, produces conflict equivalent serializable transaction

schedules at all regions.

475

(a) Running example (b) Cyclic conflict (c) Reads interleaved with writes

Figure 4: Global conflict graph examples

Algorithm 2: Algorithm run continuously for creating a

merged order over replica 𝑅’s copy of the evolving conflict

graph

1 𝑄 ←− Queue for transactions that may be ready to be added

to globally consistent merged transaction order;

2 𝑆 ←− Globally consistent merged transaction order;

3 while True do
4 𝑇 ←− Q.pop();

5 if 𝑇 .SCC.size < 2 then
6 if 𝑇 .complete and 𝑇 .getOutNeighbours() = ∅ then
7 𝑆 .append(𝑇);

8 𝑄 .push(𝑇 .getInNeighbours());

9 end
10 else
11 SCC←− 𝑇 .SCC;
12 if SCC.complete and SCC.outEdges = ∅ then
13 for 𝑇 in Sort(SCC.transactions) do
14 𝑆 .append(T);

15 end
16 𝑄 .push(SCC.getInNeighbours()) ;

17 end
18 end
19 end

Lemma 4.7. Each region will identify the same set of strongly
connected components in their copy of the global directed conflict
graph.

Proof. Each sequence merger will see the same transaction con-

flicts (Property 4.2). Thus, for each transaction, the corresponding

vertex and edges will be the same in each copy of the global conflict

graph. As the SCCs of a graph are unique (Property 4.3), these SCCs

will converge to be the same at each region’s sequencer. □

Theorem 4.8. Each ordering of transaction at a replica is conflict
equivalent to all orders at the other replicas.

Proof. Consider two conflicting transactions in the global order.

There are two cases for these transactions: either 𝑇1 and 𝑇2 appear

within the same SCC (which is the same at all regions) in the conflict

graph, or they appear within different SCCs.

In the first case, if 𝑇1 and 𝑇2 appear in the same SCC, then they

will appear in the same relative order in all possible transaction

orderings at all replicas as each transaction in an SCC is added to

the merged transaction order in a deterministic ordering according

to a globally unique transaction ID.

If𝑇1 and𝑇2 do not appear in the same SCC, then there exists some

directed path between𝑇1 and𝑇2. Assume, without loss of generality,

that this path is from 𝑇2 to 𝑇1. However, these transactions do

not appear in the same SCC so there is no path from 𝑇1 to 𝑇2. As

transactions are added to the merged transaction order only after

all neighbours have been added, 𝑇2 can be added only after 𝑇1 (and

all other transactions on the path from 𝑇2 to 𝑇1) have been added.

By Lemma 4.7, each region will see the same SCCs. Thus, the

order of transactions will be conflict equivalent across all regions

as all transactions that conflict will have the same relative order in

all possible merged orderings. □

Theorem 4.9. Themerged orders result in conflict equivalent trans-
action execution schedules across all regions.

Proof. By Theorem 4.8, the orderings of transactions at each

region are conflict equivalent to all other regions. Given that the

deterministic scheduler executes transactions in these orders, the

resulting execution schedule will be equivalent at each region. □

Thus, as each merged ordering of transactions is a serial ordering

of transactions, and as each of these orders are conflict equivalent

by Theorem 4.9, each transaction execution schedule is conflict

equivalent to a serial order.

4.7 Fault Tolerance
We discuss how Caerus tolerates failures while still committing

transactions in a single WAN round trip. A two-level approach is

used in Caerus for fault tolerance: one handles failures within a

region, and another handles region failures.

476

Caerus handles machine-level failures with no WAN RTTs by

replicating each partial sequence within the region from which the

partial sequence originates. This scheme is similar to how SLOG

handles machine-level failures [43].

In handling region-level failures, Caerus utilizes a key obser-

vation from Flexible Paxos [25] for consensus: the election and

replication quorums do not need to be the same. Rather, they need

to only intersect, thus, systems can trade-off election quorum size

for lower replication latency under WAN communication by reduc-

ing the size of the replication quorum [3, 25, 38].

Caerus’ sequencers replicate each partial sequence to 𝐾 other

regions. With 𝑁 total number of regions, (𝑁 − 𝐾) alive regions are
required to recover from a failure (for intersection of replication

and election quorums [25]). Since sequencers already propagate

partial sequences to all regions, replication requires a region to

wait for 𝐾 acknowledgements to its partial sequence from other

regions, which will result in only a small delay if 𝐾 is also small.

The fault tolerance scheme is equivalent to running Flexible Paxos

with a long-lived leader for each partial sequence among all regions.

Note that the fault-tolerance scheme does not change the 1 WAN

RTT transaction commit as a region simply waits for 𝐾 acknowl-

edgements to its partial sequence, which overlaps with waiting

for transaction ordering information from the other regions. The

scheme can lead to transactions incurring at least 1 WAN round

trip to commit, but if 𝐾 = 1, the transaction needs to wait on WAN

communication with only the closest region, which can be as low

as 6 ms (Table 1).

A region 𝑅 that sequences a transaction 𝑇 must wait for 𝑇 ’s po-

sition in the partial sequence to be replicated at 𝐾 regions before 𝑅

can commit 𝑇 . If another region 𝑅′ is not a sequencer for 𝑇 , 𝑅′ can
commit 𝑇 as soon as 𝑅′ receives 𝑇 in all partial sequences from re-

gions that sequence𝑇 . For correctness, we assume a region notifies

a client of the status of a transaction 𝑇 only if it is a sequencer for

𝑇 . In the case of one or more region failures, the surviving regions

run a recovery protocol to resume normal operation.

4.7.1 Recovery protocol. To tolerate region failures, if a region

stops receiving the partial sequence from another region, it initiates

the recovery process. The recovery process needs at least (𝑁 − 𝐾)
alive regions, and thus can recover from 𝐾 or fewer region failures.

If at least (𝑁 −𝐾) regions are alive, the recovery process for a failed
region 𝑅𝑓 is as follows:

(1) (𝑁 − 𝐾) regions agree to elect a new primary region 𝑅𝑛 for

data items for which 𝑅𝑓 is the primary.

(2) Each region stops accepting the partial sequence from 𝑅𝑓 .

(3) Each region exchanges its copy of 𝑅𝑓 ’s partial sequence

to ensure that all other regions have the most up to date

partial sequence.

(4) The new partial sequencer at 𝑅𝑛 includes transactions to

the most up-to-date partial sequence.

(5) Each region resends all missing transactions from the par-

tial sequence to 𝑅𝑛 .

If a region 𝑅𝑓 fails, other regions will no longer receive trans-

actions as part of the partial sequence from 𝑅𝑓 , and will therefore

not be able to execute any transactions on data items for which

𝑅𝑓 was the primary. Thus, in the case of failure, correctness is not

affected. The recovery process must recover from failures while

ensuring that if a transaction 𝑇 that is in a partial sequence from

failed region 𝑅𝑓 is also in another region 𝑅′’s partial sequence, then
as long as there are fewer than 𝐾 + 1 failures, 𝑇 ’s position in the

partial sequence will not change. Therefore, the execution order

will not change at any region.

Lemma 4.10. The recovery process will not change the position of
any transactions in the partial sequence of any active (non-failing)
region.

Proof. As the recovery process chooses the most up-to-date

partial sequence and sends it to all active regions, as long as a

transaction was in the partial sequence at one region, it will appear

in the partial sequence of every active region. □

Lemma 4.11. As long as at least (𝑁 − 𝐾) regions are alive, no
transactions can be lost due to the failure of a region 𝑅𝑓 .

Proof. A transaction𝑇 ’s position in a region’s partial sequence

must be replicated at 𝐾 other regions. Thus, as long as there are

fewer than 𝐾 + 1 region failures, then 𝑇 ’s position in all partial

sequences will be preserved since at least one surviving region will

still have 𝑇 in its copy of 𝑅𝑓 ’s partial sequence. □

5 PERFORMANCE EVALUATION
This section evaluates the performance of Caerus. We primarily

compare against two geo-replicated systems: (i) Calvin [47], a prin-

cipal system that incorporates deterministic geo-replication, and (ii)

SLOG [43], a state-of-the-art system for low latency transactions

in geo-replicated deterministic databases. Both Caerus and SLOG

build on the Calvin code base [12] that implements the scheduler

and storage components.

5.1 Methodology
Our experiments were conducted on Microsoft’s Azure Cloud using

24 Standard_D48_v5 virtual machines each with 48 vCPUs and 192

GiB RAM. Our experimental measurements are shown as graphs

with each graphed data point as the average of three independent

runs. Each system deployment contains six replicas with four data

partitions. Each replica is within a different region: US East, US

East 2, France Central, EU West, Southeast Asia and East Asia.

Each region contains a full replica. We call regions within the same

Continent close regions, e.g., US East and US East 2, and regions in

different Continents far regions, e.g., US East and France Central.

The system load is given by the number of clients, with each client

submitting 200 transactions per second in an open loop to the

respective system for execution.

5.2 Benchmarks
We use the popular TPC-C [49] and MovR [29, 50] benchmark

workloads to evaluate the systems. TPC-C represents a business ap-

plication that processes orders. Every warehouse has a primary in a

region with all supporting data (district records, customer records,

and so on). We focus on the throughput and latency of NewOrder

transactions as these are the transactions from the TPC-C bench-

mark that can be multi-region (MR) (through Multi-Warehouse

(MW)) transactions. Each MW NewOrder transaction has a proba-

bility to involve two warehouses’ records with primary copies in

477

200 300 400

10
1

10
2

10
3

10
4

10
5

Number of clients

L
a
t
e
n
c
y
(
l
o
g
s
c
a
l
e
)
(
m
s
)

Calvin

SLOG

Caerus

200 300 400

0

2

4

6

8

·104

Number of clients
T
h
r
o
u
g
h
p
u
t
(
t
x
n
/
s
)

(a) 50% of MW Transactions are MR

200 300 400

10
1

10
2

10
3

10
4

10
5

Number of clients

L
a
t
e
n
c
y
(
l
o
g
s
c
a
l
e
)
(
m
s
)

(b) 100% of MW Transactions are MR

200 300 400

10
1

10
2

10
3

10
4

10
5

Number of clients

L
a
t
e
n
c
y
(
l
o
g
s
c
a
l
e
)
(
m
s
)

(c) 10% of MW Transactions are MR

Figure 5: TPCC Latency & Throughput

300 400 500 600

10
1

10
2

10
3

10
4

Number of clients

L
a
t
e
n
c
y
(
l
o
g
s
c
a
l
e
)
(
m
s
)

300 400 500 600

0.5

0.6

0.7

0.8

0.9

1

·105

Number of clients

T
h
r
o
u
g
h
p
u
t
(
t
x
n
/
s
)

Calvin

SLOG

Caerus

(a) 15%MR transactions (𝑃𝑓 = .5, 𝑃𝑐 = .10)

300 400 500 600
10

1

10
2

10
3

10
4

10
5

Number of clients

L
a
t
e
n
c
y
(
l
o
g
s
c
a
l
e
)
(
m
s
)

300 400 500 600

0.5

0.6

0.7

0.8

0.9

1

·105

Number of clients

T
h
r
o
u
g
h
p
u
t
(
t
x
n
/
s
)

(b) 30%MR transactions (𝑃𝑓 = .10, 𝑃𝑐 = .20)

Figure 6: MovR Latency & Throughout

different regions. 10% of all NewOrder transactions are MW. Fur-

thermore, each MW NewOrder transaction has a 5/6th chance of

being a multi-partition transaction. We use 960 warehouses.

MovR is a carsharing application benchmark [29, 50]. With local-

ity added to MovR, users live in a region but travel to close regions

with probability 𝑃𝑐 and far regions with probability 𝑃𝑓 . Each car

belongs to a region. Every user data item has its primary copy

located in the user’s region and every vehicle data item has its

primary copy located in the vehicle’s region. Furthermore, ride data

contains a primary in the region where the ride takes place. Thus

all transactions access primary data in a single region except for the

BeginRide transactions that can access user and vehicle primary

data in different regions. When a user travels to another region,

the BeginRide transaction becomes an MR transaction between

the user’s primary region and the vehicle’s primary region. We

measure the throughput and latency of the BeginRide transactions.

Our experiments use 4 million MovR users and 40,000 vehicles.

5.3 Results
We study the performance of Caerus, SLOG, and Calvin on the

TPC-C benchmark as the percentage of MW transactions that are

MR transactions increases – 10% (Figure 5c), 50% (Figure 5a), and

100% (Figure 5b). We show the throughput graph for 50% MW

transactions that are MR (we omit graphs for 10% and 100% as all

3 systems are bottlenecked by the scheduler resulting in similar

throughput graphs). Caerus has significantly lower latency than

Calvin and SLOG until saturation point (408 clients), while trans-

action throughput is comparable for all systems. As the number

of clients increases, the gap resulting from Caerus’ (lower) trans-

action latency and SLOG’s latency also increases. This increased

latency difference is due to SLOG becoming overloaded from the

higher load on the deterministic scheduler placed by SLOG’s MR

transaction pieces.

Under all load conditions, Caerus incurs significantly lower trans-

action latency than the other systems. For 100% MR transactions,

these latency gains range from about 3.7× lower than SLOG and

18× lower than Calvin to almost 3× lower than SLOG and 38×
lower than Calvin for 10% MR transactions.

In Figure 6, we measure latency and throughput of Calvin, SLOG,

and Caerus with the MovR benchmark as the client load on the sys-

tems increases. We runMovR twice: with 𝑃𝑓 = .05 and 𝑃𝑐 = .10 (Fig-

ure 6a), and also with 𝑃𝑓 = .10 and 𝑃𝑐 = .20 (Figure 6b) for 15 and 30

percent of MR transactions, respectively. While Calvin and Caerus

have comparable throughput, SLOG’s peak throughput is lower

and plateaus earlier due to the increased load on the schedulers

that a higher percentage of MR transactions put on SLOG. After

SLOG’s throughput plateaus, its latency increases above the other

systems. Calvin and Caerus become saturated at similar points,

thereby showing similar latency and throughput behaviour.

With 15% MR transactions, Caerus has 3.1× lower latency than

SLOG and almost 18× lower latency than Calvin (Figure 6a). The

latency wins by Caerus over SLOG increase to 4.7× with 30% MR

transactions and to almost 11× over Calvin (Figure 6b).

SLOG has two drawbacks that limit its performance compared

to Caerus. First, SLOG totally orders all multi-region (MR) transac-

tions. This total ordering requirement means SLOG cannot exploit

478

SR Close Far

0

100

200

300

400

Transaction type

L
a
t
e
n
c
y
(
m
s
)

Caerus

SLOG

Calvin

(a) TPC-C

SR Close Far

0

100

200

300

400

Transaction type

L
a
t
e
n
c
y
(
m
s
)

(b) MovR

Figure 7: Latency breakdown by transaction type

data locality when a transaction is MR, resulting in higher latency.

Second, as SLOG breaks MR transactions into transaction pieces,

these pieces add additional load on the deterministic scheduler,

thereby increasing latency and lowering throughput. That is, when

an MR transaction access 𝑘 regions, 𝑘 transaction pieces are sent

to the scheduler; MR transactions place 𝑘 times more load on the

scheduler in SLOG than in Calvin or Caerus.

Caerus’ across-the-board latency gains allow it to outperform

SLOG and Calvin. Caerus’ performance advantage is from not need-

ing to totally order any transactions globally. Calvin’s high latency

comes from totally ordering all transactions globally. SLOG needs

to enforce a total order on MR transactions globally, which results

in lower latency when compared to Calvin but much higher latency

than Caerus.

5.3.1 Latency Analysis. We study the latency of SR transactions,

MR transactions between close regions, and MR transactions be-

tween far regions in Figure 7. We use 10% total MR transactions for

TPC-C (Figure 7a) and 30% MR for MovR (Figure 7b). As each trans-

action is globally ordered through Paxos, Calvin’s average transac-

tion latency is the same for SR, close, and far transactions. Caerus

outperforms both Calvin and SLOG for every type of transaction.

SLOG performs worse than Calvin for MR transactions between

far regions due to the propagation of the positions of transaction

pieces in local logs after the global total ordering is done. The

largest latency disparity between Caerus and SLOG is for MR trans-

actions between close regions where Caerus outperforms SLOG by

about 6× on TPC-C and 6.3× on MovR. These results demonstrate

Caerus’ ability to take advantage of the locality of data placement.

Per Calvin’s performance in Figure 7b, totally ordering transactions

in geo-replicated systems can add large latency overheads.

To provide a more complete picture, we include empirical cumu-

lative distribution functions (CDFs) of transaction latency for the 3

systems using TPC-C (Figure 8a) and MovR (Figure 8b) with 10%

and 30% MR transactions, respectively, with 360 clients. We see that

the CDFs of Caerus, for both TPC-C and MovR, are steeper than the

CDF of SLOG. The divergence of the CDFs for the slowest 10% for

TPC-C and 30% for MovR is expected due to the percentage of MR

transactions. However, the divergence of the curves below these

points show the increased load SLOG places on its deterministic

scheduler due to the MR transaction pieces it generates.

0 200 400 600 800

0

0.2

0.4

0.6

0.8

1

Latency (ms)

F
r
a
c
t
i
o
n
o
f
T
r
a
n
s
a
c
t
i
o
n
s

Calvin

SLOG

Caerus

(a) TPC-C

0 200 400 600 8001,000
0

0.2

0.4

0.6

0.8

1

Latency (ms)

F
r
a
c
t
i
o
n
o
f
T
r
a
n
s
a
c
t
i
o
n
s

(b) MovR

Figure 8: CDF of transaction latency

SR NA +EU +AP

0

50

100

150

Region setups

L
a
t
e
n
c
y
(
m
s
)

Caerus

SLOG

Calvin

(a) TPC-C

SR NA +EU +AP

0

50

100

150

Region setups

L
a
t
e
n
c
y
(
m
s
)

(b) MovR

Figure 9: Latency for different geo-replicated settings

5.3.2 Geo-Replication Analysis. In Figure 9, we look at the average

latency of transactions when the geographical location of the repli-

cas is changed. SR is a replicated deployment with all six replicas

contained in a single region. NA represents the deployment of a

single replica per region within North America. +EU adds to NA

by holding a single replica per region with three regions in EU and

three in NA. Finally, +AP adds to EU and NA by having a single

replica per region with two regions in NA, two in EU, and two in

AP (used in all other experiments). We use 360 clients, with 10% of

all transactions being MR for TPC-C and 30% being MR for MovR.

As distance between regions decreases (and thus the WAN la-

tency), the difference in average latency between the systems also

decreases. Caerus continues to outperform SLOG and Calvin when

the systems are geo-replicated. On TPCC, Caerus outperforms

SLOG by 2.1× and Calvin by 13.1× when replicas are in EU and

NA, and SLOG and Calvin by 2.1× and 6.9×, respectively, when
replicas are in NA. For MovR, Caerus outperforms SLOG by 3.5×
and Calvin by 10.0× when replicas are in EU and NA, and SLOG by

2.7× and Calvin by 4.5× when replicas are in NA. When data is not

geo-replicated but instead replicated withing a single region, the

performance of Calvin, SLOG, and Caerus is similar as the commu-

nication is performed over LAN, reducing much of the overhead

from network round trips performed by Calvin and SLOG. Caerus’

ordering protocol reduces the overhead for ordering transactions

in the geo-replicated setting. Moreover, the similar transaction la-

tency of Caerus, Calvin and SLOG for SR shows that the Caerus

ordering protocol does not introduce extra overhead even when

communication latency is small.

479

100 99 90

0

20

40

60

Total % of transactions that are SR

L
a
t
e
n
c
y
(
m
s
)

Caerus

SLOG

VoltDB

(a) TPC-C

100 85 70

0

20

40

60

80

100

Total % of transactions that are SR

L
a
t
e
n
c
y
(
m
s
)

(b) MovR

Figure 10: Single-region transaction latency

5.3.3 Single-Region Transactions. In Figure 10, we compare the la-

tency of the commercial in-memory deterministic database VoltDB

[51] deployed within a single Azure region with single-region trans-

actions in geo-replicated Caerus and SLOG. VoltDB becomes sat-

urated at a lower load than Caerus and SLOG, so we advantage

VoltDB with a load set right before its saturation point. TPC-C is

run with 10% multi-partition transactions, and MovR is run with

20% multi-partition transactions. When transactions are not dis-

tributed, the similar performance of VoltDB and Caerus shows the

low overhead of the Caerus ordering protocol for single-region

transactions. In particular, for TPC-C, even when 10% of transac-

tions are cross-region (90% single-region), the average latency of

single-region transactions in Caerus is the same as transactions

in VoltDB. Furthermore, Caerus’ ordering protocol incurs lower

latency than VoltDB when the percentage of MR transactions is low

(1.77× for 100% single-region and 1.68× for 99%). SLOG does not

remain competitive with VoltDB due to transaction overheads. The

general performance trends continue with MovR – single-region

transactions in Caerus either outperform or perform similarly to

transactions in VoltDB. When all transactions are single-region,

SLOG also performs similarly to Caerus and VoltDB; however,

single-region transactions in SLOG perform much worse when

30% and 15% of transactions are multi-region.

6 RELATEDWORK
SLOG and Calvin have already been discussed so we do not include

them in this section. Systems such as [36, 37, 55] use graph-based

conflict trackingwhile leveraging SCCs to handle circular dependen-

cies. These systems depend on at least one round of communication

to agree on dependencies, with a second round when a quorum does

not hold. Caerus does not need to reach a consensus on transaction

conflicts/dependencies but instead uses a primary architecture to

avoid unneeded WAN trips and thus reduce transaction latency.

There are several systems that use logs that are shared, deter-

ministic, perform merging of multiple logs, or do graph-based de-

pendency checking to resolve conflicts and sequence transactions

[10, 11, 13]. However, none of them are geo-distributed/replicated.

Geo-replicated database systems such as [27, 37, 41, 53–55] can

commit transactions with a single round of WAN communication

only under certain conditions. However, these systems may require

a second round of communication if these conditions do not hold.

Similarly, consensus systems such as [32, 34, 36] can sequence

transactions in as little as one WAN round trip but again may

require a second round ofWAN communication. In contrast, Caerus

commits all transactions in a single WAN round trip.

Primo [30] coordinates distributed transaction execution within

a single network round trip among partition leaders. Primo ac-

quires exclusive locks for reads and relies on group commit among

participating sites. When replicas and partition leaders are geo-

distributed, transactions have to wait for at least 2 WAN round

trips before transaction results are durable. Unlike Primo, Caerus

performs transaction coordination and replication to ensure dura-

bility within a single WAN round trip.

WPaxos [3] considers low-latency ordering over geo-replicas by

reducing the size of the replication quorum to include only close

replicas. However, WPaxos must perform an object-stealing phase

if all objects are not local to the leader while Caerus has no such

requirement when sequencing transactions and replicating them.

Geo-distributed byzantine-tolerant systems [6–8, 19, 23] create

groups in a hierarchical structure to reduce the complexity of coor-

dination performed over WAN. Unlike Caerus, [6–8, 19, 23] do not

perform coordination within a single WAN round trip. The Block-

plane communication framework [39] does not provide cross-group

coordination. ResilientDB [23] will wait for the maximum pair-wise

latency between all regions before executing transactions.

Between the original work [24] of this paper and this publica-

tion, Detock [40] appeared. We include a comparison of these two

works that were done independently and concurrently. Like Caerus,

Detock uses a single WAN round trip of messaging to execute geo-

distributed multi-region transactions using graph-based techniques

for resolving transaction conflicts. While Caerus outputs a sequence

of transactions that can be executed by any deterministic scheduler

(e.g., Calvin [47], QStore [42]), Detock integrates sequencing, con-

currency control and execution, limiting scheduler implementation

choices. Caerus processes partial sequences of transactions in par-

allel, as opposed to Detock that merges regional logs into a global

log. Caerus continuously executes its sequencing algorithm as op-

erations arrive, minimizing processing delays. By contrast, Detock

executes periodically based on heuristic estimates of network de-

lays, similar to [48]. Unlike Detock, Caerus includes a recovery

protocol for fault tolerance and high availability for region failure.

7 CONCLUSION
We presented Caerus, a geo-replicated deterministic database sys-

tem that commits transactions serializably after a singleWAN round

trip of messaging delay. Caerus performs deterministic merging

of partial sequences of transactions per region to order transac-

tions globally rather than relying on a cross-region total ordering

of transactions. Moreover, Caerus exploits locality in workloads,

allowing transactions to execute without waiting on WAN messag-

ing to order non-conflicting transactions. Our evaluation shows

that Caerus outperforms deterministic database systems Calvin and

SLOG by up to 38× and 6×, respectively, for transaction latency.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their constructive feedback.

We are grateful to University of Waterloo and Microsoft for pro-

viding Azure cloud credits in support of this research. This project

was supported by funding from NSERC, WHJIL, CFI, and ORF.

480

REFERENCES
[1] Daniel J. Abadi and Jose M. Faleiro. 2018. An Overview of Deterministic Database

Systems. Commun. ACM 61, 9 (aug 2018), 78–88. https://doi.org/10.1145/3181853

[2] Michael Abebe, Brad Glasbergen, and Khuzaima Daudjee. 2020. DynaMast: Adap-

tive Dynamic Mastering for Replicated Systems. In 2020 IEEE 36th International
Conference on Data Engineering (ICDE). 1381–1392. https://doi.org/10.1109/

ICDE48307.2020.00123

[3] Ailidani Ailijiang, Aleksey Charapko, Murat Demirbas, and Tevfik Kosar. 2020.

WPaxos: Wide Area Network Flexible Consensus. IEEE Trans. Parallel Distrib.
Syst. 31, 1 (jan 2020), 211–223. https://doi.org/10.1109/TPDS.2019.2929793

[4] American Airlines. 2022. American Airlines and Microsoft Partner-
ship Takes Flight to Create a Smoother Travel Experience for Customers
and Better Technology Tools for Team Members. Retrieved November

17, 2023 from https://news.aa.com/news/news-details/2022/American-

Airlines-and-Microsoft-Partnership-Takes-Flight-to-Create-a-Smoother-

Travel-Experience-for-Customers-and-Better-Technology-Tools-for-Team-

Members-MKG-OTH-05/default.aspx

[5] Amazon. 2021. Summary of the AWS Service Event in the Northern Virginia (US-
EAST-1) Region. Retrieved November 17, 2023 from https://aws.amazon.com/

message/12721/

[6] Yair Amir, Claudiu B. Danilov, Jonathan Kirsch, John Lane, Danny Dolev, Cristina

Nita-Rotaru, Josh Olsen, and David Zage. 2006. Scaling Byzantine Fault-Tolerant

Replication toWide Area Networks. International Conference on Dependable
Systems and Networks (DSN’06) (2006), 105–114. https://api.semanticscholar.org/

CorpusID:4625677

[7] Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. 2021. SharPer:

Sharding Permissioned Blockchains Over Network Clusters. In Proceedings of
the 2021 International Conference on Management of Data (Virtual Event, China)
(SIGMOD ’21). Association for Computing Machinery, New York, NY, USA, 76–88.

https://doi.org/10.1145/3448016.3452807

[8] Mohammad Javad Amiri, Daniel Shu, Sujaya Maiyya, Divyakant Agrawal, and

Amr El Abbadi. 2023. Ziziphus: Scalable Data Management Across Byzantine

Edge Servers. In 2023 IEEE 39th International Conference on Data Engineering
(ICDE). 490–502. https://doi.org/10.1109/ICDE55515.2023.00044

[9] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. 1987. Concurrency
Control and Recovery in Database Systems. Addison-Wesley. http://research.

microsoft.com/en-us/people/philbe/ccontrol.aspx

[10] Philip A. Bernstein, ColinW. Reid, and Sudipto Das. 2011. Hyder - A Transactional

Record Manager for Shared Flash. In Conference on Innovative Data Systems
Research.

[11] Philip A. Bernstein, Colin W. Reid, Ming Wu, and Xinhao Yuan. 2011. Optimistic

Concurrency Control by Melding Trees. Proc. VLDB Endow. 4, 11 (aug 2011),

944–955. https://doi.org/10.14778/3402707.3402732

[12] CalvinDB. 2019. GitHub. Retrieved Febuary 20, 2022 from https://github.com/

kunrenyale/calvindb

[13] Prima Chairunnanda, Khuzaima Daudjee, and M. Tamer Özsu. 2014. ConfluxDB.

Proceedings of the VLDB Endowment 7 (07 2014), 947–958. https://doi.org/10.

14778/2732967.2732970

[14] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein,

Philip Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel Weaver, and Ramana

Yerneni. 2008. PNUTS: Yahoo!’s Hosted Data Serving Platform. Proc. VLDB
Endow. 1, 2 (Aug 2008), 1277–1288. https://doi.org/10.14778/1454159.1454167

[15] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher

Frost, JJ Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Pe-

ter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li,

Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan,

Rajesh Rao, Lindsay Rolig, Dale Woodford, Yasushi Saito, Christopher Taylor,

Michal Szymaniak, and RuthWang. 2012. Spanner: Google’s Globally-Distributed

Database. In OSDI.
[16] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

2009. Introduction to Algorithms, Third Edition (3rd ed.). The MIT Press.

[17] Charlie Custer. 2022. How Devsisters made uptime a core requirement for their
games. Retrieved November 17, 2023 from www.cockroachlabs.com/blog/

customer-devsisters-10-million-downloads-cockroachdb/

[18] Charlie Custer. 2023. Performance goals for mission-critical workloads. Retrieved

November 17, 2023 from https://www.cockroachlabs.com/blog/performance-

goals-for-mission-critical-workloads/

[19] Hung Dang, Tien Tuan Anh Dinh, Dumitrel Loghin, Ee-Chien Chang, Qian Lin,

and Beng Chin Ooi. 2019. Towards Scaling Blockchain Systems via Sharding. In

Proceedings of the 2019 International Conference on Management of Data (Amster-

dam, Netherlands) (SIGMOD ’19). Association for Computing Machinery, New

York, NY, USA, 123–140. https://doi.org/10.1145/3299869.3319889

[20] Murat Demirbas. 2022. Amazon Aurora: Design Considerations + On Avoiding
Distributed Consensus for I/Os, Commits, and Membership Changes. Retrieved No-
vember 17, 2023 from http://muratbuffalo.blogspot.com/2022/03/amazon-aurora-

design-considerations-and.html?m=1

[21] Marisa Fernandez. 2018. Prime Day woes might have cost Amazon 72𝑚−99m in
sales. Retrieved November 17, 2023 from https://www.axios.com/2018/07/18/

prime-day-woes-might-have-cost-amazon-from-72-99-million

[22] Brad Glasbergen, Kyle Langendoen, Michael Abebe, and Khuzaima Daudjee.

2020. ChronoCache: Predictive and Adaptive Mid-Tier Query Result Caching. In

Proceedings of the 2020 International Conference on Management of Data, SIGMOD
Conference 2020, online conference [Portland, OR, USA], June 14-19, 2020, David
Maier, Rachel Pottinger, AnHai Doan, Wang-Chiew Tan, Abdussalam Alawini,

and Hung Q. Ngo (Eds.). ACM, 2391–2406. https://doi.org/10.1145/3318464.

3380593

[23] Suyash Gupta, Sajjad Rahnama, Jelle Hellings, and Mohammad Sadoghi. 2020.

ResilientDB: Global Scale Resilient Blockchain Fabric. Proc. VLDB Endow. 13, 6
(feb 2020), 868–883. https://doi.org/10.14778/3380750.3380757

[24] Joshua Thomas Hildred. 2023 (May). Efficient Geo-Distributed Transaction Pro-
cessing. Master’s thesis. University of Waterloo. https://uwspace.uwaterloo.ca/

handle/10012/19516

[25] Heidi Howard, Dahlia Malkhi, and Alexander Spiegelman. 2016. Flexible

Paxos: Quorum Intersection Revisited. In 20th International Conference on
Principles of Distributed Systems, OPODIS 2016, December 13-16, 2016, Madrid,
Spain (LIPIcs), Panagiota Fatourou, Ernesto Jiménez, and Fernando Pedone

(Eds.), Vol. 70. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 25:1–25:14.

https://doi.org/10.4230/LIPICS.OPODIS.2016.25

[26] A. B. Kahn. 1962. Topological Sorting of Large Networks. Commun. ACM 5, 11

(nov 1962), 558–562. https://doi.org/10.1145/368996.369025

[27] Tim Kraska, Gene Pang, Michael J. Franklin, Samuel Madden, and Alan Fekete.

2013. MDCC: Multi-Data Center Consistency. In Proceedings of the 8th ACM
European Conference on Computer Systems (Prague, Czech Republic) (EuroSys
’13). Association for Computing Machinery, New York, NY, USA, 113–126. https:

//doi.org/10.1145/2465351.2465363

[28] Cockroach Labs. [n.d.]. Expanding across the globe: Banking and payments at
hyperscale. Retrieved November 14, 2023 from https://www.cockroachlabs.com/

customers/pismo/

[29] Cockroach Labs. [n.d.]. MovR. Retrieved November 17, 2023 from https://www.

cockroachlabs.com/docs/stable/movr.html

[30] Z. Lai, H. Fan, W. Zhou, Z. Ma, X. Peng, F. Li, and E. Lo. 2023. Knock Out 2PC with

Practicality Intact: a High-performance and General Distributed Transaction

Protocol. In 2023 IEEE 39th International Conference on Data Engineering (ICDE).
IEEE Computer Society, Los Alamitos, CA, USA, 2317–2331. https://doi.org/10.

1109/ICDE55515.2023.00179

[31] Leslie Lamport. 2001. Paxos Made Simple.

[32] Leslie Lamport. 2006. Fast Paxos. Distributed Computing 19 (2006), 79–103.

[33] Hatem Mahmoud, Faisal Nawab, Alexander Pucher, Divyakant Agrawal, and

Amr El Abbadi. 2013. Low-Latency Multi-Datacenter Databases Using Replicated

Commit. Proc. VLDB Endow. 6, 9 (Jul 2013), 661–672. https://doi.org/10.14778/

2536360.2536366

[34] Yanhua Mao, Flavio P. Junqueira, and Keith Marzullo. 2008. Mencius: Building

Efficient Replicated State Machines for WANs. In Proceedings of the 8th USENIX
Conference on Operating Systems Design and Implementation (San Diego, Califor-

nia) (OSDI’08). USENIX Association, USA, 369–384.

[35] Hussein Al Kazwini Diana Richards Kumud Dwivedi Mahesh Nayak

Cheryl McGuire Michael Bender, Allen Sudbring. 2023. Azure network round-trip
latency statistics. Retrieved November 17, 2023 from https://learn.microsoft.

com/en-us/azure/networking/azure-network-latency

[36] Iulian Moraru, David G. Andersen, and Michael Kaminsky. 2013. There is More

Consensus in Egalitarian Parliaments. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles (Farminton, Pennsylvania) (SOSP
’13). Association for Computing Machinery, New York, NY, USA, 358–372. https:

//doi.org/10.1145/2517349.2517350

[37] Shuai Mu, Lamont Nelson, Wyatt Lloyd, and Jinyang Li. 2016. Consolidat-

ing Concurrency Control and Consensus for Commits under Conflicts. In 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
16). USENIX Association, Savannah, GA, 517–532. https://www.usenix.org/

conference/osdi16/technical-sessions/presentation/mu

[38] Faisal Nawab, Divyakant Agrawal, and Amr El Abbadi. 2018. DPaxos: Managing

Data Closer to Users for Low-Latency and Mobile Applications. In Proceed-
ings of the 2018 International Conference on Management of Data (Houston, TX,
USA) (SIGMOD ’18). Association for Computing Machinery, New York, NY, USA,

1221–1236. https://doi.org/10.1145/3183713.3196928

[39] Faisal Nawab and Mohammad Sadoghi. 2019. Blockplane: A Global-Scale Byzan-

tizing Middleware. In 2019 IEEE 35th International Conference on Data Engineering
(ICDE). 124–135. https://doi.org/10.1109/ICDE.2019.00020

[40] Cuong DT Nguyen, Johann K Miller, and Daniel J Abadi. 2023. Detock: High

Performance Multi-region Transactions at Scale. Proceedings of the ACM on
Management of Data 1, 2 (20 June 2023), 1–27.

[41] Seo Jin Park and John Ousterhout. 2019. Exploiting Commutativity For Practical

Fast Replication. In 16th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 19). USENIX Association, Boston, MA, 47–64. https:

//www.usenix.org/conference/nsdi19/presentation/park

481

https://doi.org/10.1145/3181853
https://doi.org/10.1109/ICDE48307.2020.00123
https://doi.org/10.1109/ICDE48307.2020.00123
https://doi.org/10.1109/TPDS.2019.2929793
https://news.aa.com/news/news-details/2022/American-Airlines-and-Microsoft-Partnership-Takes-Flight-to-Create-a-Smoother-Travel-Experience-for-Customers-and-Better-Technology-Tools-for-Team-Members-MKG-OTH-05/default.aspx
https://news.aa.com/news/news-details/2022/American-Airlines-and-Microsoft-Partnership-Takes-Flight-to-Create-a-Smoother-Travel-Experience-for-Customers-and-Better-Technology-Tools-for-Team-Members-MKG-OTH-05/default.aspx
https://news.aa.com/news/news-details/2022/American-Airlines-and-Microsoft-Partnership-Takes-Flight-to-Create-a-Smoother-Travel-Experience-for-Customers-and-Better-Technology-Tools-for-Team-Members-MKG-OTH-05/default.aspx
https://news.aa.com/news/news-details/2022/American-Airlines-and-Microsoft-Partnership-Takes-Flight-to-Create-a-Smoother-Travel-Experience-for-Customers-and-Better-Technology-Tools-for-Team-Members-MKG-OTH-05/default.aspx
https://aws.amazon.com/message/12721/
https://aws.amazon.com/message/12721/
https://api.semanticscholar.org/CorpusID:4625677
https://api.semanticscholar.org/CorpusID:4625677
https://doi.org/10.1145/3448016.3452807
https://doi.org/10.1109/ICDE55515.2023.00044
http://research.microsoft.com/en-us/people/philbe/ccontrol.aspx
http://research.microsoft.com/en-us/people/philbe/ccontrol.aspx
https://doi.org/10.14778/3402707.3402732
https://github.com/kunrenyale/calvindb
https://github.com/kunrenyale/calvindb
https://doi.org/10.14778/2732967.2732970
https://doi.org/10.14778/2732967.2732970
https://doi.org/10.14778/1454159.1454167
www.cockroachlabs.com/blog/customer-devsisters-10-million-downloads-cockroachdb/
www.cockroachlabs.com/blog/customer-devsisters-10-million-downloads-cockroachdb/
https://www.cockroachlabs.com/blog/performance-goals-for-mission-critical-workloads/
https://www.cockroachlabs.com/blog/performance-goals-for-mission-critical-workloads/
https://doi.org/10.1145/3299869.3319889
http://muratbuffalo.blogspot.com/2022/03/amazon-aurora-design-considerations-and.html?m=1
http://muratbuffalo.blogspot.com/2022/03/amazon-aurora-design-considerations-and.html?m=1
https://www.axios.com/2018/07/18/prime-day-woes-might-have-cost-amazon-from-72-99-million
https://www.axios.com/2018/07/18/prime-day-woes-might-have-cost-amazon-from-72-99-million
https://doi.org/10.1145/3318464.3380593
https://doi.org/10.1145/3318464.3380593
https://doi.org/10.14778/3380750.3380757
https://uwspace.uwaterloo.ca/handle/10012/19516
https://uwspace.uwaterloo.ca/handle/10012/19516
https://doi.org/10.4230/LIPICS.OPODIS.2016.25
https://doi.org/10.1145/368996.369025
https://doi.org/10.1145/2465351.2465363
https://doi.org/10.1145/2465351.2465363
https://www.cockroachlabs.com/customers/pismo/
https://www.cockroachlabs.com/customers/pismo/
https://www.cockroachlabs.com/docs/stable/movr.html
https://www.cockroachlabs.com/docs/stable/movr.html
https://doi.org/10.1109/ICDE55515.2023.00179
https://doi.org/10.1109/ICDE55515.2023.00179
https://doi.org/10.14778/2536360.2536366
https://doi.org/10.14778/2536360.2536366
https://learn.microsoft.com/en-us/azure/networking/azure-network-latency
https://learn.microsoft.com/en-us/azure/networking/azure-network-latency
https://doi.org/10.1145/2517349.2517350
https://doi.org/10.1145/2517349.2517350
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/mu
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/mu
https://doi.org/10.1145/3183713.3196928
https://doi.org/10.1109/ICDE.2019.00020
https://www.usenix.org/conference/nsdi19/presentation/park
https://www.usenix.org/conference/nsdi19/presentation/park

[42] Thamir M. Qadah, Suyash Gupta, and Mohammad Sadoghi. 2020. Q-Store:

Distributed, Multi-partition Transactions via Queue-oriented Execution and

Communication. In International Conference on Extending Database Technology.
[43] Kun Ren, Dennis Li, and Daniel J. Abadi. 2019. SLOG: Serializable, Low-Latency,

Geo-Replicated Transactions. Proc. VLDB Endow. 12, 11 (Jul 2019), 1747–1761.
https://doi.org/10.14778/3342263.3342647

[44] Kun Ren, Alexander Thomson, and Daniel J. Abadi. 2014. An Evaluation of the

Advantages and Disadvantages of Deterministic Database Systems. Proc. VLDB
Endow. 7, 10 (jun 2014), 821–832. https://doi.org/10.14778/2732951.2732955

[45] Robert Tarjan. 1972. Depth-First Search and Linear Graph Algorithms. SIAM J.
Comput. 1, 2 (1972), 146–160. https://doi.org/10.1137/0201010

[46] Alexander Thomson and Daniel J. Abadi. 2010. The Case for Determinism

in Database Systems. Proc. VLDB Endow. 3, 1–2 (Sep 2010), 70–80. https:

//doi.org/10.14778/1920841.1920855

[47] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren, Philip

Shao, and Daniel J. Abadi. 2012. Calvin: Fast Distributed Transactions for

Partitioned Database Systems. In Proceedings of the 2012 ACM SIGMOD Inter-
national Conference on Management of Data (Scottsdale, Arizona, USA) (SIG-
MOD ’12). Association for Computing Machinery, New York, NY, USA, 1–12.

https://doi.org/10.1145/2213836.2213838

[48] Sarah Tollman, Seo Jin Park, and John Ousterhout. 2021. EPaxos Revisited. In

18th USENIX Symposium on Networked Systems Design and Implementation (NSDI
21). USENIX Association, 613–632. https://www.usenix.org/conference/nsdi21/

presentation/tollman

[49] TPC. [n.d.]. TPC-C. Retrieved November 17, 2023 from https://www.tpc.org/tpcc/

[50] Nathan VanBenschoten, Arul Ajmani, Marcus Gartner, Andrei Matei, Aayush

Shah, Irfan Sharif, Alexander Shraer, Adam Storm, Rebecca Taft, Oliver Tan,

Andy Woods, and Peyton Walters. 2022. Enabling the Next Generation of

Multi-Region Applications with CockroachDB. In Proceedings of the 2022 In-
ternational Conference on Management of Data (Philadelphia, PA, USA) (SIGMOD
’22). Association for Computing Machinery, New York, NY, USA, 2312–2325.

https://doi.org/10.1145/3514221.3526053

[51] VoltDB. 2023. GitHub. Retrieved July 12, 2023 from https://github.com/VoltDB/

voltdb

[52] Wyatt Wenzel. 2023. Achieving low latencies and low emissions at the
edge for Climatiq’s carbon calculation API. Retrieved November 17,

2023 from https://fauna.com/blog/low-latencies-and-emissions-at-the-edge-for-

climatiqs-carbon-calculation-api#about-climatiq

[53] Xinan Yan, Linguan Yang, Hongbo Zhang, Xiayue Charles Lin, Bernard Wong,

Kenneth Salem, and Tim Brecht. 2018. Carousel: Low-Latency Transaction

Processing for Globally-Distributed Data. In Proceedings of the 2018 Interna-
tional Conference on Management of Data (Houston, TX, USA) (SIGMOD ’18).
Association for Computing Machinery, New York, NY, USA, 231–243. https:

//doi.org/10.1145/3183713.3196912

[54] Irene Zhang, Naveen Kr. Sharma, Adriana Szekeres, Arvind Krishnamurthy,

and Dan R. K. Ports. 2015. Building Consistent Transactions with Inconsistent

Replication. In Proceedings of the 25th Symposium on Operating Systems Principles
(Monterey, California) (SOSP ’15). Association for Computing Machinery, New

York, NY, USA, 263–278. https://doi.org/10.1145/2815400.2815404

[55] Zihao Zhang, Huiqi Hu, Xuan Zhou, and Jiang Wang. 2022. Starry: Multi-Master

Transaction Processing on Semi-Leader Architecture. Proc. VLDB Endow. 16, 1
(Sep 2022), 77–89. https://doi.org/10.14778/3561261.3561268

482

https://doi.org/10.14778/3342263.3342647
https://doi.org/10.14778/2732951.2732955
https://doi.org/10.1137/0201010
https://doi.org/10.14778/1920841.1920855
https://doi.org/10.14778/1920841.1920855
https://doi.org/10.1145/2213836.2213838
https://www.usenix.org/conference/nsdi21/presentation/tollman
https://www.usenix.org/conference/nsdi21/presentation/tollman
https://www.tpc.org/tpcc/
https://doi.org/10.1145/3514221.3526053
https://github.com/VoltDB/voltdb
https://github.com/VoltDB/voltdb
https://fauna.com/blog/low-latencies-and-emissions-at-the-edge-for-climatiqs-carbon-calculation-api#about-climatiq
https://fauna.com/blog/low-latencies-and-emissions-at-the-edge-for-climatiqs-carbon-calculation-api#about-climatiq
https://doi.org/10.1145/3183713.3196912
https://doi.org/10.1145/3183713.3196912
https://doi.org/10.1145/2815400.2815404
https://doi.org/10.14778/3561261.3561268

	Abstract
	1 Introduction
	1.1 Contributions

	2 Background
	3 Caerus Overview
	3.1 System Model
	3.2 Transaction Ordering

	4 The Caerus System
	4.1 Sequencer Architecture
	4.2 Sequence Merging
	4.3 Conflict Graph
	4.4 Resolving Cyclic Conflicts
	4.5 Generating Merged Transaction Orders
	4.6 Correctness
	4.7 Fault Tolerance

	5 Performance Evaluation
	5.1 Methodology
	5.2 Benchmarks
	5.3 Results

	6 Related work
	7 Conclusion
	Acknowledgments
	References

