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ABSTRACT
GPU-accelerated databases have been gaining popularity in recent
years due to their massive parallelism and high memory bandwidth.
The limited GPU memory capacity, however, is still a major bottle-
neck for GPU databases.

Existing approaches have attempted to address this limitation by
using (1) hybrid CPU-GPU DBMS or (2) multi-GPU DBMS. We aim
to improve prior solutions further by leveraging both hybrid CPU-
GPU DBMS and multi-GPU DBMS at the same time. In particular,
we explore the design space and optimize the data placement and
query execution in hybrid CPU and multi-GPU DBMS. To improve
data placement, we introduce the cache-aware replication policy
which takes into account the cost of shuffle when replicating data
and could coordinate both caching and replication decisions for
the best performance. To improve query execution, we extend the
existing hybrid CPU-GPU query execution strategywith distributed
query processing techniques to support multiple GPUs. We build a
system called Lancelot, a hybrid CPU and Multi-GPU data analytics
engine with all the optimizations integrated.

Our evaluation shows that the cache-aware replication outper-
forms other policies by up to 2.5× and Lancelot outperforms existing
GPU DBMSes by at least 2× on Star Schema Benchmark and 12×
on TPC-H Benchmark.
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1 INTRODUCTION
Graphics Processing Units (GPUs) have demonstrated immense
potential in accelerating database analytics due to their high mem-
ory bandwidth and massive computational power. Efforts in both
academia [16, 37, 38, 49, 61] and industry [2, 4, 6, 8, 14, 15] have con-
sistently shown that GPU DBMSes can achieve remarkable speedup
ranging from 10–25× over CPU DBMSes. As modern GPU hard-
ware rapidly evolves, the performance gap between CPUs and GPUs
continues to widen, potentially leading to even greater speedup
in the future. For instance, over the past three years alone, GPU
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peak performance and memory bandwidth have increased by 5×
and 3.5× respectively [10].

While GPUs present a promising opportunity for database accel-
eration, they frequently encounter a limitation: the dataset often
exceeds the capacity of GPU device memory, which ranges up to
192 GB [1] as of today. To address this challenge, existing research
has adopted several distinct strategies. One effective strategy is to
leverage CPU memory to support larger data sets and execute the
query with both CPU and GPU (i.e., heterogeneous CPU-GPU query
processing) [16, 23, 34, 60]. Such a design can exploit the parallelism
of both CPU and GPU while minimizing the data transfer overhead
between the two devices. Another strategy is to leverage multiple
GPUs (i.e., multi-GPU query processing) [6, 27, 44, 46, 53]. Multi-
GPU systems can offer larger aggregated total GPU memory and
more computational power, leading to a bigger performance gain
compared to a single GPU system.

The solutions developed in prior works, however, only apply
for either hybrid CPU-GPU DBMS with a single GPU [16, 34, 41,
60] or strictly multi-GPU DBMS without the use of CPUs [44, 46,
53]. While some prior systems support both CPUs and multiple
GPUs [6, 23, 36], none of these systems fully explore the design
space produced by the heterogeneity and distributive nature of this
architecture. For example, HetExchange [23] and HERO [36] do
not have a data placement strategy across CPU and multiple GPUs.
HeavyDB [6] resorts to a naive data placement strategy by simply
partitioning the most recently used data across all GPUs.

In this paper, we aim to address the unique challenge of scal-
ing heterogeneous CPU-GPU DBMS to multiple GPUs. One key
challenge in this design space arises from the dual requirements
of both heterogeneity and scalability. To address this challenge, we
propose the Unified Multi-GPU Abstraction. This abstraction aims
to simplify the design space by treating multiple GPUs as a single
large monolithic GPU (shown in Figure 1). By doing this, we can
decouple the design into a two-step process. The first step navigates
the design space between CPUs and the Unified Multi-GPU, and
the second step navigates the design space across multiple GPUs.
Building on this abstraction, we develop Lancelot, a heterogeneous
CPU and multi-GPU DBMS. Lancelot aims to scale the following
critical design aspects in CPU-GPU DBMS to multiple GPUs:

Data placement. Leveraging both CPU and multi-GPU presents
us with the opportunity to (1) cache the data collectively across
multiple GPUs and (2) replicate data across GPUs to reduce com-
munication. Both caching and replication can lead to better query
performance since they can improve GPU utilization and minimize
data transfer between devices. One unique challenge for data place-
ment in this architecture is the coordination between caching and
replication. These two goals may be in conflict, e.g., more data
replicated across GPUs means less data can be cached in total in
GPUs. To achieve the best overall performance, Lancelot introduces
the cache-aware replication policy, a cost-based replication strategy
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that selectively replicates shuffle-intensive data to strike a balance
between caching and replication.

Query execution.Another challenge in scaling a heterogeneous
DBMS to multiple GPUs is to transform the heterogeneous query
plan to leverage multi-GPU hardware. Previous work such as Mor-
dred [60] introduces segment-level query execution, which allows
different segments of a column to execute different query plans de-
pending onwhether the segments are cached in GPU. This approach,
however, does not scale to multiple GPUs, because the number of
subquery plans will blow up due to the fact that segments can be
located across multiple GPUs. In Lancelot, we solve this challenge
by extending the segment-level query execution with distributed
query processing techniques to run efficiently on multiple GPUs.

Overall, this paper makes the following contributions:
• We develop the unified multi-GPU abstraction, which views multi-

GPU devices as a single large monolithic GPU to reduce the
design complexity in hybrid CPU and multi-GPU DBMS.

• We develop a cache-aware replication policy for heterogeneous
CPU and multi-GPU DBMS. The policy takes into account the
cost of shuffling when replicating data and could coordinate both
caching and replication decisions for the best performance.

• We extend segment-level query execution, a fine-grained hybrid
execution strategy to support query plans on multiple GPUs.

• We build Lancelot, a hybrid CPU and multi-GPU analytical en-
gine that incorporates the proposed optimizations. Our detailed
evaluation shows that cache-aware replication can lead to 2.5×
speedup and Lancelot can outperform existing GPU DBMSes by
at least 2× on SSB and 12× on TPC-H.
The rest of the paper is organized as follows: We discuss the

background in Section 2. Section 3 describes the unified multi-GPU
abstraction. Section 4 describes the cache-aware replication policy.
Section 5 describes our hybrid CPU and multi-GPU query execution
strategy and its optimizations. Section 6 describes Lancelot’s imple-
mentation details. Section 7 evaluates the performance of Lancelot.
Section 8 discusses related work and Section 9 concludes the paper.

2 BACKGROUND
In this section, we describe the GPU architecture and previous
works that support query execution on GPUs.

2.1 GPU Architecture
A GPU comprises a hierarchy of memory components and a col-
lection of streaming multiprocessors (SMs). At the bottom of the
hierarchy is the global memory which is often implemented using
the high-bandwidth memory (HBM). Modern GPUs can boast up
to 192 GB of global memory capacity, offering bandwidth reaching
5.2 TB/s [1]. Each SM, serving as the basic compute unit, features a
fixed set of registers and a shared memory accessible by all cores
within the SM. Global memory accesses can be cached in the L1
cache local to each SM or the shared L2 cache across all SMs.

In GPU programming models [3, 7, 12, 54], threads are organized
into thread blocks, typically comprising 32 to 1024 threads, each
executed by a single SM. Threads within the same thread block
can synchronize and share data using the shared memory. Thread
blocks are further divided into groups of 32 threads, known as
warps, which execute instructions following the Single Instruction

Multiple Threads (SIMT) model. Accesses to neighboring memory
addresses by a warp are coalesced into a single memory transaction.

2.2 Data Analytics on GPUs
A flurry of existing works in academia [25, 26, 38, 43, 48, 57, 61] and
commercial systems (e.g, HeavyDB [6], PG-Storm [13], cuDF [4],
BlazingSQL [2]) have attempted to accelerate query execution on
GPUs. Some prior works focused on accelerating individual opera-
tors such as selection [51], join [30, 32, 35, 39, 47, 50, 58], sort [52],
and user-defined functions [59]. There have been works that offer a
complete set of database operations [4, 6, 31, 48, 49] but often suffer
from limited GPU memory capacity. For example, Crystal [49] and
cuDF [4] only support workloads that fit in the GPU memory.

To mitigate this limitation, one common approach is to store
the complete data set on CPUs [6, 37, 48, 61] and execute the
query in multiple stages on GPU. For example, YDB [61] and Hip-
pogriffDB [37] stream the compressed data from CPU memory and
execute one operator at a time. HeavyDB [6] will cache only the
most recently used data in GPU and transfer the rest of the data
from the CPU on-demand during query execution. Even though
such systems no longer suffer from limited GPU memory capac-
ity, the data transfer overhead between CPU and GPU will be the
performance bottleneck due to the limited interconnect bandwidth.

2.3 Heterogeneous CPU-GPU DBMS
To minimize data transfer while supporting datasets larger than
GPU memory, existing works have attempted to use both CPU and
GPU for query execution [16, 23, 29, 33, 34, 36, 40, 41, 60, 62, 63]. By
partially executing the query on CPU, excessive data transfer can
be reduced. For example, CoGaDB [16] and Ocelot [34] cache hot
columns in the GPUmemory and use a cost-based optimizer [17, 19–
21] to assign operators to either CPU or GPU. HetCache [41] caches
NVMe resident data on CPU and GPU based on query processing
throughput and selectivity information. It caches densely accessed
pages in GPUmemory and sparsely accessed pages in CPUmemory.

Finally, Mordred [60] explores the design space of data place-
ment and heterogeneous query execution for in-memory CPU-GPU
DBMS. It introduces the semantic-aware caching policy which takes
into account query semantics, data correlation, and query frequency
when determining data placement between CPU and GPU. It also
introduces the segment-level query execution — a query executor
that can fully exploit data in both devices and coordinate query
execution at a fine granularity. Mordred [60] has been shown to
outperform the other CPU-GPU DBMSes by 11×.

However, despite showing notable performance gains, these
solutions only support a single GPU device, missing the speedup
opportunity of multiple GPUs. Lancelot is built on top of Mordred
with the focus on scaling these solutions to multiple GPUs.

3 UNIFIED MULTI-GPU ABSTRACTION
One key challenge in expanding a heterogeneous DBMS to multiple
GPUs arises from the need to address both heterogeneity and scal-
ability. In Section 3.1, we describe the challenges and discuss the
limitations of previous work. Section 3.2 describes our proposed
solution, unified multi-GPU abstraction, which reduces the design
complexity by treating multiple GPUs as a single large GPU.

4710



Figure 1: Illustration of Unified Multi-GPU Abstraction
3.1 Challenge
In hybrid CPU and multi-GPU DBMS, one key challenge stems
from the need to navigate both heterogeneity (CPU vs GPU) and
scalability (across multiple GPUs) when making design decisions.
Such requirements can significantly escalate the design complexity.
Prior solutions focus on only one aspect but have not thoroughly
explored the design space of data placement and query execution in
hybrid CPU and multi-GPU DBMS. For example, HetExchange [23]
provides a framework to express hybrid query plans but does not
explore the design space of data placement and query execution in
CPU and multi-GPU DBMS. HERO [36] explores the design space
for operator placement but does not address the challenges in other
database aspects, such as data placement and query execution.

3.2 Design Abstraction
To simplify the design space in hybrid CPU and Multi-GPU DBMS,
we introduce the Unified Multi-GPU Abstraction. The main idea
behind this abstraction is to view multiple GPUs as a unified, large
monolithic GPU, rather than as individual discrete GPUs. Figure 1
illustrates this abstraction. With the unified multi-GPU abstraction,
the system design is decomposed into two separate steps:
Step 1: Addressing heterogeneity. In this step, we treat multiple
GPUs as a single GPU with larger aggregated memory and more
processing power. For the case of data placement, the DBMS deter-
mines what data should be cached in the unified Multi-GPU with
respect to the CPU, but does not concern data placement across the
GPUs. By doing this, we can directly apply existing techniques that
have been developed for heterogeneous CPU-GPU DBMS.
Step 2: Addressing scalability. In the second step, we zoom inside
the unified Multi-GPU to address the challenges posed by multiple
GPUs. In particular, the DBMS will decide how the cached data
should be partitioned and/or replicated across the GPUs.

The unified multi-GPU abstraction is tailored for systems with
homogeneous GPUs, which is common in data centers and the
cloud. Moreover, modern GPUs often use fast interconnects like
NVLink, capable of up to 450 GB/s [11], making inter-GPU data
transfer significantly faster than CPU-to-GPU transfer.

In Lancelot, we use the unified multi-GPU abstraction as a guide-
line to explore the design space in hybrid CPU and multi-GPU
DBMS. This abstraction is straightforward and does not require
additional formulation. In the next two sections, we will discuss
in detail the implementation of this abstraction for data placement
(Section 4) and query execution (Section 5).

4 DATA PLACEMENT
Intelligent data placement can lead to better query performance and
memory efficiency in heterogeneous CPU-GPU DBMSes. Lancelot
treats data placement as a caching problem following previous

works [16, 60] — the complete data set resides in CPU memory
and a mirrored subset of data is cached in GPUs. Lancelot borrows
the semantic-aware fine-grained caching policy [60], which is the
state-of-the-art caching policy in heterogeneous CPU-GPU DBMS.

To address data placement across multiple GPUs, Lancelot treats
data placement as a replication problem inspired by previous works
in distributed databases [55] — the data set can be either partitioned
and distributed across multiple GPUs or replicated across multiple
GPUs. Whether a piece of data should be replicated is determined
by the benefit of replication (e.g., reduction of network transfer) and
the associated cost (e.g., extra disk/memory space consumption).

A unique challenge in hybrid CPU and multi-GPU is the correla-
tion between (1) the caching policy in the unified Multi-GPU and
(2) the replication policy across GPUs. More data replication across
GPUs means less data can be cached in total. To achieve the best
overall performance, the caching and replication decisions must be
holistically considered to balance their effects on performance.

Lancelot addresses this challenge by developing a cache-aware
replication policy. The key insight behind the policy is to use a
unified cost model to estimate the effects of caching and replication.
In Section 4.1, we demonstrate how replication can lead to better
performance. Then, we explain the proposed policy in Section 4.2.

4.1 Motivation
4.1.1 The benefit of shuffle-awareness.

In a multi-GPU system, despite being interconnected with high-
speed interfaces like NVLink, data transfer between GPUs can still
be the bottleneck of query execution since NVLink bandwidth is
lower than that of the GPU device memory. Existing multi-GPU
DBMSes always partition the data across multi-GPUs (Figure 2a)
which often results in significant portions of query execution spent
on shuffling data across multiple GPUs [5, 6, 44]. Our experiments
show that when running a co-partitioned join with 4 V100 GPUs
connected by NVLink, around 50% of the total join runtime is
consumed by partitioning and transferring data across GPUs.

By strategically replicating data, we can reduce or even elimi-
nate the data shuffling overhead. Figures 2a and 2b illustrate the
benefit of shuffle-aware data replication. Without data replication
(Figure 2a), joining relations 𝑅 and 𝑆 requires the DBMS to either (1)
broadcast column 𝑍 (which is a join key) or (2) co-partition 𝑅 and
𝑆 on columns 𝑌 and 𝑍 , respectively. Figure 2b shows both GPUs’
cache content after shuffle-aware data replication. By replicating 𝑍0
and 𝑍2, we now only need to broadcast 𝑍1 and 𝑍3 to perform the
join locally in each GPU. Compared to Figure 2a, the data transfer
overhead during join is now halved. Our experiment running join
with 4 V100 GPUs shows that replication can lead to 2× speedup.

4.1.2 The benefit of cache-aware replication.
As depicted in Figure 2b, data replication will consume the avail-

able cache size in each GPU. As replication continues, we will reach
the limit of GPU memory capacity, bringing us to a decision point
where we can either (1) stop replication or (2) opt to continue
replication at the cost of evicting some data back to the CPU.

Continuing replication at the expense of evicting cached data
may result in worse query performance since it may lead to certain
query operations executed on CPUs. Conversely, it may also lead to
speedup, particularly if the evicted data are infrequently accessed
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Figure 2: Illustration of Cache-aware Replication Policy.

Algorithm 1: Update the replication weight for Segment S
# estimate the cost of shuffling

1 Cost = estimateShuffleCost(shuffled_segments)
2 for S in shuffled_segments do

# increment replication weight of segment S
3 S.replication_weight += Cost / (|shuffled_segments| × |CARD|)

Algorithm 2: Decide between Caching and Replication
1 CacheOrReplicate(segment S𝑥 , segment S𝑦 ):
2 if S𝑥 .replication_weight > S𝑦 .caching_weight then
3 for gpu in NUM_GPU do
4 Cache(S𝑥 , gpu) # Replicate S𝑥

5 else
6 gpu =mapSegmentToGPU(S𝑦 ) # Hash function to select gpu
7 Cache(S𝑦 , gpu)# Cache S𝑦 in gpu

(cold data) or involved in operations that can be executed efficiently
on CPUs. This underlines the importance of integrating cache-
awareness into the replication policy to effectively navigate the
trade-off between caching and replication. Such property has not
been exploited by existing works.

Figure 2c illustrates the benefit of cache-aware data replication. In
this example, column𝑋 is only used for aggregation, which does not
introduce much overhead when executed on CPUs. Therefore, the
policy chooses to replicate data from column 𝑍 instead of caching
data from column 𝑋 . Doing this allows the join to be performed
locally in each GPU at the cost of running aggregation on the CPU.

4.2 Cache-Aware Replication Policy
The key challenge of a hybrid CPU and multi-GPU DBMS is to find
a holistic solution to handle both caching and replication decisions.
Replication reduces data transfer between GPUs but also results in
caching less data, hence executing more operators on the CPUs. In
contrast, caching would ensure more operators to be executed on
the GPUs, but may result in excessive data transfer across multiple
GPUs. As both caching and replication would lead to performance
speedup and space consumption in the GPU memory, we need to
resolve the conflict between the two policies to achieve the best
overall performance. The goal of our cache-aware replication policy
is to: (1) selectively replicate data to reduce data transfer overhead,
and (2) navigate the trade-off between caching and replication.

The key insight of our policy is to use a unified cost model to
estimate the effect of both caching and replication. Our policy splits
each column into equal-sized partitions, which we will refer to as
segment for the rest of the paper. The policy will cache and replicate
data on segment granularity. Each data segment will be assigned
weights derived through cost models which will be used to navi-
gate the trade-off between caching and replication. Section 4.2.1

describes the general replication framework and Section 4.2.2 de-
scribes the cost model used by the policy.

4.2.1 Replication Policy.
Our cache-aware replication policy is inspired by the semantic-

aware caching policy used in Mordred [60]. In Mordred, each seg-
ment will be assigned a weight that reflects the benefit of caching
the segment in GPU. The weight is derived using the cost model
from Crystal [49] and data will be cached starting from the segment
with the highest weight. Lancelot uses the sameweight-based mech-
anism for caching data in GPU. Furthermore, Lancelot generalizes
the mechanism to support both caching and replication.

Algorithm 1 shows the shuffle-aware weight update in our re-
placement policy. We execute Algorithm 1 each time we shuffle
or broadcast data during query execution. The algorithm first pre-
dicts the data shuffling cost using the function estimateShuffleCost(),
which utilizes a simple cost model that will be described in detail
in Section 4.2.2. Following this, for each segment that is involved
in data shuffling or broadcast, we will increment the replication
weight by the data shuffling cost divided by the total number of
segments involved and normalized by the table cardinality.

Since both caching and replication policies in Lancelot collect
per segment weight, each segment now possesses two weighted
counters: (1) replication weight from the cache-aware replication pol-
icy and (2) caching weight from the semantic-aware caching policy.
Both policies derive their weights from the same cost model [49], so
that direct comparison between the two weights becomes feasible.
Function CacheOrReplicate() outlined in Algorithm 2 can be used
to determine whether to replicate Segment 𝑆𝑥 or cache Segment 𝑆𝑦
in order to occupy the available GPU cache space: if the replication
weight of 𝑆𝑥 is larger than the caching weight of 𝑆𝑦 , we opt for
replication of 𝑆𝑥 ; conversely, if the caching weight of 𝑆𝑦 surpasses
the replication weight of 𝑆𝑥 , we cache 𝑆𝑦 instead.

For example, in Figure 2, segments from column 𝑋 have low
caching weights since they are only used for aggregation, which
does not impose much overhead when executed on CPUs. In con-
trast, segments from columns 𝑌 and 𝑍 have high caching and repli-
cation weights since joins are expensive and may result in excessive
data transfer across the GPUs. Given that the replication weight
of column 𝑍 is higher than the caching weight of column 𝑋 , Al-
gorithm 2 would decide to replicate 𝑍 rather than caching 𝑋 to
occupy the available GPU memory space.

Since our policy requires prior knowledge of query statistics,
Lancelot gathers these statistics and calculates the weight after each
run. Caching and replication are performed periodically every n
queries, with n being a user-defined parameter set to 100 by default.

4.2.2 Cost Model.
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This subsection explains how the estimateShuffleCost() in Algo-
rithm 1 works. In particular, we use the cost model presented in
Crystal [49] and Mordred [60] to estimate the cost of shuffling or
broadcasting the data across GPUs. These models operate under
the assumption that queries can fully utilize memory bandwidth,
thereby deriving execution time from memory traffic. The accu-
racy of the model has been verified in Crystal on simple operators.
Mordred extends the model to support hybrid CPU-GPU execution
and PCIe, demonstrating acceptable accuracy for the purposes of
caching policy. In this work, we extend the model even further to
support operators used in multi-GPU query execution.

In particular, in distributed query execution with multiple GPUs,
there is an extra cost for data transfer and data partitioning. We
model the cost of data transfer as follows:

data_transfer =
𝑠𝑖𝑧𝑒 (𝑖𝑛𝑡 ) × 𝑁

𝐵𝑊𝑔𝑝𝑢2𝑔𝑝𝑢

Where N is the cardinality of input segments and 𝐵𝑊𝑔𝑝𝑢2𝑔𝑝𝑢 is the
interconnect bandwidth between GPUs. We model the cost of data
partitioning as follows:

data_partitioning =
𝑠𝑖𝑧𝑒 (𝑖𝑛𝑡 ) × 𝑁

𝐵𝑟
+ (1 − 𝜋 ) × 𝑁 × 𝐶

𝐵𝑤

Where 𝐵𝑟 and 𝐵𝑤 are GPU read and write memory bandwidth,𝐶 is
the cache line size, and 𝜋 is the probability the accessed cache line
is in the last level cache. Using these equations as building blocks,
we can express various communication collectives in estimateShuf-
fleCost(). For example, broadcast and all-to-all can be expressed
with a collection of data_transfer between GPUs as follow:

broadcast =
𝑛𝐺𝑃𝑈𝑠∑︂

𝑖=1

𝑠𝑖𝑧𝑒 (𝑖𝑛𝑡 ) × 𝑁

𝐵𝑊𝑔𝑝𝑢2𝑔𝑝𝑢

all-to-all =
𝑛𝐺𝑃𝑈𝑠∑︂

𝑖=1

𝑛𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛∑︂
𝑗=1

𝑠𝑖𝑧𝑒 (𝑖𝑛𝑡 ) × 𝑁𝑖 𝑗

𝐵𝑊𝑔𝑝𝑢2𝑔𝑝𝑢

Similarly, data shuffling can be expressed as data_partitioning on
each GPU followed by an all-to-all communication.

Since our cost model takes into account the hardware properties
(e.g. interconnect bandwidth, GPU memory bandwidth, etc.), our
policy can adapt to various hardware and interconnect speeds.

5 QUERY EXECUTION
Scaling heterogeneous query execution to multiple GPUs intro-
duces new challenges and opportunities. First of all, since caching
and replication are performed in segment granularity, we need to
maintain fine-grain coordination during query execution across the
CPU and multiple GPUs. Previous work has attempted to address
such challenge with segment-level query execution — different seg-
ments of a column will execute different subquery plans depending
on the segments’ location — but does not extend the solution for
multiple GPUs. In Lancelot, we leverage the unified multi-GPU ab-
straction to extend segment-level query execution to multiple GPUs.

Moreover, as discussed in Section 4.1.1, multi-GPU query execu-
tion can introduce significant data transfer overhead. In Lancelot,
we further minimize this overhead by applying several optimiza-
tions from distributed query processing to multi-GPU query execu-
tion. Section 5.1 describes the general query execution framework in
Lancelot and Section 5.2 describes various optimizations in Lancelot
to speedup the query performance.

Figure 3: Example of Query Execution in Lancelot

5.1 Scaling Query Execution to Multiple GPUs
By leveraging the unified multi-GPU abstraction, we can decouple
query execution into two steps: (1) query execution between CPU
and the Unified Multi-GPU, and (2) query execution across multiple
GPUs. We will discuss how Lancelot addresses each step individu-
ally in Section 5.1.1 and Section 5.1.2. Then, we show an example
of query execution in Lancelot in Section 5.1.3.

5.1.1 Query Execution between CPU and the Unified Multi-GPU.
One unique challenge in query execution involving both CPU

and multiple GPUs lies in the communication between the two
device types. Lancelot covers 4 different data transfer scenarios:
Transferring different partitions from CPU to GPUs: In this
scenario, data is partitioned on the CPU before each partition is
sent to different GPUs. Lancelot will utilize all available PCIe lanes
to transfer the data from the CPU to each GPU efficiently.
Broadcasting data from CPU to GPUs: For NVLink-connected
GPUs, Lancelot will send the data to one GPU, which then broad-
casts the data to all the other GPUs. Broadcasting data from the
GPU is typically faster due to the high-speed NVLink interconnect.
For PCIe-connected GPUs, Lancelot will utilize all available PCIe
lanes to broadcast the data from the CPU to each GPU.
Transferring groupby/aggregation results fromGPUs to CPU:
Since merging results in GPU is faster than CPU, Lancelot will first
merge the groupby result in one GPU, before sending it to the CPU.
Transferring join/filter results from GPUs to CPU: In this case,
Lancelot will use all the available PCIe lanes to directly transfer the
different partitions from each GPU to the CPU.

To coordinate fine-grain query execution across CPUs and GPUs,
Lancelot adopts the segment-level query plan [60]. Segment-level
query plan allows different segments of a column to execute dif-
ferent query plans depending on the segments’ location. Lancelot
uses a simple heuristic to push an operation to where the segments
reside to minimize the data transfer. Figure 3a shows an example
of a segment-level query plan. To support multi-GPU query exe-
cution, Lancelot will simply expand each GPU subquery plan to
a distributed query plan (Figure 3b). Doing this will prevent the
heuristic from generating an excessive number of subquery plans.
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5.1.2 Query Execution across Multiple-GPUs.
Lancelot executes a multi-GPU query plan similar to how a

distributed query engine works. For distributed join, Lancelot sup-
ports both broadcast and co-partitioning join. For filtering, Lancelot
executes the operator locally in each GPU. For group-by and ag-
gregation, Lancelot first executes the operator locally in each GPU,
followed by merging the results across all the GPUs.

Lancelot provides three multi-GPU communication routines to
support distributed query plans as follows:
Broadcast: This routine is used to send data from one GPU to
all the other GPUs. Common use cases include broadcast join and
broadcasting intermediate results from the CPU.
Gather: This routine is used to collect data from all the GPUs to
one GPU. Mainly used for merging group-by results across GPUs.
All-to-all: This routine is used in co-partitioned join to exchange
data between every pair of GPUs, allowing a GPU to send and
receive its partition from every other GPU.

Lancelot implements these routines by leveraging NCCL [9], a
topology-aware multi-GPU communication library that has been
optimized to achieve high throughput on multi-GPU platforms.

5.1.3 Example of Query Execution.

Q0: SELECT S.D, SUM(R.A) FROM R,S
WHERE R.B = S.C AND R.A > 10 GROUP BY S.D

Figure 3 illustrates an example of multi-GPU query execution in
Lancelot when executing𝑄0. In this example, 𝑅 is the probe relation
and 𝑆 is the build relation. In Figure 3a, we can see how the query
plan is divided into subquery plans following the segment-level
query plan based onwhere the data is originally located. Specifically,
the query is divided into 2 subqueries:
CPU Subquery: This subquery operates on uncached data (𝐴2,
𝐵2) and executes filter, join, and group-by on CPUs.
GPUs Subquery: This subquery operates on cached data (𝐴0, 𝐵0,
𝐴1, 𝐵1) and executes filter, join, and group-by on GPUs.
Lancelot will launch both subqueries in parallel to utilize all the
available computation power of CPUs and multiple GPUs.

Figure 3b shows the generated query plan after Lancelot expands
the GPU Subquery into a distributed query plan for 2 GPUs. For
simplicity, we will use broadcast join as our join strategy, although
other approaches such as co-partitioning join can also be applied.
To perform the broadcast join, segments𝐶0,𝐶1, 𝐷0, and 𝐷1 will be
broadcasted such that each GPU has the complete copy of relation 𝑆 .
Doing this will allow all remaining operations (filter, join, group-by,
and aggregation) to be executed locally on each GPU. Finally, after
each GPU computes its final result, results from GPU 0 and GPU 1
are merged in GPU 0 before being transmitted to the CPUs for the
final aggregation with the CPU subquery.

5.2 Reducing Data Transfer Overhead
In this section, we describe optimizations we adopt in Lancelot to
further reduce the data transfer overhead across GPUs. We will dis-
cuss three optimizations: late materialization (Section 5.2.1), adap-
tive join (Section 5.2.2), and join reordering (Section 5.2.3).

5.2.1 Multi-GPU Late Materialization.
During query execution, transferring intermediate relations can

often be expensive. For example, a co-partitioned join operation

will partition either relation into multiple smaller partitions, and
transfer each partition to the corresponding GPUs. Previous CPU-
based columnar databases used the late materialization strategy
to reduce data transfer by expressing intermediate relations in the
form of row IDs. Lancelot employs a late materialization strategy
specifically tailored for multi-GPU query execution.

During the partitioning phase in co-partitioning join, Lancelot
will reconstruct only the join key columns used by the query. The
remaining columns in the relation will be expressed in the form of
row IDs. For subsequent query operations, Lancelot reconstructs
the accessed columns using row IDs lazily, by leveraging the Unified
Virtual Addressing (UVA). UVA is a GPU-specific technology that
allows GPU kernels to directly access peer GPUs’ memory in byte
granularity through the device interconnect (e.g. NVLink).

For queries with highly selective joins, this reconstruction cost
can be negligible, reducing the overall data transfer overhead. For
queries with non-selective join, however, reconstruction can in-
troduce non-trivial overhead due to random accesses to the peer
GPUs’ memory. Hence, to decide whether to do late materializa-
tion, Lancelot leverages a cost model to estimate the reconstruction
overhead as follows:

reconstruction =
𝑁 × 𝐶

𝐵𝑊𝑔𝑝𝑢2𝑔𝑝𝑢
Where N is the number of tuples to reconstruct and C is the cache
line size. Based on this estimation, Lancelot will do late material-
ization if the reconstruction cost is cheaper than the cost of broad-
casting or shuffling the input data (obtained from Section 4.2.2).

5.2.2 Adaptive Join Strategy.
Lancelot supports two types of distributed joins: broadcast join

and co-partitioning join. Since both joins have different costs, choos-
ing the right join strategy could lead to performance speedup. For
example, when joining with small relations, broadcast join is often
more efficient compared to co-partitioning join, since the broad-
casting small relations incurs little overhead. To decide between
the two strategies, Lancelot once again leverages the cost model in
Section 4.2.2 to estimate the cost of both joins and choose the join
strategy with a lower cost. While the model might not be precise,
we find the accuracy to be acceptable for this purpose.

5.2.3 Join reordering.
We can further reduce the data transfer during query execution

by reordering the joins based on their join strategy. In particular,
if we have an n-way joins with a left-deep join tree query plan,
Lancelot will reorder the co-partitioning joins to the end of the
join pipeline. Executing co-partitioning join at the start of the join
pipeline can be expensive since we would need to shuffle the full
input relations that are relatively large. By pushing the joins to the
end of the pipeline, we can speed up the co-partitioning joins as the
sizes of the input probe relations would often have been reduced
by the selectivity of the prior joins in the pipeline.

6 SYSTEMS INTEGRATION
This section describes the implementation of Lancelot, our hybrid
CPU and multi-GPU DBMS. Figure 4 illustrates the architecture
of Lancelot, which consists of three main modules described in
the following subsections: Buffer Manager (Section 6.1), Query
Optimizer (Section 6.2), and Query Execution Engine (Section 6.3).
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Figure 4: Lancelot System Architecture

6.1 Buffer Manager
The Buffer Manager is a CPU component that manages data place-
ment on the CPU and across multiple GPUs in Lancelot. It divides
each GPU memory into two regions:
Data Caching: This is a region that stores the cached or replicated
data in segment granularity. It performs periodic data placement
by leveraging semantic-aware caching and cache-aware replication
policy discussed in Section 4. The segment size is user defined and
set to 4MB by default.
Data Processing: This is a region which stores intermediate results
during query execution (i.e., hash tables, intermediate results, etc.).
Both the data caching and the processing region are pre-allocated
with a fixed size during system initialization to avoid frequent
dynamic memory allocation in the GPUs.

The Buffer Manager also handles the metadata management in
Lancelot. The two main data structures used by our buffer manager
are an array of free lists (one free list per GPU) and a 2-level hash
table. We use the free list in each GPU to track the available slots
in their respective caches. We use the 2-level hash table to store
the location of each segment. The first level maps each segment to
the corresponding GPU, and the second level maps to an address
in the GPU memory. Although using a single-level hash table is
also possible, we opt for 2-level hash table due to its simplicity,
especially since metadata management has a negligible impact on
query performance. The Buffer Manager also stores the segment
statistics in Lancelot, such as the replication weight, caching weight,
and the min-max of each segment.

The metadata of Lancelot resides in the CPU memory. When a
GPU kernel requires some metadata, the Buffer Manager will send
the necessary metadata to the GPUs prior to launching the kernel.

6.2 Query Optimizer
The query optimizer converts a query plan to the segment-level
query plan shown in Figure 3(b). Our original query plan is taken
from Crystal [49] which is already optimized for GPUs.

To decide which operator should be executed on GPUs, our
optimizer leverages the data-driven operator placement[18], where
we execute operators on GPUs only when the input data is cached
in at least one of the GPUs. Subsequently, to construct the multi-
GPUs query plan, the optimizer will replace the join with either
broadcast join or co-partitioning join and apply the optimizations in

Section 5.2.2 and Section 5.2.3. For each group-by and aggregation,
the optimizer will insert a merge operator following the group-by.

6.3 Query Execution Engine
The Query Execution Engine in Lancelot executes the query plan
generated by the query optimizer across CPU and multiple GPUs.
In particular, similar to Mordred, it executes each subquery plan in
parallel and merges the results at the end.

CPU execution in Lancelot is implemented with Intel TBB. GPU
execution in Lancelot is implemented with CUDA, using Crystal
library [49]. Lancelot extends Crystal to support multi-GPU query
execution, such as distributed join and merge operations. Commu-
nication across multiple GPUs is implemented using NCCL [9] and
the cudaMemcpy() primitives in CUDA. To launch a multi-GPU
kernel, Lancelot switches the device context to each GPU using
cudaSetDevice() API and launch the kernel asynchronously in
each GPU by leveraging the cudaStream_t primitives.

7 EVALUATION
In this section, we evaluate the performance of Lancelot. The section
will answer the following key questions:
• How does Lancelot scale as we increase the number of GPUs?
• How does the cache-aware replication policy perform compared

to other data placement policies?
• How much performance improvement is achieved through vari-

ous optimizations introduced in Section 5.2?
• How does Lancelot perform compared to other GPU DBMSs?

7.1 Experimental Setup
Hardware configuration: We ran our experiment with three
different compute instances:
• GPU3.8 instance (OCI): This instance features 8 NVIDIA V100

GPUs connected through NVLink 2.0 with up to 300 GB/s bidirec-
tional bandwidth per GPU. Each V100 GPU has 16 GB of HBM2
memory with a read/write bandwidth of 880 GBps. These GPUs
are connected to 52-Cores Intel® Xeon® E5-2698 via PCIe3 with
12.8 GB/s bidirectional bandwidth.

• GPU4.8 instance (OCI): This instance features 8 NVIDIA A100
GPUs connected through NVLink 3.0 with up to 600 GB/s bidirec-
tional bandwidth per GPU. Each A100 GPU has 40 GB of HBM3
memory with a read/write bandwidth of 1550 GB/s. These GPUs
are connected to 64-Cores AMD EPYC 7542 (Rome) CPUs via
PCIe4 with 25.6 GB/s bidirectional bandwidth.

• g6.48xlarge (AWS): This GPU instance features 8 NVIDIA L4
GPUs paired with 96-Cores AMD EPYC 7R13 (Milan) CPUs. Each
L4 GPU has 24 GB of GDDR5 memory with a read/write band-
width of 320 GB/s. The GPUs and CPUs are connected via PCIe4
with 25.6 GB/s bidirectional bandwidth. Since there is no NVLink,
GPU-to-GPU communication also occurs through PCIe.

Benchmark: Most of our experiments use the Star Schema Bench-
mark (SSB) [42]. The SSB dataset has five tables with one fact table
and four dimension tables. Since the dimension tables in SSB are
very small (< 0.5% of the fact table), we increase the size of the
dimension table to demonstrate more interesting scenarios when
comparing different data placement policies. The supplier, customer,
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Figure 5: Performance Throughput of LancelotwithDifferent
Scale Factors and Number of GPUs

and part tables are now 5%, 15%, and 25% of the lineorder table size
respectively. In Section 7.5, we will also run the experiments with a
subset of the TPC-H benchmark. We follow the method described
in [56] to select a representative subset of queries.

To enable efficient query execution in GPU, we store the data
in columnar stores and dictionary encode the string columns into
integers prior to data loading. Therefore, we ensure that all column
entries are 4-byte in value. In our evaluation, the entire data set is
loaded to CPU memory before each experiment starts.
Measurement: Unless otherwise stated, we dedicate 50% of each
GPU memory for data caching, and the other half for data process-
ing. Before each experiment, we first warm up the GPU memory
by running 100 random queries and then perform the caching and
replication to populate the GPU memory. For each experiment, we
will run 100 random queries and measure the query execution time.

7.2 Scalability Evaluation
This subsection evaluates how Lancelot can scale to multiple GPUs.
In this experiment, we use a GPU3.8 instance and sweep the scale
factor from 40 to 400, measuring throughput when running 100
random SSB queries. 𝑆𝐹 = 40 translates to a total of 7.5GB of data
that are accessed by all the SSB queries (fits in a single GPU cache).
The data size of other scale factors (80–400) is a multiple of 𝑆𝐹 = 40.
In this experiment, the throughput is calculated as the total amount
of input data scanned by the queries divided by the total query
execution time. Figure 5 shows the result of the experiment when
running with 1, 2, 4, and 8 GPUs. The circles around the data points
indicate that the data still fits in the aggregated GPU memory.

Overall, as the data size increases on the x axis, the throughput
decreases especially when the data can no longer be replicated
(more data transfer overhead) or no longer fits in the aggregated
GPU memory (queries are partially executed on the CPU). For ex-
ample, when running with 1, 2, and 4 GPUs, data exceeding 𝑆𝐹 = 40,
𝑆𝐹 = 80, and 𝑆𝐹 = 160 respectively, no longer fits in the GPU mem-
ory, leading to diminished performance. The degradation, however,
can be kept minimum due to our intelligent data placement policy.

Figure 5 also shows that increasing the number of GPUs does not
always scale throughput linearly. For example, the throughputs of 2,
4, and 8 GPUs for 𝑆𝐹 = 40 are only 1.85×, 3×, and 3.85× higher than
a single GPU. This is because when running 𝑆𝐹 = 40 on 4 and 8

GPUs, each GPU only processes a small amount of the data, leading
to underutilization. In Section 7.5.1, we will show an experiment
investigating the scalability when each GPU is fully utilized.

For 8 GPUs, the throughput increases up to 𝑆𝐹 = 160 and then
declines. At 𝑆𝐹 = 40 and 𝑆𝐹 = 80, using 8 GPUs for query execution
results in GPU underutilization, which limits the throughput. As the
data size increases, throughput improves, peaking at 𝑆𝐹 = 160when
each GPU is fully utilized. At 𝑆𝐹 = 240 and 𝑆𝐹 = 320, Lancelot can
no longer fully replicate the dimension tables, leading to increased
data transfer and reduced throughput. Finally, at 𝑆𝐹 = 400, the
data no longer fits in GPU memory, further lowering throughput
as queries will be partially executed on the CPU.

7.3 Comparisons between Different Data
Placement Policies

This subsection evaluates the performance of the cache-aware repli-
cation policy against other data placement policies. In this exper-
iment, all compared policies will use the semantic-aware caching
policy as their caching policy. We will then compare the perfor-
mance of three different replication policies:

• Replication-Only: This policy will replicate all the segments
that are cached across all the GPUs.

• Partitioning-Only: This policy will partition all the segments
that are cached across all the GPUs. Segments are assigned to
different GPUs in a round-robin fashion.

• Cache-Aware Replication: The cache-aware replication policy
described in Section 4.

7.3.1 Performance on Standard SSB.
In this experiment, we sweep the number of GPUs and mea-

sure the query execution time of different data placement policies
when running 100 random SSB queries. We run each experiment
on three different GPU instances: GPU3.8 (V100), GPU4.8 (A100),
and g6.48xlarge (L4); For each configuration, we will use 8GB cache
size per GPU. We sweep the number of GPUs from 1 to 8 and run
the experiment with 𝑆𝐹 = 80, 𝑆𝐹 = 160, and 𝑆𝐹 = 320. Therefore,
all columns that are accessed by queries fit in 2 GPUs for 𝑆𝐹 = 80,
4 GPUs for 𝑆𝐹 = 160, and 8 GPUs for 𝑆𝐹 = 320. The query access
distribution is uniform following the default configuration.

Figures 6(a)–6(c) show the result of our experiment. For V100
GPUs (top) and A100 GPUs (center), Partitioning-Only performs bet-
ter than Replication-Only. On the other hand, for L4 GPUs (bottom),
Replication-Only performs better than Partitioning-Only. Cache-
Aware outperforms the other policies in all the cases.

Replication-Only fails to efficiently leverage the combined GPU
capacity due to the necessity of replicating each segment across all
GPUs. While this approach eliminates the data transfer overhead
between GPUs, it also minimizes data caching within the GPU
memory. Consequently, query execution primarily occurs on the
CPU, leading to performance degradation.

Partitioning-Only can cache the most data in GPUs since none of
the data will be replicated. As a result, it can execute a bigger portion
of queries on GPUs compared to the other two policies. However,
the performance may be suboptimal since fully partitioning data
across the GPUs could incur significant data transfer overhead. This
has been particularly evident with L4 GPUs (bottom). Since these
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Figure 6: Execution Time of Different Data Placement Policies with Uniform (a–c) and Highly-Skewed (d–f) Distribution.
GPUs do not feature NVLink, inter-GPU communication occurs
through PCIe, causing significant performance degradation. On
V100 and A100 GPUs, this policy performs better as transferring
data is cheaper due to the fast NVLink interconnect.

Our Cache-Aware replication outperforms the other policies in
all cases by up to 2.5×. Our policy will replicate segments that give
the most replication benefit which leads to speedup compared to
Partitioning-Only, but stops replication if it starts to hurt caching
performance. Thus, it can better utilize the GPU memory capacity
while minimizing the data transfer overhead across GPU devices.

7.3.2 Performance on Skewed Workload.
This experiment evaluates the performance of cache-aware repli-

cation policy under highly skewed query access distribution. To
simulate nonuniform distribution, we incorporate skewness into
the date predicates of SSB queries such that more recent data has
a higher probability of being accessed by the query. We pick the
values following a Zipfian [28] distribution, resulting in 90% of the
queries accessing the data from the last 3 years. Figures 6(d) - 6(f)
show the results of the experiment.

Overall, Cache-Aware Replication outperforms the other policies
across all scale factors and hardware configurations by up to 3×.
Replication-Only performs better on the skewed workload than on
the uniformworkload. This is because caching only the hot data can
already give us a decent performance speedup for highly skewed
workloads, leaving more GPU memory capacity to benefit from
replication. In fact, despite the faster NVLink interconnect on V100
(top) and A100 (center) GPUs, Replication-Only can outperform
Partitioning-Only at smaller scale factors (SF=80 and SF=160).

We observe more speedup compared to the uniform distribution.
This advantage stems from the policy’s adept handling of skewed
workloads, prioritizing the replication of segments from dimension
tables over caching colder data from the fact table. This strategic

decision yields more substantial speedup in the highly skewed
workload. To better understand the decision making in our policy,
we will dive deeper into the memory statistics in Section 7.3.3.

7.3.3 Memory Statistics.
In this experiment, we show the memory statistics for each data

placement policy. We use 4 GPUs and 𝑆𝐹 = 160 on GPU3.8 instance
and show the memory statistics for both uniform and skewed query
access patterns.e Figure 7 shows the result of our experiment. The
y-axis in the Figure indicates the percentage of data (from the entire
dataset) that are (1) cached, (2) cached and also replicated across
all the GPUs, and (3) not cached in the aggregated GPU memory.

For Replication-Only, the data is either cached+replicated or not
cached. This results in a total of only 25% of the GPU memory being
used to cache data. Since most of the data is not cached, a large
portion of query execution will be executed on the CPU which
results in significant performance overhead.

For Partitioning-Only, the data that are being accessed by the
queries can be cached but not replicated across the GPUs. For
NVLink-connected GPUs, this results in better performance com-
pared to Replication-Only but can result in worse performance in
PCIe-connected GPUs.

For Cache-Aware Replication, there is more variation of data that
are being cached, being replicated, and not being cached. On uni-
formworkload, a total of 84% of the data is being cached, and among
those 84%, 8% are replicated across all the GPUs. Conversely, 16%
of the data is not cached in the GPUs. Further investigation reveals
our policy decides to replicate the smaller dimension tables at the
cost of not caching less relevant columns. For example, segments
from columns that are used in filters (lo_discount) and aggregation
(lo_extendedprice) are not cached since those operations are not
expensive on the CPUs (relatively to columns that participate in
joins). On skewed workload, our policy decides to cache less data
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Figure 7: Memory Statistics of Various Data Placement Poli-
cies (SF = 160, 4 GPUs)

Figure 8: NVLink Traffic of Various Data Placement Policies

in total (60%) but replicate more data at the same time (17%). This
is because, for skewed workload, the cold data (data from earlier
years) are less relevant since it will be pruned by min-max filtering.
Instead, the policy will prioritize replicating segments from the
dimension tables to reduce the data transfer across GPUs.

7.3.4 NVLink Traffic.
To gain deeper insight on each data placement policy, we com-

pare the data traffic going through the NVLink interconnects for
each policy. To obtain this metric, we simply aggregate the total
bytes going across each NVLink channel in each GPU in both direc-
tions. Since Replication-Only will not incur any data traffic across
GPUs, we do not include it in this experiment. We use the uniform
data distribution used in Section 7.3.1 for this experiment.

Figure 8 shows the NVLink traffic when running on GPU3.8
instance. For 𝑆𝐹 = 80, Cache-Aware Replication incurs almost no
NVLink traffic since it manages to fully replicate the dimension
tables. For 𝑆𝐹 = 160, Cache-Aware Replication has higher traffic
for 2 GPUs compared to 4 GPUs. Further investigation reveals
that with 2 GPUs, the policy replicates only 2 dimension tables
(supplier and date), while with 4 GPUs, it accommodates replication
of 3 dimension tables (supplier, date, and customer) by evicting
less-performance-critical segments in the fact table (e.g., filter and
aggregation columns). A similar trend is observed for SF=320, which
results in less traffic for 8 GPUs compared to 4 GPUs.

Overall, across all experiments, Cache-Aware Replication reduces
the NVLink traffic compared to Partitioning-Only. This results in
faster query runtime as shown in Figure 6.

7.4 Breakdown of Optimizations in Lancelot
7.4.1 Speedup after Each Optimization.

Figure 9: Speedup after Each Optimization in Lancelot

Figure 10: NVLinkTraffic after EachOptimization in Lancelot

We now measure the speedup from each optimization applied to
Lancelot. We evaluate the performance gain from three optimiza-
tions: (1) late materialization (Section 5.2.1) (2) adaptive join strategy
(Section 5.2.2), and (3) join reordering (Section 5.2.3). We conduct
the experiment on GPU3.8 instance and sweep the number of GPUs
alongside the scale factor as shown in Figure 9. To demonstrate
the best speedup, we choose a data size in which all the query
processing will be done on GPUs. For this experiment, we reduce
each GPU cache size from 8GB to 4GB since otherwise, NoOpt will
suffer from insufficient memory.

When no optimization is applied (NoOpt), we default to always
use the co-partitioned join as our distributed join strategy. We
will join in the order of selectivity starting with the part, supplier,
customer, and date table. Without late materialization, we always
materialize the relation after each partitioning phase.

Across all scale factors, adaptive join (Adaptive) gives around
1.2× speedup. With this optimization, broadcast join will be used
when joining with smaller tables, whereas co-partitioned join will
be used when joining with larger tables.

By incorporating the join reordering (Reorder), we will reorder
the join such that all the broadcast joins will occur first, followed by
co-partitioning joins. Doing this can significantly reduce the data
transfer between GPUs during co-partitioned joins. We observe up
to 2× speedup after applying this optimization.

Finally, late materialization (Latemat) will give another 1.6×
speedup. Our late materialization strategy will reconstruct only the
join key after each partitioning phase, and utilize UVA tomaterialize
the rest of the columns lazily during query execution.

7.4.2 NVLink Traffic.
To reveal deeper insight, we will show the NVLink traffic after

each optimization is applied. Using the same setup as Section 7.4.1,
Figure 10 shows the result of this experiment.

After applying the adaptive distributed join strategy (Adaptive),
we observe higher NVLink traffic for 4 and 8 GPUs. This is because
switching from co-partitioned join to broadcast join can potentially
increase the amount of data transferred across the GPUs. However,
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Figure 11: Scalability Comparisons Figure 12: SSB Performance of Different GPU DBMS

Figure 13: TPC-H Performance of Different GPU DBMS
this does not necessarily translate to slower query execution time
since the partitioning phase in co-partitioned join can also introduce
non-trivial overhead and is not reflected by the NVLink traffic.

Reordering joins (Reorder) significantly reduces the NVLink
traffic by up to 2.5×. Moreover, the late materialization (Latemat)
can further reduce the NVLink traffic by up to 20%. These traffic
reductions will translate to the speedup we observe in Section 7.4.1.

7.5 Comparison with Other GPU DBMSes
This subsection reports the end-to-end performance evaluation of
four existing CPU/GPU DBMSes:

• DuckDB: DuckDB [45] is an embedded CPU-based analytical
database which supports columnar engine and parallel execution.

• Dask-cuDF: Dask-cuDF [5] is amulti-GPU extension of cuDF [4],
a GPU-accelerated DataFrame library. Dask-cuDF caches the data
in GPUs using the LRU policy.

• HeavyDB: HeavyDB [6] is a commercial multi-GPU DBMS.
HeavyDB caches the data in GPUs using the LRU policy and
simply partition the data across all the GPUs.

• Mordred: Mordred [60] is a hybrid CPU-GPU DBMS which
utilizes the semantic-aware caching and the segment-level query
execution. Mordred, however, only supports a single GPU.

• Lancelot: Lancelot is our prototype of Hybrid CPU and Multi-
GPU DBMS explained in Section 6.

In this Section, we will run four sets of experiments: (1) scal-
ability comparison (Section 7.5.1), (2) query performance on SSB
(Section 7.5.2), (3) query performance on TPC-H (Section 7.5.2), and
(4) query performance on various hardware configurations (Sec-
tion 7.5.3). Throughout the experiment, for Lancelot and Mordred,
we allocate half of the GPU memory as the cache size for each GPU.
For HeavyDB and Dask-cuDF we let the system control the GPU
memory. For this experiment, instead of scaling up the dimension

Figure 14: Performance on Different Compute Instances
table size as described in Section 7.1, we conducted the experiment
using the original dimension table sizes in SSB and TPC-H.

7.5.1 Scalability Comparison.
Figure 11 shows the scalability comparison between Lancelot

and existing GPU DBMSes when running SSB on GPU3.8 instance
(V100 GPUs). To avoid GPU underutilization, we conducted a weak
scaling experiment — we increase the number of GPUs as the data
size increases. Hence, we will use 1 GPU for 𝑆𝐹 = 40, 2 GPUs for
𝑆𝐹 = 80, 4 GPUs for 𝑆𝐹 = 160, and 8 GPUs for 𝑆𝐹 = 320.

The result shows that Lancelot outperforms both HeavyDB and
Dask-cuDF in terms of throughput and scalability. The performance
difference between Lancelot and other GPU DBMSes boils down
to several factors: (1) Lancelot is built on top of Crystal library
which has shown to perform better compared to other GPU DBM-
Ses [22]. (2) Lancelot adopts an intelligent data placement strategy
discussed in Section 4 which is not employed by other GPU DBM-
Ses. (3) Lancelot adopts various GPU database optimizations listed
in Section 5.2 which are not adopted by the existing GPU DBMSes.

Figure 11 also shows that Lancelot throughput is not fully lin-
ear when increasing the number of GPUs. This is because as the
data size increases, the hash table sizes also increase, reducing
join throughput due to higher random access overhead. Since SSB
queries involve multiple joins, this will have a significant impact
on the query performance.

7.5.2 End-to-end Performance Comparison on SSB and TPC-H.
Figure 12 and Figure 13 shows the query performance when

running SSB and TPC-H respectively using 4 V100 GPUs on GPU3.8
instance. In this experiment, we use SF=320 which translates to
about 50% of the total input data cached in the GPU memory.

Compared to DuckDB, Lancelot is 8× faster on SSB and 20×
faster on TPC-H. This is due to the performance gap between CPUs
and GPUs. Compared to Mordred, Lancelot is around 4× faster
on SSB. This is because Lancelot can provide a larger cache size
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compared to Mordred by utilizing 4 GPUs. We do not compare to
Mordred on TPC-H since it does not support TPC-H queries.

Compared to Dask-cuDF, Lancelot is 232× faster on SSB and
522× faster on TPC-H. Dask-cuDF suffers from out of memory
execution which forces the intermediate result to spill to the CPU
memory. This will result in back and forth data transfer between
CPU and GPUs which degrades performance. On TPC-H, Q17 and
Q18 failed since these engines cannot allocate enough memory
space for the intermediate results.

Compared to HeavyDB, Lancelot is around 2× faster on SSB.
HeavyDB is faster for Q1.1 but significantly slower for the other
queries. This is because Lancelot decides to cache columns used
in the other query sets (Q2.x, Q3.x, and Q4.x) since Q1.x are mostly
just scan queries, which are not expensive when executed on the
CPUs. On TPC-H, Lancelot is around 172× faster than HeavyDB.
HeavyDB performance suffers heavily due to large intermediate
results on complex TPC-H queries, resulting in excessive memory
spilling and data transfer between CPUs and GPUs. HeavyDB also
failed to execute Q18 due to out of memory execution.

7.5.3 End-to-end Performance on Various Hardware Platforms.
Figure 14 show the query performance when running both SSB

and TPC-H on three different instances: GPU3.8 (V100), GPU4.8
(A100), and g6.48xlarge (L4). Across all the instances, we use 4 GPUs
and ran the experimentwith 𝑆𝐹 = 320. This results in approximately
50% of the input data being cached in the V100 GPUs’ memory, 75%
in the L4 GPUs’ memory, and 100% in the A100 GPUs’ memory.
The results for GPU3.8 instance are discussed in Section 7.5.2.

Running on the g6.48xlarge instance, we see performance im-
provement across all systems compared to GPU3.8 instance. Even
though L4 has lower memory bandwidth than V100 (330 GB/s vs
1TB/s), the larger GPU memory capacity (24 GB vs 16 GB) and
significantly more CPU cores (192 cores vs 108 cores) made up
for the difference. Despite slightly larger GPU memory capacity,
query failures still occur for HeavyDB (Q18) and Dask-cuDF (Q17
and Q18). On this instance, Lancelot outperforms the the existing
systems by at least 3× on SSB and 12× on TPC-H.

Running on the GPU4.8 instance, we observe performance im-
provement across all GPU DBMSes compared to g6.48xlarge and
GPU3.8 instances since A100 has the largest GPU memory capacity
(40 GB) and the highest memory bandwidth (1.5TB/s). Nevertheless,
query failures still occur on Q18 for HeavyDB. DuckDB runs slower
on this instance compared to g6.48xlarge instance due to fewer CPU
cores (128 cores vs 192 cores), Overall, Lancelot still outperforms
the existing systems by at least 7× on SSB and 115× on TPC-H.

8 RELATEDWORK
There have been several previous systems that attempted to lever-
age multiple GPUs for query execution.

A subset of existing works focused on accelerating individual
database operators with multiple GPUs. Paul et al. [44] and Gao et
al. [27] introduced a hash join implementation on multiple GPUs.
Rui et al. [46] proposed a nested loop, sort-merge and hybrid joins
implementation for multi-GPU. Maltenberger and Ilic et al. [53]
showcased the advantage of multi-GPU sorting with fast intercon-
nects. All these operator implementations are orthogonal to our
work and can be incorporated to Lancelot.

There have also been commercial systems which support multi-
ple GPUs. HeavyDB is an open-source, commercial GPU-accelerated
DBMS. HeavyDB caches the most recently used data and partitions
it across multiple GPUs. HeavyDB does not have a heterogeneous
query execution strategy. When executing data larger than aggre-
gated GPU memory, it will either (1) fallback to query execution
on CPUs or (2) execute the query in multiple stages on GPUs.

PG-Storm is a GPU-accelerated PostgreSQL extension. Its core
feature is GPUDirect-SQL, which enables reading data directly from
NVMe to the GPUs. We do not compare against PG-Storm since the
multi-GPU feature is not open-sourced. PG-Storm does not have
data placement or hybrid query execution strategy.

cuDF is a GPU-accelerated DataFrame Library from NVIDIA.
cuDF can support multiple-GPUs by leveraging Dask [5], hence the
name Dask-cuDF. Similar to PG-Storm, Dask-cuDF does not have
data placement and a hybrid query execution strategy.

BlazingSQL [2] is a GPU accelerated SQL engine built on top of
the RAPIDS [14] ecosystem. Both cuDF and BlazingSQL[2] use the
same internal execution engine but provide different API (pandas
vs SQL). We compare against Dask-cuDF since it remains actively
developed, unlike BlazingSQL, which has been inactive since 2021.

HetExchange [23, 24] is a query execution framework which en-
capsulates heterogeneous parallelism in CPUs and GPUs through
redesigning the classical Exchange operator. It supports just-in-time
code generation and hybrid CPU and multi-GPU query execution.
HetExchange, however, does not address the data placement be-
tween CPU and multi-GPU systems and lacks an optimizer compo-
nent to generate the physical query plan based on the data location.

Finally, HERO [36] proposed an operator placement strategy for
CPU andmulti-GPU systems that can be completely independent on
cardinality estimation of the intermediate result. However, unlike
Lancelot, this work only focuses on operator placement and does
not address the challenges in other aspects of database design such
as data placement and query execution.

9 CONCLUSION
This paper advances the state-of-the-art of GPU DBMS by showing
how to leverage both (1) hybrid CPU-GPU, and (2) multiple GPUs
DBMS at the same time. To simplify the design space, we introduce
the unified multi-GPU abstraction which will treat multi-GPU as a
single large GPU. We then optimize hybrid CPU and multi-GPU
DBMS in two aspects: (1) data placement and (2) query execution.
For data placement, we introduce the cache-aware replication pol-
icy that takes into account the cost of shuffle when replicating
data and could coordinate both caching and replication decisions
for best performance. For query execution, we extend the existing
CPU-GPU query execution strategy with distributed query pro-
cessing techniques to support multiple GPUs. We then integrate
both solutions in Lancelot, our hybrid CPU and multi-GPU DBMS.
Our evaluation shows that our cache-aware replication policy out-
performs other policies by up to 2.5× and Lancelot outperforms
existing GPU DBMSes by at least 2× on SSB and 12× on TPC-H.
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