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ABSTRACT
SQL query engines can act as e�cient runtime environments for the
execution of imperative programs over database-resident tabular
data. Tomake this point, we lay out the details of a compilation strat-
egy that maps the basic blocks of arbitrarily branching and looping
control �ow graphs into plain—possibly recursive—SQL:1999 com-
mon table expressions. The compiler does not stumble when faced
with imperative programs of several hundred lines and emits SQL
code that can execute such programs over entire batches of input
arguments. These batches create opportunities for parallel program
evaluation which contemporary query decorrelation techniques
exploit automatically. SQL engines that already support UDFs may
�nd the present program execution approach to outperform their
native implementation—SQL engines without such support may
gain UDF capabilities without the need to build a dedicated inter-
preter.
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1 A SQL ENGINE RUNS IMPERATIVE CODE
When the data resides in persistent relational tables, computation
over this data should happen inside the database kernel, too (“move
your computation close to the data” [38]). Holding on to this decades-
old wisdom can be challenging if the computation is expressed in
imperative-style algorithms, i.e., in terms of statement sequencing,
destructive variable updates, as well as branching and looping
control �ow—all of which have no obvious equivalent in a relational
SQL query.

Figure 1 displays an example of such imperative-style code:
Jarvis’ algorithm giftwrap(() iteratively determines the convex
hull of a set ( of two or more points in the 2D plane [25]. In this
textbook-style pseudo code, operations concerned with the imme-
diate access to the point data are enclosed in boxes . Arguably,
however, the essence of Jarvis’ algorithm lies outside these boxes,
expressed through assignments to variables ?0, ? that keep track
of points on the convex hull, and the repeat-until loop that exits
when the hull has been closed.
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Can we avoid to rely on database-external interpreters and in-
stead let a SQL-based database engine itself e�ciently execute
imperative code like the above?

Imperative computation over relational data. The following
pages introduce Flummi (German for bouncing ball), a compilation
strategy that translates imperative-style computation over database-
resident tabular data into plain SQL queries.

Figure 2 recasts Jarvis’ algorithm of Figure 1 in the syntax of
an imperative language. We consider stateful, iterative programs
following this style to be typical Flummi input. In this program,
data accesses in assume a table points(cloud,label,x,y)
in which a row (2, ✓, G,~) encodes a point labelled ✓ at coordi-
nates (G,~); point set ( is partitioned into multiple point clouds
identi�ed by 2 . Flummi itself is not concerned with data access,
treating the as parameterized black boxes. Instead, our focus is
on the compilation of a generic “lowest common denominator” lan-
guage for imperative computation, featuring stateful variables and—
in particular—arbitrary iterative control �ow. Flummi consumes

giftwrap(():
?0 � leftmost point in point set (
? � ?0
repeat
output ? (? is on the convex hull)
? � point ?1 < ? in ( such that there is

no point to the left of line ? ?1
until ?0 = ?

ú

~

G
?0

?1

Figure 1: Finding the convex hull of point set ( (with |( | æ 2),
textbook-style (Jarvis’ “gift wrapping” algorithm [25]).

1 giftwrap(cloud) {

2 p�^ SELECT p
FROM points AS p
WHERE p.cloud = $1
ORDER BY p.x
LIMIT 1

ea 1 [cloud];

3 p ^ $1 ea 2 [p�];
4 repeat: EMIT $1.label ee 1 [p]; -- p is on the convex hull
5 p^ SELECT p1

FROM points AS p1
WHERE p1.cloud = $1.cloud
AND p1.label <> $1.label
AND NOT EXISTS(

SELECT 1
FROM points AS p2
WHERE left_of(p2.x, p2.y,

$1.x, $1.y,
p1.x, p1.y)

AND p2.cloud = $1.cloud)

ea 3 [p];

6 IF $1.label = $2.label ec 1 [p�, p]
7 THEN STOP
8 ELSE JUMP repeat
9 }

Figure 2: Transcription of Figure 1 into an imperative pro-
gram. Boxes e [E1, E2, ...] hold parameterized SQL: E8 re-
places $8 in the box (otherwise, boxes are opaque to Flummi).
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such programs in terms of an internal graph-based representation
and is not bound to any speci�c frontend language syntax.

Flummi compiles into plain SQL.We describe a compiler that
translates imperative programs into plain SQL queries. Looping
control �ow is mapped into recursive common table expressions
(CTEs) which developers typically �nd hard to formulate manu-
ally [3, 9]. The compilation strategy has been deliberately designed
to exploit the capabilities of modern vectorizing, multi-threaded
database engines: the emitted SQL query for program giftwrap
can evaluate the imperative code for multiple cloud arguments in
parallel, but allows each program invocation to follow its individ-
ual control �ow path (batching [20]). To exemplify, assume that
table clouds holds = cloud identi�ers such that the SQL query

SELECT c AS cloud, p AS hull
FROM clouds AS c, LATERAL giftwrap(c) AS p

leads to = invocations of giftwrap. SQL backends that implement
contemporary query decorrelation strategies (as found in, e.g.,Umbra
or DuckDB [32, 33]) will be able
(1) to evaluate the Flummi-generated SQL code for giftwrap for

all = arguments in a single batch (automatically forming the
proper (c, p) result pairs), and

(2) save repeated evaluation e�ort should table clouds contain
duplicate cloud identi�ers c.

The potential of the underlying parallel database engine comes to
bear on the execution of iterative imperative code, thus performing
the computation as close to the data as possible.

We follow up on our earlier work on PL/SQL-to-SQL compila-
tion [22, 23] and entirely redesign the compilation strategy to em-
brace the parallel plan evaluation capabilities found in contempo-
rary database engines. In deviation from [23], Flummi’s approach
• uses fewer compilation phases as well as intermediate code repre-

sentations and thus is easier to describe and implement (see Sec-
tion 2),

b1
p�^ ea 1 [cloud]
GOTO b2

b2
p^ ea 2 [p�]
GOTO b3

b3
EMIT ee 1 [p]
p^ ea 3 [p]
GOTO b4

b4
IF ec 1 [p, p�]
THEN STOP
ELSE JUMP b3

1

2

3

45

Figure 3: CFG for program giftwrap of Figure 2. Nodes b8

mark the basic blocks. Execution starts in block b1. Block
sequencing is made explicit in terms of GOTOs. Block b4 im-
plements the JUMP back to label repeat in Line 4 of Figure 2.

• holds up in the face of very complex control �ow (e.g., as found
in the imperative code for a complete ray tracer),

• supports table-valued programs that can stream their result rows,
avoiding the materialization of sizable intermediate results,

• uses a code generation strategy that facilitates the e�cient exe-
cution of sequential as well as looping control �ow, and

• emits SQL code that performs well on parallel query engines,
in particular if they implement query decorrelation and plan
evaluation in row batches (Section 3). In consequence, Flummi-
generated SQL code may outperform UDF language implemen-
tations native to those engines.

2 COMPILING PROGRAMS INTO PLAIN SQL
Flummi itself is agnostic to the speci�cs of user-facing program
syntax. Instead, the compiler consumes programs in terms of their
control �ow graph (CFG). The CFG for the giftwrap code of Figure 2
is reproduced in Figure 3. Lowering imperative programs into CFGs
has been well-charted territory [1] for decades. We do not explore
it here.

CFG in, read-only SQL out. In Figure 2, we have deliberately cho-
sen a simplistic variant of an imperative language whose syntactic
elements are directly re�ected in a CFG. However, any frontend
language will �t the bill as long as it
• relies on the staples of the imperative programming paradigm

(destructive variable assignment, statement sequencing, means
to express arbitrary branching and iterative control �ow, and
result emission), and

• allows to invoke SQL queries to access database-resident data
and perform computation (cf. the black boxes above).

Since Flummi will embed the contents of these black boxes into
a single read-only SQL query, may not contain side-e�ecting
constructs (such as transaction control, SQL DML statements, or
the execution of dynamic SQL strings). Programs that explicitly
raise and catch exceptions have CFG-based equivalents that Flummi
can compile. Implicit exceptions (e.g., division by zero), however,
can not be caught by the generated SQL query and thus lead to a
runtime error.

Tying the knot using a recursive CTE. Given a program’s CFG,
the compiler derives plain SQL code in two stages (see Figure 4):
1� Assignment statements are added to the CFG’s basic blocks to

make data �ow between blocks explicit.
2� Fragments of SQL code can then be derived directly from the

augmented CFG: each basic block b8 is mapped into its associ-
ated SQL CTE, coined q(b8 ) below.

To generate SQL code for an arbitrary CFG ⌧ , we assemble the
CTEs q(b8 ) of its basic blocks to form a single SQL query q(⌧).
Figure 5 sketches the general structure of q(⌧). Here, to make ideas

Imperative
Code

CFG SQL

1�

2�
frontend

augment

code gen

Figure 4: Compiler stages � and program representations.
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WITH RECURSIVE
loop(kind,label,LC,result) AS (
(SELECT ’jump’,’b1’,hprogram inputsi, )
UNION ALL

(

q(b1 )(...) AS (
...

)

q(b2 )(...) AS (
...

)

q(b3 )(...) AS (
...

)

q(b4 )(...) AS (
...

)

kind label LC result

’jump’ ’b1’ hprogram inputsi
’jump’ ’b3’ hvar bindingsi
’emit’ ... hresulti

)
)

...

2 3 4

1
5

5

1
loop

Figure 5: Structure of the SQL code generated for the CFG
in Figure 10. Columns LC hold the bindings of the input
program’s loop-carried variables. Edges denote inter-CTE
data �ow. (Annotations in relate to Figure 3.)

tangible, we have instantiated q(⌧) to match the CFG for giftwrap
of Figure 3. The construction of q(⌧) follows these principles:
• We implement straight-line or branching control �ow in terms of

inter-CTE references (blue edges in the CFG and in Fig-
ure 5): if block b8 precedes b9 , in the CFG, CTE q(b9 ) refers
to q(b8 ).

• Under this scheme, loops in the CFG (edges ) would lead
to cyclic CTE references. To avoid these, we encode looping
control �ow using a recursive CTE1 with working table loop. A
row (’jump’, ’b8’, hvar bindingsi, ) in this table indicates that
control has to jump to blockb8 . (In that table and in what follows,
symbol abbreviates NULL.) We arrange q(⌧) such that all q(b8 )
can refer to table loop.

• In the case of giftwrap, CTE q(b3) will check table loop for
rows (’jump’, ’b3’, hvar bindingsi, )) and evaluate under all
variable bindings provided by these rows. CTE q(b4) will return
a row (’jump’, ’b3’, hvar bindingsi, ) to direct control to b3 in
the next iteration of the recursive CTE. Together, this implements
the jump from b4 and b3 along edge 5 .

⌫ F EMIT ⇢ E ^ ⇢ ⇠ basic block

⇠ F STOP program termination
| GOTO s straight-line/branching control �ow
| JUMP s looping control �ow
| IF ⇢ THEN ⇠ ELSE ⇠ conditional

⇢ F SQL [E, ... , E] parameterized scalar SQL expressions

Figure 6: Statements ⌫ describe a computation step inside a
basic block. Label s identi�es the successor block, E repre-
sents variable names. (We use G to indicate repetitions of G .)

1In a nutshell, the recursive CTE (introduced with SQL:1999 [13, 41])
WITH RECURSIVE C(· · ·) AS (@1 UNION ALL @1 (C ))
TABLE C; -- returns the union table

iterates the evaluation of query @1 (see the pseudo code on the
right). @1 may refer to working table C to access the rows produced
in the immediately preceding iteration (the �rst iteration processes
the rows produced by query @1). Iteration stops once @1 returns
no rows. The overall result (or: union table, table D on the right)
then holds all rows produced in any of the iterations.

1 C � @1
2 D � C
3 repeat
4 C � @1 (C )
5 D � D ] C
7 until C = ú
8 return D

EMIT ee 4

GOTO s

JUMP s

E0 ^ ea 0

kind label E1 · · · E= result

’emit’ · · · ee 1... ... ... ... ... ...
’emit’ · · · ee =
’goto’ s ea 1 · · · ea =
’jump’ s ea 1 · · · ea =

q(b8 )

Figure 7: Tabular encoding of the output of a basic block b8 .

In transitioning from CFG ⌧ to its SQL query q(⌧), we thus have
turned control�ow into data�ow, the former based on GOTO and
JUMP, the latter based on inter-CTE references: note how control
and data �ow edges G with identical annotations G in Figures 3
and 5 relate. (Flummi derives its name from working table loop

and its instrumental role in encoding jumps in control �ow.)

2.1 Basic Block in a CFG ⌘ CTE in SQL
A basic block b8 in a CFG represents one small step of the compu-
tation performed by the overall imperative program. Such a step
comprises, strictly in order,
1 . the emission of scalar output values ee 4 (via EMIT),
2 . the evaluation of all embedded SQL expressions ea 0 before the

resulting values are assigned to variables E0 (via ^), and �nally
3 . the (conditional) control �ow transition via GOTO or JUMP to the

successor block of b8 , say block s.
The grammar of Figure 6 restricts the acceptable statements inside a
basic block to ensure that each block indeed describes a computation
step of the above form.

After compilation to SQL, the CTE q(b8 ) for basic block b8 encodes
the result of a computation step in a table as depicted in Figure 7.
Query q(b8 ) yields rows with
• kind ’emit’ for each result value ee 4 output by b8 (a basic

block may output more than one value), and
• kind ’goto’ or ’jump’ for a control �ow transition to the suc-

cessor block with label s. In block s, variable E0 will hold the
assigned scalar value ea 0 as indicated by E0’s like-named col-
umn.

(No) data �ow within a basic block. The immediate correspon-
dence of basic blocks b9 and their CTEs q(b9 ) simpli�es Flummi’s
compilation strategy (we reap the bene�ts when we address SQL
code generation in Section 2.3) but also has an e�ect on the variable-
based data �ow. To see this, consider Figure 8a which shows the
fragment of q(b9 ) that computes new bindings for the program
variables E1, ... , E= : following the SQL semantics, the SELECT clause
evaluates all embedded expressions ea 0 in parallel and/or in ar-
bitrary order. When the ea 0 refer to variables, they thus see the
bindings established by b9 ’s predecessor block q(b8 ) but do not
observe the assignments performed in block b9 itself (these will
only be visible inb9 ’s successor): there is no data �owwithin a basic
block and we may consider its assignment and EMIT statements to
be independent of each other.

CTEs chains express non-looping control�ow.As long as basic
blocks b8 and b9 connect via straight-line or branching control
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b9
E1 ^ ea 1...
E= ^ ea =
· · ·

q(b9 )( ... ) AS (
WITH

assign(E1, ... ,E=) AS (
SELECT
(ea 1) AS E1,...
(ea =) AS E=

FROM q(b8 )
)

...
)

(a) Evaluation of variable assignments in
CTE q(b9 ) .

b8
· · ·
GOTO b9

b9
...

WITH
...
q(b8 )(...) AS (
...
),

q(b9 )(...) AS (
... FROM q(b8 ) ...
),

...

(b) CTE-based basic block chaining (no
loops).

b8
IF ec
THEN JUMP s1
ELSE GOTO s2

q(b8 )(kind,label, ... ) AS (
WITH assign( ... ,?, ... ) AS ( ... )

SELECT ’jump’,’s1’, ... -- THEN
FROM assign

WHERE ? -- holds value of ec
UNION ALL

SELECT ’goto’,’s2’, ... -- ELSE
FROM assign

WHERE NOT ?
)

(c) UNION ALL implements the THEN/ELSE
branches of a conditional.

Figure 8: Flummi translates (features of) CFG blocks into SQL CTEs.

�ow (edges originating in GOTOs in Figure 3), we chain their
associated CTEsq(b8 ) andq(b9 ) to form one executable SQL query
(see Figure 8b). Only in the presence of loops, SQL code generation
will resort to a recursive CTE to realize the iterative computation
expressed by the, then cyclic, CFG.

Conditional branching control �ow. A basic block b8 outputs
rows with kind ’goto’ or ’jump’ to direct control �ow to (one
of) its successors, cf. Figure 7. To implement conditional control
�ow IF ec THEN...ELSE..., we bind the Boolean value of embedded
expression ec to program variable ? . SQL code generation then
employs a UNION ALL set operation as shown in Figure 8c. The
legs of the union are guarded by mutually exclusive predicates ?
(realizes the THEN branch) and NOT ? (ELSE): exactly one leg will
contribute to b8 ’s output for each binding of variable ? .

2.2 Stage 1�: Making Data Flow Explicit
Consider basic block b4 in Figure 3. The SELECT clause of its as-
sociated CTE q(b4) will evaluate embedded expression ec 1 to
determine how to branch. Since p and p� are parameters (or: free
variables) in ec 1, b4 relies on its predecessor block b3 (and thus its
query q(b3)) to provide both variables as input. In essence, q(b4)
will read:

SELECT ... ,(ec 1 [p,p�]), ...
FROM q(b3 ) AS inputs(... ,p,p�, ...)

blockInputs(⌧) :
�  {b1} [ {blocks in ⌧ targeted by JUMPs}
for each b 2 ⌧
inputs[b]  FV(b)
repeat
for each b 2 ⌧
inputs0 [b]  inputs[b] [ (–s2succ(b) inputs[s] \ BV(b))
inputs inputs0

LC  
–

j2 � inputs[j]
for each j 2 �
inputs[j]  LC

until inputs[·] unchanged
output hinputs, LCi

a

b

c

Figure 9: Algorithm blockInputs(⌧) derives the set of input
variables inputs[b] for all basic blocks b in CFG ⌧ .

Block b3 indeed binds p and thus can provide it as input to b4. To
also provide p�, however, b3 has to receive the variable as input
from its predecessors b2 and b4 in turn.

In general, the required inputs of a block b comprise both
( a ) the set of its own free variables FV(b), plus
( b ) the inputs of all of b’s successors (minus the set BV(b) of

variables bound and thus provided by b itself).
Algorithm blockInputs(⌧) in Figure 9 iterates this derivation of
block inputs until it arrives at a stable mapping inputs[b] that pro-
vides the set of input variables for all blocks b in the given CFG ⌧ .
Following step a above, the algorithm uses the free variables FV(b)
to seed inputs[b] and then iterates step b until inputs[·] reaches
a �xpoint. We have tagged the pseudo code regions corresponding
to both steps with a and b in Figure 9.

From the beginning of Section 2 recall that we will bank on a
recursive CTE to implement the looping control �ow expressed by
JUMP edges. Indeed, the generated SQL code will use a single recur-
sive CTE to implement all loops in the CFG (Section 2.3 unfolds the
details). Algorithm blockInputs prepares this code generation step in
its region c inwhich the inputs of all basic blocks targeted by a JUMP
(these blocks plus the program entry block b1 are collected in set � )
are aligned to be the set of loop-carried variables LC. A single CTE
working table loopwith schema loop(kind|label|LC |result) (re-
call Figures 5 and 7) will thus su�ce to encode the inputs �owing
into any JUMP target block.

A trace of blockInputs applied to giftwrap’s CFG in Figure 3
shows that inputs[·] reaches a �xpoint after two iterations (see Ta-
ble 1). For reference, the top of the trace lists the sets of free/bound
variables FV(·)/BV(·) in each block, succ(·) represents the CFG’s
control �ow edges. The trace’s bottom line shows inputs[b4] =
{cloud, p, p�}: besides p and p� as discussed above, note that this
set additionally contains cloud, an input required by all JUMP tar-
gets in set � , including b4’s successor b3.

To complete compilation stage 1�, we amend each basic block b
in the CFG by variable assignments that render b’s obligation to
provide the inputs required by all its successors explicit. Let us
denote block b’s obligations by

outputs[b] :=
ÿ

s2succ(b )
inputs[s]

(see the bottom of Table 1 where we have listed outputs[·] for
reference). Any variable E 2 outputs[b] \BV(b) that is not already
bound in b is explicitly re-assigned via E ^ $1 [E]. This does
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Table 1: A trace of inputs[·] when blockInputs is applied to the
CFG of Figure 3. Here, the JUMP targets set is � = {b1,b3} (both
blocks are marked by superscript � below).

b�
1 b2 b�

3 b4

FV( ·) {cloud} {p�} {p} {p, p�}
BV( ·) {p�} {p} {p} ú

succ( ·) {b2 } {b3 } {b4 } {b3 }

Iteration

0 a inputs[ · ] {cloud} {p�} {p} {p, p�}

1 b {cloud} {p�} {p, p�} {p, p�}
c {cloud, p, p�} {p�} {cloud, p, p�} {p, p�}

2 b {cloud, p, p�} {cloud, p�} {cloud, p, p�} {cloud, p, p�}
c {cloud, p, p�} {cloud, p�} {cloud, p, p�} {cloud, p, p�}

inputs[ · ] {cloud, p, p�} {cloud, p�} {cloud, p, p�} {cloud, p, p�}
outputs[ · ] {cloud, p�} {cloud, p, p�} {cloud, p, p�} {cloud, p, p�}

not alter the meaning of the program. If we amend the CFG for
giftwrap (Figure 3), we arrive at the CFG of Figure 10.

With the variable-based data �ow between blocks now made
explicit, the CFG is ready for SQL code generation in stage 2�. We
turn to this next.

2.3 Stage 2�: Generating SQL Code for a CFG
Below, we shed light on how
(1) a block-level mapping (7!) translates each basic block b8

in ⌧ into its associated CTE q(b8 ), before
(2) a program-level mapping (Z)) assembles these pieces into

the encompassing query q(⌧) that implements the imperative
program as a whole.

2.3.1 Block-level SQL code generation (mapping 7!). We
de�ne mapping 7! in terms of inference rule B���� of Figure 11a.
Input to this rule is a single prototypical basic block b, featuring
output emission (via EMIT), variable assignments (^), outgoing
control �ow (represented by c ), as well as predecessor blocks that
either GOTO (the blocks g6) or JUMP to b.2

We build query q(b) such that it realizes the computation step
performed by basic block b (recall Section 2.1). On execution, q(b)
returns a table of the shape shown in Figure 7. Below we use 0 ... 3
to refer to the relevant parts of Rule B����.

0 + 0 . Collect inputs from predecessor blocks. Query q(b)
retrieves the bindings for the input variables in set � F inputs[b]
from the tables computed by b’s predecessor blocks. These prede-
cessors comprise (1) the blocks g6 that GOTO-transition to b (their
outputs are available in tables q(g6)) as well as (2) the blocks that
JUMP to b (their output is collectively found in working table loop
of the recursive CTE). Predicates label=’b’ ensure that q(b) only
grabs those inputs directed to block b. These inputs are collected
in local CTE inputs ready to be read in 1 and 2 below.

2To compactly render these mappings, we adopt Steele’s notational conventions [42].
Sets and their elements are denoted by uppercase and their associated lowercase
letters, respectively: - = {G1,G2,G3, ...}. When we enumerate the elements G8 , we
index by 8 and specify separator # (if omitted, the separator defaults to comma ‘,’):
G8

8==..< # = G= # G=+1 # · · · # G< . If the range for the index is omitted, the containing
set de�nes the enumeration: if - = {G1,G2,G3 }, then G 9

9 = G1,G2,G3 .

b1
cloud^ $1 [cloud]
p�^ ea 1 [cloud]
GOTO b2

b2
cloud^ $1 [cloud]
p^ ea 2 [p�]
p�^ $1 [p�]
GOTO b3

b3
EMIT ee 1 [p]
cloud^ $1 [cloud]
p^ ea 3 [p]
p�^ $1 [p�]
GOTO b4

b4
cloud^ $1 [cloud]
p^ $1 [p]
p�^ $1 [p�]
IF ec 1 [p, p�]
THEN STOP
ELSE JUMP b3

1

2

3

4
5

Figure 10: CFG for program giftwrap (derived from Figure 3)
after variable-based data �ow has been made explicit: vari-
able assignments encode all outputs that a basic block is
required to provide to its successors. This CFG is input to
SQL code generation. (Annotations in relate to Figure 5.)

1 . Emit scalar output values. Based on CTE inputs, query q(b)
evaluates all scalar expressions ee 4 to be emitted by block b. Each
resulting value is placed in the result column of an output row
tagged with kind ’emit’ (all other columns are set to , cf. Figure 7).

2 . Evaluate expressions, assign to variables. The rows of CTE
inputs are read to compute the values of all embedded expres-
sions ea 0 and ec 1 found in b. The former are assigned to the
variables E0 (recall Figure 8a in Section 2.1), the latter are the condi-
tions in c that guide control �ow. Since the CFG has been amended
with explicit variable assignments (Section 2.2), the resulting lo-
cal CTE assign is guaranteed to hold all inputs required by b’s
successor blocks.

3 . Conditional control �ow transition. Finally, q(b) outputs
rows that direct control �ow to the successor blocks of b. To this
end, the new variable bindings collected in CTE assign are placed
in rows tagged with kind :B 2 {’goto’, ’jump’} targetting the suc-
cessor with label sB under condition ?B . To determine the triples
(:B , sB , ?B ), Rule B���� invokes the auxiliary mapping ÷ (de�ned
in Figure 11b) on the �nal statement c in b. Statement c adheres
to the non-terminal ⇠ of the grammar in Figure 6 and may thus
contain IF-THEN-ELSE conditionals nested to arbitrary depth. To
illustrate, if c is the IF-THEN-ELSE statement of block b4 of the
CFG in Figure 10, we have

TRUE ` c ÷

*�
(

:1z  }|  {
’jump’,

s1z}|{
’b3’ ,

?1z                 }|                 {
TRUE AND NOT 21)

 
,
�
(21, ec 1)

 +

Mapping÷ returns the triple (:1, s1, ?1) and introduces column 21
to hold the Boolean value of condition ec 1 (ec 1 is placed in 21 by
CTE assign, see 2 above). With predicate ?1 = TRUE AND NOT 21,
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hinputs, _i := blockInputs (G) � := inputs[b ] TRUE ` c ÷
⌧n

(:B , sB ,?B )
B o

,

⇢
(21 , ec 1 )

1
��

b

EMIT ee 4
4

E0 ^ ea 0
0

c

g6
6

7!

q(b )(kind,label,E0 0
,result) AS (

WITH inputs(8B
B
) AS (

SELECT 8B
B
FROM q(g6 ) WHERE kind=’goto’ AND label=’b’

6

UNION ALL UNION ALL

SELECT 8B
B
FROM loop WHERE kind=’jump’ AND label=’b’

), assign(E0
0
,21

1
) AS (

SELECT (ea 0) AS E0
0
,(ec 1) AS 21

1
FROM inputs

)

SELECT ’emit’, , 0
,(ee 4) FROM inputs

4
UNION ALL UNION ALL

SELECT :B,sB,E0
0
, FROM assign WHERE ?B

B
UNION ALL

)

0 + 0

2

1

3
output rows

(B����)

(a) De�nition of block-level mapping b 7! q(b ) (Rule B����).

? ` GOTO s ÷ h{ (’goto’, ’s’,? ) },úi

? ` JUMP s ÷ h{ (’jump’, ’s’,? ) },úi

? ` STOP÷ hú,úi

2 := fresh column name
(? AND 2 ) ` ⇠1 ÷ hB1,11 i
(? AND NOT 2 ) ` ⇠2 ÷ hB2,12 i

B := B1 [ B2 1 := 11 [ 12 [ { (2, ec ) }
? ` IF ec THEN ⇠1 ELSE ⇠2 ÷ hB,1 i

(b) Auxiliary mapping ? ` c ÷ h ·,·i (invoked by 7!) compiles control �ow statement c under condition ?.

Figure 11: Flummi’s stage 2�: compiling prototypical basic block b to SQL code fragment q(b).

queryq(b4)will output a rowwith (kind, label) = (’jump’, ’b3’)
only if 21 holds FALSE, thus meeting the expected behavior of the
IF-THEN-ELSE in block b4. Note how the THEN STOP branch of the
conditional does not contribute such a triple: the next iteration of
CTE loop will thus not perform a GOTO/JUMP on STOP’s behalf and
control �ow will end for all TRUE values in column 21.

All rows produced in 1 and 3 are combined via UNION ALL to
form the overall output of q(b). For reference, Figure 12 shows
q(b3), the result of applying the block-level mapping 7! to basic
block b3 of the CFG in Figure 10.

2.3.2 Program-level SQL code generation (mapping Z)). In-
ference Rule P������ of Figure 13 de�nes mapping Z) which
generates SQL code for the CFG ⌧ of a complete program. This
mapping �rst
(1) invokes block-level code generation for all basic blocksb1, ... ,b=

in ⌧ (Rule P������ is compositional: the = invocations of 7!
are independent of each other and may happen in any order or
even in parallel), then

(2) wraps the resulting CTEs q(b1), ... ,q(b=) in recursive CTE
loop to establish the required infrastructure for the evaluation
of looping control �ow.

At query runtime, CTE loop iteratively evaluates the queriesq(b1),
... ,q(b=). After each such iteration, we collect the rows of kind
’jump’ and ’emit’ output by the blocks in sets ! and ⇢, respectively
(for the giftwrapCFG of Figure 10, the “jumpers” and “emitters” are
! = {b4} and ⇢ = {b3}, respectively). The semantics of recursive
CTEs ensure that
• upon the CTE’s next iteration, all successors s of the blocks

in ! �nd rows with (kind, label) = (’jump’, ’s’) in working
table loop, and that

b2
...
GOTO b3

b3
EMIT ee 1 [p]
cloud^ $1 [cloud]
p^ ea 3 [p]
p�^ $1 [p�]
GOTO b4

q(b3 )(kind,label,cloud,p,p�,result) AS (
WITH inputs(cloud,p,p�) AS (
SELECT cloud,p,p�
FROM q(b2 )
WHERE kind=’goto’ AND label=’b3’
UNION ALL

SELECT cloud,p,p�
FROM loop

WHERE kind=’jump’ AND label=’b3’
), assign(cloud,p,p�) AS (
SELECT (cloud) AS cloud,

(ea 3) AS p,
(p�) AS p�

FROM inputs

)
SELECT ’emit’, , , , , ,(ee 1)
FROM inputs

UNION ALL
SELECT ’goto’,’b4’,cloud,p,p�,
FROM assign

WHERE TRUE -- unconditional GOTO
)

Figure 12: Block-level mapping 7! (de�ned in Figure 11) gen-
erates SQL code fragment q(b3) for basic block b3.

• the union of all rows output during the computation is available
once CTE loop completes. The rows with kind ’emit’ in the
union table collectively represent the result of the program run.

2.4 Batched Program Execution
It is a staple of the SQL code generated by Rule P������ that it real-
izes execution for an entire batch of B æ 1 program inputs. Each row
returned by the CTEs q(b8 ) and loop tracks the program state—
current CFG block and variable bindings in columns {label} [
LC—of one of these executions. Each such execution may indepen-
dently follow its own control �ow path, return results, or terminate.

Let us evaluate the generated SQL code q(giftwrap(c)) for
program giftwrap over an input batch of arguments cloud 2
{�,⌫,⇠} (with batch size B = 3) as follows:
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hinputs, LCi := blockInputs (⌧ ) b1
7! cte1

1=1..=

! – {blocks in G performing JUMPs} ⇢ – {blocks in G performing EMITs}

Z)
b1

b2

b3

b=

WITH RECURSIVE loop(kind,label,lc8
8
,result) AS (

(SELECT ’jump’,’b1’,hprogram inputsi, )
UNION ALL -- recursive union

(WITH cte1
1=1..=

SELECT ’jump’,label,lc8
8
, FROM q(; 9 ) WHERE kind=’jump’

9

UNION ALL UNION ALL

SELECT ’emit’, , 1..|LC |
,result FROM q(4: ) WHERE kind=’emit’

:

UNION ALL)
)
SELECT result FROM loop WHERE kind=’emit’ -- final program result

(P������)

Figure 13: Flummi’s stage 2�: progam-level mapping⌧ Z) q(⌧): assembling block-level SQL fragments using recursive CTE loop.

SELECT c AS cloud, p AS hull
FROM (VALUES (�),(⌫),(⇠)) AS c,
LATERAL q(giftwrap(c)) AS p

We obtain the trace of intermediate CTE results reproduced
in Figure 14. (Here we assume that table points holds point clouds
with identi�ers �, ⌫, and ⇠ whose convex hulls contain points
{01,02,03,04, ...}, {11}, and {21, 22}, respectively.) Program execu-
tion starts in basic block b1 for a batch of size B = 3 rows with
(kind, label) = (’jump’, ’b1’). Through the iterations 8

(8 = 1, 2, ...) of the recursive CTE loop, the trace shows the re-
sults returned by the CTEs q(b8 ). The subset of rows marked by ⇧
form the contents of working table loop: these rows de�ne the pro-
gram output (kind = ’emit’, see column result) or direct control
�ow back to loop entry block b3 (kind = ’jump’).

We note the following:
• If we consider the bindings for row variable c (see the grey

rightmost column in Figure 14), the ’emit’ rows indeed de�ne
the expected result set of (c, p) pairs {(�,01), (�,02), ..., (⌫,11),
(⇠, 21), (⇠, 22)}.

• Program executions for a batch of arguments are independent:
execution for argument cloud = ⌫ stops before execution for
argument ⇠ stops while execution for argument � continues.

• q(b1) and q(b2) merely return the empty row set ú once the
control �ows for all executions have entered the loop b3–b4 in
iterations 2, 3, ... of the recursive loop CTE.

• Only the JUMPs back to loop entry block b3 end up in working
table loop (GOTO-based block transitions do not).

3 EXPERIMENTS WITH 17 PROGRAMS
Our focus has exclusively been on program
giftwrap until now, but this section will
study the runtime behavior of a collection of
17 imperative programs (see Table 2) of vary-
ing complexity, from a loop-less few-liner
to a complete ray tracer. The ray tracer ray
renders the 512 ⇥ 512 pixels of the image
on the right (the scene de�nition has been adapted from [24]) in
5 seconds, i.e., at about 20 ţs/pixel, if we draw on Umbra as the SQL
backend [32].

kind label cloud p p� result c

’jump’ ’b1’ � � ⇧
’jump’ ’b1’ ⌫ ⌫ ⇧
’jump’ ’b1’ ⇠ ⇠ ⇧

q(b1 ) ’goto’ ’b2’ � 01 �
’goto’ ’b2’ ⌫ 11 ⌫
’goto’ ’b2’ ⇠ 21 ⇠

q(b2 ) ’goto’ ’b3’ � 01 01 �
’goto’ ’b3’ ⌫ 11 11 ⌫
’goto’ ’b3’ ⇠ 21 21 ⇠

q(b3 ) ’emit’ 01 � ⇧
’emit’ 11 ⌫ ⇧
’emit’ 21 ⇠ ⇧
’goto’ ’b4’ � 02 01 �
’goto’ ’b4’ ⌫ 11 11 ⌫
’goto’ ’b4’ ⇠ 22 21 ⇠

q(b4 ) ’jump’ ’b3’ � 02 01 � ⇧
’jump’ ’b3’ ⇠ 22 21 ⇠ ⇧

q(b1 )
q(b2 )
q(b3 ) ’emit’ 02 � ⇧

’emit’ 22 ⇠ ⇧
’goto’ ’b4’ � 03 01 �
’goto’ ’b4’ ⇠ 21 21 ⇠

q(b4 ) ’jump’ ’b3’ � 03 01 � ⇧

q(b1 )
q(b2 )
q(b3 ) ’emit’ 03 � ⇧

’goto’ ’b4’ � 04 01 �

q(b4 ) ’jump’ ’b3’ � 04 01 � ⇧

ba
tc
h

ú
ú

ú
ú

...

0

1

2

3

4

LC

Figure 14: Intermediate CTE results of the SQL code for
giftwrapwhen invoked on batch {�,⌫,⇠} of cloud arguments
( 8 indicates the 8-th iteration of recursive CTE loop).

An accompanying GitHub repository3 holds the 17 imperative-
style source programs, renderings of their original and optimized
CFGs, as well as the Flummi-generated SQL code, ready for exe-
cution on DuckDB, Umbra, and PostgreSQL. We have speci�cally
authored these programs to exercise aspects of Flummi but have also
incorporated three entries from the ProcBench benchmark suite [19]
of PL/SQL UDFs (marked with �� in Table 2). Source program size
varies, with ray comprising about 300 lines which Flummi compiles
into 3,000 lines of SQL code.

3https://github.com/flummi-compiler/PVLDBv17
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Table 2: Collection of 17 imperative programs with code characteristics and runtimes per invocation. Measured on DuckDB.

Program CC Loops + #Blocks #Variables Runtime per Invocation [ms] Batching
queries total / LC 1/5 batch / 5/5 batch Speedup sizes 1/5 ... 5/5

giftwrap convex hull of a point cloud 2 q 5 3 / 3 0.162 / 0.157 (1.04⇥)
march track border of a 2D object 2 q 4 5 / 4 338.704 / 76.845 (4.41⇥)
vm execute code on a simple VM 31 q 67 8 / 7 24.733 / 12.290 (2.01⇥)
oil 2D rotational line sweep 3 q q 8 9 / 8 86.275 / 36.429 (2.37⇥)

visible visibility in a hilly 3D landscape 3 q q 8 10 / 9 82.975 / 17.745 (4.68⇥)
force =-body simulation (Barnes-Hut tree) 4 q q 11 9 / 5 20.439 / 8.258 (2.48⇥)
ray ray tracer (adapted from [24]) 5 q q q q q 63 58 / 28 0.206 / 0.152 (1.36⇥)
ship determine preferred shipping method 1 qqq 7 4 / 1 0.014 / 0.004 (4.04⇥)
late identify delayed orders (�����&21) 3 q q 9 6 / 5 938.750 / 777.450 (1.21⇥)

supply try to reduce supplier costs 3 q qq 9 7 / 4 0.010 / 0.009 (1.11⇥)
savings optimize supply chain of orders 3 qq qqqq 8 5 / 2 0.013 / 0.010 (1.25⇥)
margin buy/sell parts with maximum pro�t 6 q q q 13 7 / 6 0.022 / 0.018 (1.19⇥)
sched schedule production of lineitems 4 qq q q 13 10 / 9 0.118 / 0.041 (2.89⇥)

packing tightly pack lineitems into containers 5 qq q 17 10 / 9 0.074 / 0.038 (1.98⇥)

��

distinct �nd unique entries in word list 2 9 4 / 3 0.002 / 0.001 (1.21⇥)
profit sum daily net pro�t in date range 2 qq 6 5 / 3 18.024 / 4.056 (4.44⇥)
promo conversions in promotion channels 4 qqq 7 11 / 1 1.400 / 0.289 (4.84⇥)

We compile and execute these programs to assess
• how contemporary database engines (DuckDB [35] andUmbra [32],

in particular) implement query decorrelation techniques that
support the e�cient batched evaluation of Flummi-compiled
programs,

• how Flummi’s CFG-centered compilation compares against
our earlier work on PL/SQL-to-SQL translation (which relied on
a more involved chain of translation steps [23]),

• how the EMIT-based generation of table-valued program
results fares against an array-centric programming style, and

• how Flummi-generated SQL code admits parallel evaluation
(in contrast to Umbra’s native UmbraScript compiler [32] which
translates imperative programs into single-threaded machine
code).

Program characteristics. In Table 2, columnsCC (cyclomatic com-
plexity, i.e., the number of independent control �ow paths [28]) and
Loops aim to measure the control �ow complexity of the 17 pro-
grams. For margin, q q q indicates that the program comprises two
loops nested inside each other ( ), with black-boxed SQL queries q
embedded at program top level as well as in the outer- and inner-
most loops. (Youwill �nd that ship and promo are the only loop-less
programs.) Column #Blocks reports the number of basic blocks
in the programs’ CFGs. Since blocks equate CTEs, this count also
re�ects the number of q(b8 ) in the emitted SQL code. Destructive
variable assignment is a staple of the imperative programming style.
Column #Variables reports how many program variables are in
use (the loop-carried variables in set LC are alive across iterations
and thus are held in CTE working table loop, cf. Figures 5 and 14).

The following discussion is based on timings taken on a 64-bit
Linux x86 computer with two AMD EPYC™ 7402 CPUs running
at 2.8GHz (24 cores/48 threads per CPU) and 2TB of RAM. This ma-
chine hostedDuckDB v0.10.0,Umbra v0.1-1285, and PostgreSQL v16.1.
The Flummi compiler itself has been implemented in Python—in
the experiments, compilation times never exceeded 100ms. For all
experiments, we report the median run times of three repeated
program runs.

3.1 Query Decorrelation Leads to Batching
Query decorrelation as proposed by Neumann and Kemper in [33]
and implemented in, e.g., DuckDB, HyPer [31], Materialize [29], or
Umbra, automatically leads to the formation of batches of program
arguments (Section 2.4).

The correlated occurrence of row variable c on the right-hand
side of the LATERAL join in

SELECT c AS cloud, p AS hull
FROM clouds AS c,
LATERAL q(giftwrap(c)) AS p

suggests an iterated argument-by-argument evaluation of the invo-
cations giftwrap(c). With decorrelation, instead, the query engine
follows the steps �����-����1-���:
[�����] Collect a duplicate-free table of all bindings for ar-

gument c (cf. the contents {�,⌫,⇠} of column cloud in the top
batch of Figure 14).

[����1] Evaluate the plan for q(giftwrap(c)) once over the
binding table. Decorrelation transforms the plan such that it
attaches the associated binding for argument c to any emitted
result row (recall the grey column c in Figure 14).

[���] Replicate results to compensate for the duplicate argument
elimination in step �����. Program execution over repeated
arguments has thus been avoided.

The larger the batch size, the more program executions share the
e�ort to set up and evaluate the recursive CTE in q(giftwrap(c)).
In consequence, the Runtime per Invocation on DuckDB (see Ta-
ble 2) signi�cantly drops if we grow the batch size by a factor
of 5. Column Batching sketches how invocation time declines as
batch sizes increase. (What constitutes a full batch depends on the
program: for ray, say, we render 262,144 pixels, for giftwrap we
compute the convex hull of 1,000 point clouds.)

Automatic program result caching.Database engines that do not
implement decorrelation of subqueries, e.g., PostgreSQL, will execute
q(giftwrap(c)) once per program invocation, i.e., argument by
argument. For programs force, march, and packing, Figure 15

4703



20.4ms

0
force

339ms

0
march

821 ţs

0
packing

400 ţs

0
giftwrap

1/5 2/5 3/5 4/5 5/5

250ms

0

batch size

visible

Figure 15: Time per program invocation on DuckDB ( ) and
PostgreSQL ( ) as batches grow from 1/5 to full size.

3.70ms

0

9.76⇥giftwrap

1/5 2/5 3/5 4/5 5/5

541ms

0

9.65⇥

batch size

visible

Figure 16: PostgreSQL’s LATERALmemoization improves pro-
gram invocation times ( : memoization disabled).

indeed shows how PostgreSQL is una�ected by the batch size while
DuckDB shows the expected invocation time savings. In the case
of march, evaluation over larger batches allows DuckDB to catch
up with PostgreSQL’s clever exploitation of indexes.

However, when batches contain duplicate arguments—we have
speci�cally crafted such batches with 90 % duplicates for programs
giftwrap and visible—both backends appear to bene�t. While
this is expected for DuckDB (and the deduplication step ����� built
into decorrelation), for PostgreSQL we instead observe the e�ect
of its memoizing implementation of LATERAL joins: results of the
join’s right-hand side are memoized and reused when row variable
bindings reoccur on the left-hand side. For the duplicate-heavy
batch, PostgreSQL’s EXPLAIN ANALYZE documents a 90 % hit rate for
the system’s Memoize plan operator. This matches the 9-fold invo-
cation time speedup we observe for giftwrap and visible when
we execute these programs with LATERAL memoization enabled
(see Figure 16).

3.2 Flummi Aids Vectorizing Pipelining Engines
How does Flummi fare against our PL/SQL-to-SQL compiler devel-
oped in [23]? The latter operates on the level of individual assign-
ment statements (rather than basic blocks) and translates sequences
of = such assignments into a chain of = � 1 LATERAL joins which,
gradually and only at query runtime, assemble a table of bindings
for the variables in scope. In consequence, the SQL code generation
strategy of [23] leads to chains of dependent joins (borrowing
notation from [33]): in these joins, the evaluation of the right-hand
side depends on rows delivered by the left-hand plan. Figure 17
(left) shows such a join chain for a sequence of three statements

. Modern query engines like DuckDB implement using the

1

2 3

3

2

1

Figure 17: Plan shapes for statement sequences: [23] (left) vs.
Flummi.

281 ţs

0
giftwrap

400 ţs

0
149ms

0
oil

26.1ms

0

1/5 2/5 3/5 4/5 5/5

454 ţs

0

batch size
(on DuckDB)

packing

1/5 2/5 3/5 4/5 5/5

821 ţs

0

batch size
(on PostgreSQL)

Figure 18: Invocation times observed for Flummi ( ) and
the LATERAL-based SQL code generator ( ) of [23].

�����-����1-��� strategy and thus materialize the results of the
subplans 1 and 2 (in step �����), disrupting pipelined plan
evaluation: while deduplicating joins enable batched program eval-
uation as discussed in Section 3.1, they are a bane of the compilation
of long statement sequences.

Flummi’s SQL code generator avoids this conundrum through
the linear chaining of CTEs (recall Figure 8b): sequences of GOTO-
connected basic blocks are compiled into stacks of CTEs as shown
on the right side of Figure 17. Already at SQL code generation
time, we �x the schemata of these CTEs to hold columns for all vari-
ables in scope using Algorithm blockInputs of Section 2.2. Engines
can inline these CTEs (e.g., as DuckDB does) and/or stream rows
through the resulting plans, facilitating vectorized and pipelined
query evaluation.

These observations about plan shapes are mirrored by the pro-
gram invocation times reported in Figure 18. As expected, DuckDB
bene�ts from Flummi’s CTE-centric compilation. PostgreSQL re-
mains largely una�ected by the change of SQL code generation
strategy: its query engine evaluates both the stack of CTEs emitted
Flummi as well as the chain of LATERAL joins generated by [23]
using a nested loops strategy.

3.3 Lump GOTO with JUMP?
Flummi translates looping (JUMP) and non-looping (GOTO) control
�ow di�erently. Clearly, we could unify both, i.e., treat GOTO just
like JUMP, and thus streamline SQL code generation even further.
Would program run time su�er?

To this end, we patched Flummi to implement all control �ow
via JUMPs:
• Programs now place more rows with kind = jump in working ta-

ble loop (in the trace table of Figure 14, all gotos in column kind

are replaced by jumps and all rows are marked by ⇧). At pro-
gram run time, even straight-line or branching control �ow
transitions now require an iteration of the recursive CTE and
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0
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Figure 19: Implementing all control �ow in terms of JUMPs
( ) vs. Flummi’s CTE chaining for straight-line/branching
GOTO ( ). Program invocation times, measured on DuckDB.

thus the maintenance of working and union tables. Figure 19
paints a clear picture of the resulting performance loss (measured
on DuckDB).

• In contrast, an implementation of GOTO in terms of CTE chaining
(Figure 8b) makes non-looping control �ow a query planning
time issue. The underlying SQL engine may even inline refer-
enced CTEs into their referrer: a single query block is formed
that realizes an entire sequence of program statements. Less
iterations of CTE loop are required and program run time is
reduced.

3.4 Streaming EMITs vs. Array-Valued Programs
Recent work on the translation of imperative code into plain SQL
supports programs that return a single scalar result [23, 37]. To
circumvent this restriction, programs resort to assemble set-valued
results in bulk-typed variables—in an array xs, say, that is repeat-
edly appended to via xs^ xs + ⇢. Array xs is returned only when
the program stops.

Result accumulators like xs are typically loop-carried: the—
potentially sizable—array is passed from iteration to iteration by
saving it into a working table. If xs grows element by element
across = iterations, the program moves 1+ 2+ ··· += = 1/2 · (=2 +=)
elements overall. This overhead can have a detrimental impact on
program run time [21, 23].

In Flummi, instead, programs may repeatedly use EMIT⇢ to re-
turn set-valued results element by element. These emitted values do
not pollute the working tables of subsequent iterations (recall 0 + 0
in Figure 11a). Query engines that follow a Volcano-style or push-
based execution discipline (e.g., PostgreSQL or DuckDB/Umbra, re-
spectively), can immediately pass emitted elements to the invoking
query which thus is not blocked until program completion. One
bene�t of such a streaming implementation of set-valued programs
can be observed in Figure 20: the execution time until a program
issues its �rst EMIT (as opposed to: until the program STOPs) de�nes
its response time.

3.5 Unlocking Parallelism on Umbra
The ongoing research work on Umbra [32] aims to architect a
database system that supports computational workloads beyond
vanilla relational queries. Umbra’s query compiler generates na-
tive machine code for queries formulated in both a rich dialect of

400 ţs

0
giftwrap

28ms

0
march

821 ţs

0
packing

1/5 2/5 3/5 4/5 5/5

116 ţs

0

batch size

savings

Figure 20: Streaming unblocks set-valued programs and im-
proves response time: run time until the �rst EMIT ( ) vs.
until termination via STOP ( ). Measured on PostgreSQL.

SQL and the system’s scripting language UmbraScript. Much like
Flummi, UmbraScript encourages imperative-style programming
using (1) statement sequences, (2) conditional branching, (3) up-
datable variables that can be bound to the results of embedded
scalar SQL query blocks, and (4) cursor loops over tabular query re-
sults. The accompanying GitHub repository3 contains UmbraScript
formulations for a subset of the programs in Table 2.

UDFs whose bodies are expressed in terms of such scripts are
invoked argument by argument, i.e., no batching is performed. This
severely limits the parallelism available outside of embedded SQL
query blocks. Indeed, Umbra compiles scripts into single-threaded
machine code and, as we write this, the system’s morsel-based par-
allel evaluation strategy [26] thus exclusively applies to plain SQL
queries. A parallelism-aware rewrite of the UmbraScript compiler
would need to understand the interplay of batching and possibly
deeply nested iteration (e.g., loop patterns like or ) and thus
draw on nested parallelism techniques (e.g., as explored by Blel-
loch [5]). Paraphrasing Umbra’s main developer, this “would be a
major undertaking.”

Umbra parallelizes Flummi-generated SQL. Flummi-compiled
programs, however, realize all computation in terms of plain SQL
query blocks: Umbra’s parallelization strategy applies throughout,
covering the evaluation of embedded queries as well as the execu-
tion of control �ow. In consequence, if parallel compute resources
are indeed available, we �nd the run time of Flummi-generated
code to match or—often signi�cantly—improve those obtained
with Umbra’s native script compiler (see Figures 21 and 22). While
Flummi can bene�t from an increase in argument batch size and/or
thread count on Umbra, it is typical for UmbraScript code to show
a rather �at or irregular run time pro�le instead (e.g., see pro-
grams giftwrap and visible in Figure 21). Additional threads aid
UmbraScript only if embedded SQL queries account for a lion share
of script execution time. (In Figure 21, we include program invoca-
tion times on DuckDB to demonstrate that Flummi’s exploitation of
parallelization opportunities is not tied to a speci�c backend.)

3.6 Head to Head: SQL Engine vs. Python
Contemporary Python has been engineered to interpret imperative
programs e�ciently. Paired with DuckDB-speci�c bindings, Python
programs are enabled to execute embedded SQL queries within
the interpreter process itself [35]. We chose this widely deployed
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Figure 21: Flummi exploits parallelization opportunities that come with batching ( 1 thread, 12 threads, 24 threads).
For a comparison of Flummi-generated SQL code vs. Umbra’s native UmbraScript, see Figure 22.
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Figure 22: Umbra, running 24 threads: invocation times for
Flummi-generated SQL ( ) vs. native UmbraScript ( ).

setup to serve as a baseline for this section’s �nal assessment of
the runtime performance of Flummi-compiled programs. To this
end, we transcribed �ve of our sample programs of varying control
�ow complexity into equivalent Python functions. We kept the
imperative program �avor but locally adapted the code to re�ect
Python’s speci�cs (the Python code for these functions is included
in the GitHub repository3):
• Functions rely on a function result cache to avoid redundant

computation in the presence of duplicate inputs (thus mimicking
the e�ect of Flummi’s �����-����1-��� through decorrelation,
see Section 3.1).

• Groups of embedded SQL queries are bundled to yield a single
query that returns multiple results which the function receives
using Python’s multi-target assignments. In ship, for example,
we bundled all three embedded queries (e�ectively turning qqq

into q, recall Table 2).

Table 3: Flummi’s speedup over Python on DuckDB.

Program Speedup

giftwrap 1.64⇥
packing 68.96⇥
supply 43.46⇥
ship 1489.57⇥
distinct 0.37⇥

• Function execution is parallelized using Python’s builtin multi-
processing module which may call on up to 24 workers.

Table 3 reports that DuckDB evaluates the Flummi-compiled SQL
code signi�cantly faster than Python can run the equivalent func-
tions over the same input tables. If program runtime is dominated
by the embedded queries, Flummi’s advantage is less pronounced
(giftwrap). In case of a continued back and forth between Python
interpretation and the evaluation of embedded SQL queries (which
occurs 150, 000 times across all invocations of the Python variant
of ship), the runtime performance of Flummi’s single-query SQL
output is out of reach for Python. Programs that need not access
database-resident data at all, however, remain better served by
the runtime environment of a general-purpose programming lan-
guage that has been tuned to execute imperative programs: the
Python variant of program distinct, which iteratively performs
text processing independent of any tabular data (and thus is of
kind , see Table 2), executes more than twice as fast as its Flummi-
compiled SQL equivalent.

We contend that SQL engines indeed can excel at the execution
of imperative programs over database-resident data.

4 ADDITIONAL RELATEDWORK
Flummi compiles imperative programs into plain SQL. This partic-
ular choice of target language has salient consequences which we
share with a number of related e�orts:
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The universality of SQL decouples code generation from spe-
ci�c database engines. This is in contrast to approaches that
target APIs that are backend-speci�c (like UDO [40]) or are deliber-
ately low-level (like Redshift’s C++ code generator [2] orWeld [34]).
Flummi, in particular, does not inspect or rely on the contents
of the black boxes and compiles control �ow into (recursive)
CTEs which have been an integral part of the SQL standard for
25+ years [11, 13, 41]. Thus, further backends (e.g.,Materialize [29])
are in immediate reach for Flummi.

Programs may be executed on backends that otherwise do
not o�er support for user-de�ned computation inside the
database kernel. Flummi and similar translators may bring UDF
functionality to, say, DuckDB [35] without the need to implement a
PL/SQL-style interpreter [22, 23, 37].

The decades-old wisdom of RDBMS engineering comes to
bear on imperative program execution. Relational query en-
gines make for runtimes that do not collapse when programs shu�e
large data volumes, e.g., machine learning workloads [4, 12, 39].
Further, the engines’ set-orientation naturally supports batched
and parallel program execution [20].

No back and forth between set-oriented query evaluation and
statement-by-statement program execution. Frequent or costly
switches between both processing modes result in disappointing
UDF performance. This observation led Froid [36, 37] to spearhead a
now very active branch of research on UDF-to-SQL compilation [7,
16, 18, 23, 43, 44]. Flummi expands on these e�orts through its
support for arbitrary control �ow and table-valued programs (Froid
cannot translate 13 of the 17 programs in Table 2).

SQL is su�ciently expressive to serve as the translation tar-
get for a variety of programming paradigms. This includes
imperative languages like PL/SQL [12, 23, 37], Python-like script-
ing [14, 15], declarative languages with a focus on recursion [6, 10,
27], as well as comprehension-centric functional DSLs like LINQ or
Links [8, 17, 30].

5 WRAP-UP
Imperative database programs compute (an aspect which we have
encapsulated inside the query boxes ) and exert control �ow. We
argue that CFGs provide an expressive and workable representation
of both facets: Flummi’s focus on CFGs led to a compilation strategy
that can (1) equate the basic blocks in a CFG with non-recursive
CTEs (facilitating a compact and compositional formulation of
SQL code generation) and (2) build on recursive CTEs to provide
a relational encoding of looping control �ow that naturally copes
with batching (providing a source of parallelism that contemporary
query engines do exploit in practice).

Flummi’s core approach and the use of SQL as compilation target
can be pursued much further. A multitude of loose ends are waiting
to be picked up, among these a notion of parallelism in the spirit
of U���’ fork in which one basic block outputs = æ 2 JUMP rows
to spawn = independent strands of computation which rejoin only
later. We hypothesize that recursive programs can be understood in
a quite similar fashion.
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