
Generalizable Data Cleaning of Tabular Data in Latent Space
Eduardo Reis

eduardo.reis@cs.tu-darmstadt.de
Technical University of Darmstadt

Mohamed Abdelaal
mohamed.abdelaal@softwareag.com

Software AG

Carsten Binnig
carsten.binnig@cs.tu-darmstadt.de
Technical University of Darmstadt &

DFKI

ABSTRACT
In this paper, we present a new method for learned data cleaning. In
contrast to existing methods, our method learns to clean data in the
latent space. The main idea is that we (1) shape the latent space such
that we know the area where clean data resides and (2) learn latent
operators trained on error repair (Lopster) which shift erroneous
data (e.g., table rows with noise, outliers, or missing values) in their
latent representation back to a “clean” region, thus abstracting the
complexities of the input domain. When formulating data cleaning
as a simple shift operation in latent space, we can repair all types
of errors using the same method which makes it more robust than
other methods. Importantly, with our method, we can handle errors
that are unseen during the training of our error repair model. We do
not rely on an external error detection method as seen in the state-
of-the-art, instead, we handle both detection and repair within the
Lopster framework. In our evaluation, we show that our approach
outperforms existing cleaning methods even when trained on only
a subset of the errors that occur in the dirty data.

PVLDB Reference Format:
Eduardo Reis, Mohamed Abdelaal, and Carsten Binnig. Generalizable Data
Cleaning of Tabular Data in Latent Space. PVLDB, 17(13): 4786 - 4798, 2024.
doi:10.14778/3704965.3704983

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
github.com/DataManagementLab/data_cleaning_with_latent_operators.

1 INTRODUCTION
Data quality is important. Nowadays companies rely on data
acquired through third parties or open sourced, typically of lower
quality than the small curated datasets collected locally. Evenwithin
the company, data errors and missing values are common due to
human oversight or missing constraints for guaranteeing data qual-
ity. Moreover, as Machine Learning (ML) models become more and
more ubiquitous, one of the main factors for enabling highly accur-
ate models is train data quality. Having dirty data in the training
set severely biases the model towards wrong inferences [18].

High overheads for data cleaning.Much of the manual efforts
of ML engineers are spent today on data engineering, e.g., preparing
data for data analytics. Within the data engineering pipeline, the
initial steps typically concern detecting and repairing errors in the
data, also known as data cleaning. Unfortunately, tabular data can
be highly specialized, has sparse and heterogeneous errors and

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 13 ISSN 2150-8097.
doi:10.14778/3704965.3704983

Error Dimension
(Price)

Learned
Error Repair

Price
150

Price
72

Clean Region

Figure 1: The main idea of Lopster is to learn data cleaning
in the latent space. Key to our method is that we shape the
latent space such that all clean data resides in an identifiable
region. For cleaning the data, we first project a tuple into the
latent space, then with the help of learned latent operators,
we move dirty tuples back to the clean region and decode
this cleaned representation into a clean tuple.

error types overlay each other [8, 28]. Hence, data cleaning is a
cumbersome process done by experts, and although solutions to
partially automate it are available, choosing the best method for
each use case is hard and time consuming.

Learned approaches to the rescue. Automating data cleaning
is thus a goal shared by both the ML and database communities. A
recent approach in this direction is to solve data cleaning using ML.
To be more precise, ML models are trained to learn both error detec-
tion and error repair for the dataset at hand. While these ML-based
cleaning methods show promising results, they can only clean error
types seen during training. As such, many errors stay undetected
and thus might have a negative impact on the downstream ML
model training.

How do learned approaches work? Existing ML-based ap-
proaches for data cleaning are mostly based on the supervised
learning paradigm, where a training dataset requires labeled clean
and dirty data. The standard pipeline for learning a ML-based clean-
ing method is as follows: in the training data, each cell of a table
tuple is labeled as dirty or clean which allows us to train an error
detection model; i.e., a model that decides whether a table cell is
erroneous or not. Next, for each cell that contains an error, the
error type (e.g. missing values, noise) must be identified, and a
correspondent error repair function applied.

Low generalizability of existing approaches. Given the het-
erogeneity of error types in tabular data, it is hard to have a training
set that covers all possible errors that can occur on all the tuples in
the domain of even a single dataset. To aggravate the issue, most

4786

https://doi.org/10.14778/3704965.3704983
https://github.com/DataManagementLab/data_cleaning_with_latent_operators
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3704965.3704983
https://www.acm.org/publications/policies/artifact-review-and-badging-current

error detection methods are typically tied to a set of predefined
error types [22], thus, any error repair method that depends on a
detector is also limited to this subset. Ideally, data cleaning models
have to tackle errors not seen during training, which is a case of
“out-of-distribution generalization” [9]. In such cases, the ML mod-
els have to rely on inductive biases learned during training that are
specific to the set of errors presented in the dirty data, which may
not generalize to new unseen error types.

Data cleaning in latent space.We strive to break this paradigm
by solving any error type with the same repair method. The limit-
ation of having different functions, or models, for different error
types arises from attempting data cleaning in the input space. In
this paper, we propose Latent OPeratorS Trained on Error Repair
(Lopster) as a data cleaning solution with generalization for error
types unseen during training, and no need for an external error
detection method. The main idea is to move the data cleaning task
to the latent space.

Shaped latent spaces. To avoid having different functions to
solve different error types, we project the data to a “shaped” latent
space with structurally separated clean and dirty regions. Next, we
train our Lopster model to map dirty data to a specific direction of
the “shaped” latent space, “orthogonal” to the region used for clean
data. In our model, if the input tuple is clean it will be projected into
the clean region, and if it is dirty it will be projected somewhere
along the error dimension learned by our model, as shown in Fig-
ure 1. Moreover, error repair is simplified to the process of moving
this projection along the error dimension back to the point where
it intersects with the clean region. A key advantage is that error
types unseen during training can be repaired by also projecting
them back alongside this error dimension.

Highly promising results. To evaluate Lopster, we train our
model in a simple set of errors, then compare our results against
other approaches on dirty data generated by a new and unseen set of
error functions, provided by the published data cleaning benchmark
REIN [1]. Through our extensive evaluation in Section 5, we show
that our approach is not only more robust but can indeed generalize
to unseen error types.

Outline of the paper. In Section 2, we first present an overview
of Lopster. Next, we discuss details of the training and inference
procedures in Section 3 and Section 4. In our evaluation in Sec-
tion 5, we show that our method is more general than the existing
approaches while having competitive performance on numerical
columns across all datasets, and superior performance on categor-
ical columns. Also, we evaluate the scalability of our method and the
sensitivity to each hyperparameter. Finally, we iterate over related
works in Section 6 and provide concluding remarks in Section 7.

2 LATENT OPERATORS OVERVIEW
In this section, we first explain the model architecture used for
Lopster, and then its training and inference procedures.

2.1 Model Architecture
Figure 2 illustrates an overview of how Lopster can be used to repair
errors in tabular data. The main idea is to first encode rows of a
table to a latent representation, then apply the error repair in latent
space. Since tabular data can have a varying number of columns,

Price CityRating

100.00 New York3

1300.00 5

230.00 5

70.00 Phoenix2

Chicago

New York

Price CityRating

100.00 New York3

201.50 5

230.00 5

70.00 Phoenix2

Chicago

New York

Decoder
(Price)

Encoder
(Price)

Error Dimension

R
ep

ai
r

St
ep

Clean Data

Dirty Tuple

Figure 2: Our encode-repair-decode architecture. The encoder
maps a dirty tuple into latent space, then a shift function
moves this erroneous latent representation back to the clean
region. Next, the decoder reconstructs the cleaned tuple.

we chose to train one Lopster model per column. In turn, to capture
all important data characteristics of the entire tuple in the latent
space, each instance of the Lopster model for a particular column
still receives the whole tuple as input. However, the model repairs
errors only in this particular column. In other words, a Lopster
model for the 𝑃𝑟𝑖𝑐𝑒 column in Figure 2 receives as input the full
tuple (1300.00, 5, Chicago) where the apartment price is an outlier,
and yields the repaired value only for the attribute 𝑃𝑟𝑖𝑐𝑒 .

The importance of using the whole tuple (i.e., all attributes) for
one instance of the Lopster model is to capture correlations in the
input data. For example, apartment prices in NewYork are in general
much higher than in Phoenix, thus, simply projecting apartment
prices to the latent space would not capture this information. The
same process must then be repeated for the other columns (i.e.,
𝐶𝑖𝑡𝑦 and 𝑅𝑎𝑡𝑖𝑛𝑔) as well, using their respective Lopster instances.
To enable repairs in latent space, we propose a novel encoder-repair-
decoder architecture. While the encoder-decoder architecture is
prominent in ML, we extend it by a repair step after the encoder.
The repair is a simple shift along the error dimension in latent space
back to the region where the clean data is mapped to 1.

2.2 Training and Inference Procedures
Training. The main idea to enable such an encoder-repair-decoder
architecture is that we need to “shape” the latent space, such that the
regions in latent space with clean and dirty data are orthogonal, and
the dirty region can represent a wide spectrum of errors. Therefore,
we follow our training procedure as shown in Figure 3a, where we
start with a clean sample of tabular data. Noteworthy, this clean
sample is provided by the user for training, but we do not assume
every tuple to be perfectly clean. Also, as we show in our evaluation,
a small sample of around 15% of clean tuples from the target dataset
is sufficient to train the Lopster models.

Based on the clean sample, we then create dirty tuples by system-
atically injecting errors into the clean tuples, as shown in Figure 3a.
For injecting errors, we use a procedure based on weak supervi-
sion [27] that uses a set of user-defined transformation functions
T𝑑 = T𝑑1 , ...,T

𝑑
𝑘

where each function injects a different error type.
For example, to inject missing values the function might replace
cell values by NULL, or for outliers we can use functions that mul-
tiplicative increase or decrease cell values (e.g., by 2×, 3×, etc.). We
further discuss our set of transformation functions in Section 3.
1The clean region (blue data points) is shown in Figure 2 as a 2D-plane for simplicity.
In practice, Lopster latent space is higher dimensional to enable rich representations.

4787

Encoder
(Price)

Price CityRating
100.00 New York3

200.00 5 Chicago

Price
100.00

Error Dimension

k1
k2

kmax Span the Error
Dimension

Price ○

Shaped Latent Space

NULL

1300.00

k0
Clean Tuples

Error
Injection

kmax

k0
k1
k2300.00

τk τk

k1 = Missing Values
k2 = 3x
kmax = Marker Value

k0 = Identity

(a) Training Procedure

Decoder
(Price)

Error
Repair

Price

400.00

1300.00

Error Dimension

k1k2kmax

201.50

k1
k2
kmax

k0

Enumerate
Shifts

Shaped Latent Space

NULL
k0

Price

425.00

By decoding the dirty tuple
at every position we can find
the marker kmax

(b) Inference Procedure

Figure 3: An overview of training and inference with a Lopster model. (a) For training, we start with the clean tuples and inject
errors using the set of user-defined transformation functions T𝑑

𝑘
, creating a set of dirty tuples. Next, we train our model to

span up the error dimension by learning from the latent representations of both clean and dirty tuples. (b) For cleaning a dirty
tuple, we first encode the dirty tuple in latent space and shift the representation to every available position in latent space
along the error dimension, then decode them all. We use a marker value (𝑘𝑚𝑎𝑥) to decide which representation is the clean one,
since the distance from 𝑘𝑚𝑎𝑥 to 𝑘0 (e.g., 201.50 in the example) is known.

After generating clean and dirty tuples, we train our encoder-
repair-decoder architecture as follows: we randomly use pairs (𝑥, 𝑥 ′)
of clean 𝑥 and dirty tuples 𝑥 ′, where a function T𝑑

𝑘
is applied

to inject an erroneous value into 𝑥 to create the dirty tuple 𝑥 ′.
Next, we map 𝑥 into latent space in the clean region, apply the
shift equivalent to error type 𝑘 in the error dimension, reconstruct
this shifted representation, and compare it to the dirty tuple 𝑥 ′.
Consequently, the encoder-repair-decoder learns to inject errors in
latent space using shift operations, indexed by 𝑘 .

Important is that we enforce equivariance for the input domain
and the latent space, so we can repair a dirty tuple by simply encod-
ing 𝑥 ′ with the encoder, applying a shift in the “inverse” direction
of the ones used during training, to move the latent representation
back to the clean region, then decode the repaired representation 𝑥 .

Inference. Once the Lopster models latent space is “shaped” to
have an orthogonal error dimension, the task of data cleaning is
reduced to first projecting the tuple into the shaped latent space,
then shifting the representation to the clean region. However, one
question remains: how to identify the distance of the shifts required
for the representations to intersect with the clean region? Since the
distance of the shift is unclear in higher dimensional latent spaces,
and dirty tuples might also be mapped to positions in between
errors on the error dimension. Figure 3b depicts our procedure to
identify how much to shift in latent space. The basic idea is that
we quantize the error dimension by the number of error types 𝐾
used during training, and we make sure that individual errors are
placed at a fixed number of shifts away along the error dimension.
Then, during inference, we iteratively shift the latent representation
step by step back to the clean data region. The non-trivial part
is identifying how many shifts away from the clean region the
encoded tuple representation is. For that, we developed a method
called index discovery trick which relies on a marker value 𝑘𝑚𝑎𝑥
that is explained in Section 4.1.

In cases where the representation lands in between our indexed
positions, which is true for error types unseen during training,
the best representation available in our latent space is the closest

we can get to the clean region. It ends up amounting to the same
number of shifts than the closest known position. For example,
for an unseen error 2.6×, if the closest error (e.g. 3×) we have is
indexed at 𝑘 = 2, the model will apply the same number of shifts
for both cases. Hence, our encoder-repair-decoder architecture can
repair a dirty tuple even if the error was unseen (i.e., it will pick
a representation in latent space that is closest to a known error).
In contrast, existing data cleaning methods [26, 28] need to learn
specific error repair functions for every error type, while Lopster
can apply the same error repair method universally, and is thus
error type agnostic.

3 LEARNING A LOPSTER MODEL
In this section, we detail the key concepts behind the column-wise
encoder-repair-decoder architecture. First, we explain the details of
how we enable the shaped latent space that separates clean from
dirty data, and the need for equivariance in our model. Next, we
discuss the details of learning data cleaning in latent space, and
explain the training procedure and goal.

3.1 Why is Equivariance Needed?
Equivariance is a central research in machine learning today. The
idea is to train a ML model where transformations in the input
space can be replicated directly in the latent space [7, 9, 11, 13, 31].
For example, image-based transformations such as image rotations
(or inverse rotations) can be expressed in latent space to augment
images. While equivariant models have been intensively studied
for such modalities, they have not been applied to tabular data and
we believe that they provide important properties, in particular for
data cleaning as we show in this paper.

Figure 4 shows the basic idea of an equivariant model used in
Lopster for the cleaning of tabular data. In our model error injection
in input tuples is mapped to simple shift operations in latent space
using a shift matrix as explained in Section 3.2, while inverse shifts
are used for cleaning a tuple. As such, a tuple can be cleaned by
encoding it with our encoder, applying the inverse shift to the

4788

Price

100.00

Shaped Latent Space

Price

300.00

Encoding

E
rr

or
 R

ep
ai

r Inverse S
hift

Data Space

Error Injection Shift

err
_dim

err
_dimDecoding

Encoding

Decoding

shift

Figure 4: Equivariance in Lopster models. Once the tuple is
encoded, the Inverse Shift of its representation back to the
clean region (within our shaped latent space), is equivalent
to any arbitrary Error Repair in data space.

encoded latent space representation (multiple times as explained in
Section 2), and then decoding the cleaned tuple. The question now
is how do we benefit from equivariance? To answer the question, let
us contrast our approach to existing learned cleaning approaches
that do not rely on equivariance.

In existing learned data cleaning, models learn the error repair
by using training data which includes clean and dirty tuples directly
on the input data space. However, since error repair functions can
be quite diverse, and they heavily depend on the actual error type
(i.e., we need a very different function for repairing a missing value
and an outlier), the models do not generalize to unseen errors. This
is different from cleaning with our equivariant model, where all
repairs are multiples of the same inverse shift operation in latent
space, i.e., all errors are repaired with the same function. In other
words, this equivariant property allows our model to generalize
better, as shown in our evaluation.

3.2 Learned Cleaning with Equivariance
We consider tabular data as a set 𝐷 composed of 𝑁 tuples with 𝐶
columns each. Our goal is to transform every dirty tuple 𝑥 ′

𝑖
∈ 𝐷 back

to the clean tuple 𝑥𝑖 . To do so, we chose to first project the input
tuples 𝑥 ′

𝑖
into a representation 𝑧′

𝑖
in the latent space of our encoder-

repair-decoder architecture, and then solve the data cleaning task
in latent space using inverse shifts. Unfortunately, the equivariance
between tabular input and latent space transformations is non-
trivial for an ML model to learn [31]. Therefore, we first define
equivariance in our context and then explain how we achieve it
through our training procedure.

In our context, equivariance can be conceptualized as the scen-
ario in which a transformation in the input space, and the corres-
ponding transformation in latent space, are commutative [13]. The
formal definition follows [31]: A function 𝑔 : 𝐷 → 𝑍 is equivariant
under a group of transformations T if for any transformation T𝑘 ,
the following expression holds for any 𝑘 ∈ 𝐾 :

T𝑍
𝑘

◦ 𝑔(𝑥) = 𝑔 ◦ T𝐷
𝑘

(𝑥) (1)
where this equivariance between input 𝐷 and latent space 𝑍 under
T is our model training goal.

As explained before, this property of equivariance is used while
training a Lopster model to span up the latent space, where we
use a set of 𝐾 error injection functions T𝑑

𝑘
. More precisely, for

spanning up the latent space, we chose a simple set of linear scale
transformations (i.e., shifts) during training, where different error
types are mapped to different positions along the error dimension.
For example, in Figure 5 (upper part), a possible set of injected
errors is shown which consists of five different error types defining
the a circular group T𝑑

𝐾
= {𝐼 , 0.33×, 0.66×, 1.66×, 𝑀𝑉 ,𝑀𝑎𝑟𝑘𝑒𝑟 }

𝑚𝑜𝑑 6, where 𝐼 stands for the identity transformation, followed by
different degrees of outliers which simply multiply a value with a
scalar factor,𝑀𝑉 for missing or null values, and a marker position
at the last index 𝑘𝑚𝑎𝑥 .

Figure 5 (lower part) also shows how one instance of our Lop-
ster model can be used for cleaning one column of a table tuple
with inverse shifts in latent space. A tuple is first projected into
latent space and then shifted. Shifts can be simply implemented in
latent space using shift matrices (i.e., the SUP) which have shown
to be adequate for mapping affine transformations from the input
space [5]. The shift matrix 𝑆𝑈𝑃 we use for a latent space with 𝐾
error types is defined as follows:

𝑆𝑈𝑃 =

0 1 0 ...

0 0 1 ...

.

.

.

0 0 ... 1
1 0 0 ...

𝑀×𝐾

As we see in Figure 5, the encoded representation of a tuple can
be seen as the𝑀×𝐾 matrix (𝑍1), where𝑀×𝐾 is the dimensionality
of the tuple representation in our latent space. Important is that
the matrix is structured in 𝐾 rows each having𝑀 columns. Using
the shift matrix 𝑆𝑈𝑃 , the entire encoded representation is shifted
up by one row in this matrix. After training, fixing different errors
can be implemented as a sequence of 𝑘 applications of the inverse
shift using the transposed matrix 𝑆𝑈𝑃𝑇 .

When encoding a tuple, we do not know its position in our error
dimension, the output of the encoder is just a matrix where all 𝐾
rows are filled, which is why we need the index discovery trick. In
Figure 5, we however visualize the row with a dirty representation
as a dark green row to make the idea of the inverse shift visible.
In fact, what the inverse shift matrix is doing is that it shifts all
rows of the encoded tuple up by one and also wraps around; i.e, the
upper row of the encoded input (the𝑀 × 𝐾 matrix) appears as the
bottom row after one shift. As such, to find out how many shifts
are needed to clean a tuple with our index discovery trick, we need
to apply the inverse shift 𝑘-times.

To decide howmany inverse shifts are needed, we use the marker
value on the error dimension to move the dirty representation to
row 0 in the𝑀 ×𝐾 matrix. To be more precise, if we need 𝑖 shifts to
move the latent representation to the marker value, then the clean
tuple will be reached after 𝑘𝑚𝑎𝑥 − 𝑖 inverse shifts. In our example in
Figure 5, we apply two inverse shifts which brings us to the marker.
As such, applying one inverse shift is needed to clean the tuple in
our example as shown by the matrix 𝑍0.

4789

3.3 Training Goal
The orbit of a group of transformations T𝑘 over the input space 𝐷
is all the elements created by applying the different error injection
functions T𝑘 on one column of an input tuple 𝑡 ∈ 𝐷 . For example,
the column Price of a tuple with a value of 100 would span the
orbit {100, 33, 66, 166, 𝑁𝑈𝐿𝐿}, under the set of transformations (i.e.,
the error dimension) depicted in Figure 5. Ideally, after training an
equivariant Lopster model, the orbit of the group of transformations
in latent spaceℎ◦T 𝑧

𝑘
(𝑍) matches the orbit of T𝑑

𝑘
(𝐷) in input space,

where ℎ is our decoder.
In other words, the training goal is for the model to be equivari-

ant to the transformation T𝑑
𝑘

applied to the input 𝑥 , and the shift
T 𝑧
𝑘

applied to the latent vector 𝑧. Hence, the inverse shift T −𝑧
𝑘

(𝑧)
is approximately equivalent to applying the inverse transformation
T −𝑑
𝑘

to 𝑥 (i.e., applying the cleaning of a column of the tuple). We
include the identity transformation as T𝑑0 and T 𝑧0 in the orbit to al-
low the model to represent clean inputs. Borrowing the formulation
from Dupont et al. [7], given an encoder model 𝑔:

T −𝑑
𝑘

◦ T𝑑
𝑘
(𝑥) = T𝑑0 (𝑥) = 𝑥 (2)

𝑔 ◦ T𝑑
𝑘
(𝑥) ≈ T 𝑧

𝑘
◦ 𝑔(𝑥) (3)

following: T −𝑧
𝑘

◦ 𝑔 ◦ T𝑑
𝑘
(𝑥) ≈ 𝑔(𝑥) (4)

therefore, once the Lopster model is trained we can move back to
the clean input position T𝑑0 by applying the inverse transformation
T −𝑧
𝑘

in 𝑧, with the proper index 𝑘 , and then decoding the latent
representation. Notice that the transformations in the latent space
are shifts using the shift matrix 𝑆𝑈𝑃 as discussed before, and the
inverse shift is the transposed shift matrix 𝑆𝑈𝑃𝑇 .

Finally, it is important to note that the quality of an equivari-
ant model for data cleaning depends on how many error types 𝑘
we use to span up the latent space and to define the equivalent
circular group. However, our model generalizes to different 𝑘 . If
we increase to 𝑘 = 8 errors, the equivalent circular group could
be T𝑑

𝑘
= {𝐼 , 0.25×, 0.50×, 0.75×, 1.25×, 1.50×, 1.75×, 𝑀𝑉 }𝑚𝑜𝑑 8. In

our evaluation, we show the sensitivity of our model to 𝑘 in an
ablation study and evaluate the capacity of our model to generalize
to errors that are not in our set of input transformations T𝑑

𝑘
.

3.4 Training Procedure
In the following, we explain the training procedure for training a
Lopster model. To enforce equivariance between input tuple errors
and shifts of our model latent space, we first generate a dirty pair
(𝑥, 𝑥 ′) for each tuple, where 𝑥 ′ = T𝑑

𝑘
(𝑥) is the dirty version of

the clean tuple 𝑥 , transformed by T𝑑
𝑘
. The choice of which error

transformation to apply to 𝑥 is based on a random draw from the
set T𝑑 , allowing for the Identity where 𝑥 = 𝑥 ′.

Oncewe have generated several (𝑥, 𝑥 ′) pairs, we train the encoder-
repair-decoder model using these pairs of clean and dirty tuples.
The idea is that we run a clean tuple 𝑥 through the encoder, shift it
by 𝑘 positions (for the 𝑘 which was used to inject the error), and
then decode the tuple which gives us a new version 𝑥 ′′. To enforce
that the shift operation in latent space represents the error injec-
tion function in the data space, we need to minimize the difference
between 𝑥 ′ (the dirty tuple in the training data) and 𝑥 ′′, which is

Decoder
(Price)

Encoder
(Price)

k = 1

Price
42.00

Z1

x''

SUP Z0

=

x'
Price

101.00

Price X * 1.66 MarkerX * 0.66X * 0.33X

100.00 100.00 33.00 66.00 166.00 500.00

Error Dimension

10
1

1

1

0 0

MV

NULL

0
0
0

0
0
0
0

0
0
0
0

0

0 0
0

0

0
Dirty Tuple Cleaned Tuple

dirty
representation

cleaned
representationshift matrix

Identity
Missing
ValuesOutliers kmax

Figure 5: An equivariant Lopster model for the column
𝑃𝑟𝑖𝑐𝑒 and a set of six error types, learned based on
the following set of error injection functions: T𝑑

𝑘
=

{𝐼 , 0.33×, 0.66×, 1.66×, 𝑀𝑉 ,𝑀𝑎𝑘𝑒𝑟 } 𝑚𝑜𝑑 6, where 𝐼 stands for
Identity (i.e., no error injection), the multiplication factors
stand for outliers of different amplitudes, and𝑀𝑉 stands for
missing values. In addition, we use a marker value in the
error dimension. The encoder task is to project the input to
one of the 𝑍𝑘 indexed positions (𝑍1 in the example). Next,
we can move this representation along the error dimension
using a shift matrix (SUP) resulting in𝑍0. Decoding𝑍0 results
in the cleaned tuple. The dark green row is for visual clarity.

produced by applying 𝑘 shifts in latent space, then decoding. Form-
ally, the loss function that is minimized during training is defined
as follows:

𝐿𝑜𝑠𝑠 =

𝐷∑︁
𝑖=1

| |𝑥 ′ − ℎ ◦ T 𝑧
𝑘

◦ 𝑔(𝑥) | | (5)

where, the functions 𝑔 and ℎ are our encoder and decoder, respect-
ively. Moreover, 𝑘 refers to the index of the transformation T𝑑

𝑘
drawn to transform 𝑥 into 𝑥 ′ for the tuple at hand. In other words,
the reconstruction error is the difference between the decoded dirty
tuple 𝑥 ′, and the decoded tuple 𝑥 ′′, coming from the representation
𝑧′ shifted 𝑘 times.

As we also include the identity function as part of the error
injections, we thus also learn the clean region in the latent space by
the same loss. In other words, when the identity function is applied,
our model acts as an autoencoder.

3.5 Important Design Considerations
On the order of error transformations. Since our latent space
transformations are modular (thanks to the shift matrices), the
mapping of the input errors is also cyclic, such as when the max-
imum index (i.e., 𝑘𝑚𝑎𝑥) is reached, it starts back at position 𝑘 = 0.
Moreover, we defined an ascendant sequence of transformations to
force the model to fill in the intermediary representations, similar
to the temporal coherence explored in [13].

Sorting the indexes of our error injection functions is a way to
guide the training procedure into mapping intermediary positions
in between the set of transformations T 𝑧

𝑘
. For example, 0.5× should

be indexed before 1.5× for the model to map intermediary pos-
itions such as 0.7× or 1.2×. In turn, if the transformations were

4790

unordered, each position of our error dimension is learned as a
static transformation, and in-between representations yield noise.

On disentanglement. Another common goal is for the trans-
formations in the latent space to be disentangled [11]. Without
proper disentanglement between the latent space dimensions, the
attributes of the input tuple are all spread throughoutmultiple latent
dimensions, which is not the desired behavior for our method. For
example, if we trained our encoder-repair-decoder model without
a disentangled operator, as we moved around our error dimension
for the column Price, it would be entangled with other attributes,
such as Age or Income, and the repair step would affect these attrib-
utes unexpectedly. In contrast, the dependence between attributes
in the input domain should be preserved. Our error dimension is
disentangled from other attributes, but the dependencies learned
from data are kept in the non-disentangled dimensions of our lat-
ent space, which also helps our model to generalize. A theoretical
foundation for disentangled latent operators can be found in [5].

How to set 𝑘𝑚𝑎𝑥 ?: When setting the marker value 𝑘𝑚𝑎𝑥 it is
important that we normalize all values to the interval [0, 1], even
the categorical columns. Without this normalization, setting 𝑘𝑚𝑎𝑥
would indeed be problematic. For example, in a personal inform-
ation dataset, 𝑘𝑚𝑎𝑥 = 150 works for the column age, but for the
column income it must be much higher. Therefore, to enable the
index discovery trick, we set 𝑘𝑚𝑎𝑥 after normalizing the values to
avoid having a marker value that is dependent on the range of val-
ues of each column. To be more precise, in all experiments shown
in Section 5, 𝑘𝑚𝑎𝑥 was set to 3.0 for all columns in all datasets.
Noteworthy, in this case if a clean column value at test time is 3×
higher than the maximum value seen during training (e.g., for an
outlier), the model would mistreat the value as potentially dirty.
However, although 𝑘𝑚𝑎𝑥 is the last index of our error dimension,
it is in no way the max value that our decoder model can yield, as
long as the other columns are also higher than seen during training,
such that the learned correlation holds.

4 DATA CLEANING USING LOPSTER
In the following, we discuss how we can use a trained Lopster for
cleaning errors (i.e., how inference with our models works).

4.1 Error Detection Procedure
Current data cleaning methods also use learned approaches [2].
These methods are typically split into error detection and error
repair. The error detection is framed as a binary classification task
to flag each attribute of a tuple as either dirty or clean. Afterward,
the error is repaired by a separate cleaning model. In contrast to
these methods, in Lopster error detection is implicit in our pro-
cess of indexing tuples in latent space, since any input tuple that
indexes 𝑘 ≠ 0 is considered dirty. In other words, if the tuple rep-
resentation does not intersect with the clean data region, the tuple
contains errors. Therefore, error detection is abstracted as the task
of finding the position to which our encoder projected the input
on the error dimension. This index discovery task is non-trivial, as
discussed in Section 2. In the following, we explain the procedure
for determining 𝑘 in detail.

As a first step, a tuple is mapped to latent space using our en-
coder. To be more precise, the encoder 𝑔 : 𝐷 → 𝑍𝑘 yields a latent

vector 𝑍𝑘 . The problem is that the index position 𝑘 in the error
dimension is non-trivial to determine. We can not simply measure
the “distance” of the latent representation to the clean region, since
this is a manifold in high-dimensional space. As such, to find the in-
dex 𝑘 , we adopt an index discovery trick: we introduced the marker
value 𝑘𝑚𝑎𝑥 in the error dimension, mapped to the very last position.
Next, we decode every position available in our error dimension.
By analyzing each decoded value, we can find in which position
the maximum decoded value is, and thus determine which latent
representation stands for the marker. Consequently, we also have
the distance to the first index 𝑘 = 0, which encodes a clean tuple.
Formally, our index discovery trick can be expressed as:

𝑘𝑚𝑎𝑥 = argmax
𝑘

{ℎ(𝑍𝑘), ℎ(𝑍𝑘+1), ℎ(𝑍𝑘+2), ..., ℎ(𝑍𝑘+𝐾)} (6)

where ℎ stands for our decoder model, 𝑘 is the index of the decoded
value, 𝑍𝑘 is the first representation projected by our encoder model,
and 𝐾 is the total number of error injection functions. Discovering
the 𝑘𝑚𝑎𝑥 position suffices to find the actual position 𝑘 that the
encoder projected the latent representation 𝑍 , since the number of
shifts from any transformation to the 𝑘𝑚𝑎𝑥 is known. For example,
if 𝑘𝑚𝑎𝑥 is at position 5 during training, and we found it at index 3
on our set, we started at index 2, therefore 𝑘 = 2.

4.2 Error Correction Procedure
Next, given that we know how to determine the index 𝑘 of the dirty
tuple representation 𝑍𝑘 in latent space, we can apply the corres-
pondent inverse shift T −𝑧

𝑘
to return the representation to index

𝑘 = 0, i.e., the clean data region. As a caveat, the indexing process
must be applied once per encoder model, i.e., once per column of
the tuple. Fortunately, each Lopster model is small by current ML
standards (< 10k parameters)2, and its size is independent of the
number of tuples available in the dataset that needs to be cleaned.

Figure 6 shows the complete inference procedure for a single
input tuple. In Figure 6 we also depict how our model can handle
both categorical and numerical values under the same framework.
For Price and Rating the shift to the clean region is straightforward,
by applying the inverse shift T −1

𝑘
. In contrast, for the categorical

column City, values such as New York or Toronto are first mapped
to a scalar in the input space using an arbitrary order defined
during training. Once mapped to a scalar, the representation of the
categorical values can then be encoded and shifted as any numerical
value. The same holds for binary columns. In our example, different
columns need different number of shifts and City is detected to be
a clean tuple, so the Identity function is applied.

4.3 Why Lopster works for Unseen Errors?
A Motivating Example. To illustrate Lopster repairing unseen
errors, lets look into the missing values repair task. In general,
missing values can assume three main forms: missing completely
at random (MCAR), missing conditioned on observed data (MAR),
or missing conditioned on unobserved data (MNAR). If the type
of missing value is known, imputation is considerably easier. For
instance, MCAR cells could be removed without introducing bias
or increasing the error. Unfortunately, in practice it is hard to de-
termine the error type of how a missing value was generated [32].
2We provide more details about the model size in the evaluation in Section 5.

4791

Rating

Price
X * 1.66X * 0.66X * 0.33

33.00 66.00 166.00

X * 1.66X * 0.66X * 0.33

1 2 4.98

Price CityRating
100.00 New York3

Error Repair

Price CityRating
65.00 New York5.33

k = 0

City
X * 1.66X * 0.66X * 0.33X

New York Toronto Chicago Frankfurt
-1τ0

-1τ3

-1τ3

k = 0

X

3

X

100.00

k = 0

Marker

400.00

60

Unknown

Marker

Marker

Dirty Tuple

Cleaned Tuple Error Dimension
per Column

Figure 6: Example of our inference process for a full tuple.
For error repair, one Lopster model per column is used to
shift the latent representation back to position 𝑘 = 0. Our
framework supports numeric, binary and categorical data.

Thus, in Lopster, we clean a tuple containing missing values by
reconstructing them from all available signals of that tuple. As long
as the majority of input values in a tuple are clean, we have enough
signal to restore the clean tuple that most likely represents the input
tuple with all values restored. As such, in our framework, all types
of missing values can be handled as the same reconstruction task,
in which MCAR and MAR cells use information from the other cells
seen during training, and MNAR relies on the model having been
presented similar tuples during training to extrapolate a value.

Discussion. We now provide a more formal discussion of why
Lopster works on error types unseen during training. As stated
before, we assume a fixed number of error types during training
(similar to other learned methods). However, we first map a tuple
into latent space where all types of errors, even unseen ones, can
be repaired by a simple shift operation.

The reason is that, in contrast to existing learnedmethods, within
the Lopster framework the latent representation of a tuple with
an unseen error still corresponds to the best latent representation
available for that tuple; i.e., the encoder will still map the tuple on
the error dimension to the latent representation 𝑍𝑘 of the input
transformation T𝑑

𝑘
that is the closest to the unseen error. Hence,

the unseen error can be fixed by the same procedure, i.e., inverse
shifting 𝑘-times.

5 EXPERIMENTAL EVALUATION
In this section, we evaluate Lopster on both cleaning numerical and
categorical data, and also evaluate our model in a setting where
error types are unseen during training. For the evaluation, we use
the data cleaning benchmark REIN [1]. In addition, we show an ab-
lation study where we measure the impact of the parameterization
of our model. All numbers shown in this section are the average
over five runs, without changing any of the hyperparameters to
avoid weight initialization noise.

Table 1: Datasets chosen for our evaluation. Each dataset
contains a different challenging property for Lopster: mixed
numerical and categorical data in Adult and Soccer, uncorrel-
ated attributes in Bikes and Nasa, time series in HAR, and a
large range of numerical values in Smart Factory, including
negative ones.

Dataset #Rows #Columns #Categorical Numerical

Adult 45223 14 8 6
Bikes 17378 15 0 13
HAR 70000 4 0 4
Nasa 1503 6 0 6

Smart Factory 23645 19 0 15
Soccer 180228 37 5 32

5.1 Experimental Setup
Benchmark data. The REIN benchmark serves as a comprehensive
public suite for the assessment of data-cleaning methodologies. It
encompasses an array of datasets from various sectors, including
but not limited to sports, healthcare, and financial records. These
datasets are comprised of diverse data types, such as numerical
and categorical/binary (i.e., boolean) data. Realistic errors are intro-
duced by an error generator3 and the BART tool4.

Our evaluation method in this paper, however, differs from that
of the REIN benchmark in that it remains neutral to the specific
application that may utilize the cleaned data. While REIN originally
focuses on using the cleaned data for training a ML downstream
model, we focus on a direct evaluation of the data quality after
cleaning (i.e., we do not consider a downstream application). As
such, we report the Root Mean Square Error (RMSE) for numerical
columns and the F1-score for categorical and binary columns. We
provide more details on the used datasets in Table 1.

Error types &methodology. REIN provides a clean dataset and
a method for error generation as discussed before, with adjustable
parameters such as error types and the percentage of data to be
dirty. The errors contain explicit missing values (e.g., empty, null,
none), outliers, value swapping (randomly permuting values among
cells), and implicit missing values (e.g., 999999, −1). Specifically,
implicit missing values refer to invalid replacements for empty cells,
usually manually added by the user to avoid having no value, due
to software constraints. For the evaluation, we used a subset (i.e.,
explicit missing values and outliers) of the error types generated by
REIN for learning the Lopster models while others were excluded
and used only during the evaluation.

Clean training data. We have two main assumptions on the
clean data samples that are used for training the Lopster models:
(i) We assume the dataset to have at least more than 50% of the
rows clean in the sample used for training, and (ii) the data we see
during training is IID, i.e., the ranges of values in the data do not
change too much from training to inference.

Baselines. In our evaluation, we explore a wide array of data-
cleaning methods as baselines which are included in the REIN
benchmark. Within REIN, we examined a total of 32 distinct error
detection and repair methods, ranging from simple to advanced
3https://github.com/BigDaMa/error-generator, last access on 30/10/2024.
4https://github.com/dbunibas/BART, last access on 30/10/2024.

4792

methods. The error detection methods have been categorized into
non-learning and ML-supported detectors. The former category
leverages predefined resources such as user-provided knowledge
bases, business rules, integrity constraints, or statistical measures,
e.g., dBoost, KATARA, and HoloClean. Each of these methods is
typically tailored to tackle particular error types, e.g., duplicates,
outliers, or missing values. The second category comprises the
methods, e.g., ED2, and RAHA, which conceptualize error detection
as a classification problem, utilizing algorithmic learning to classify
errors within the data. The REIN benchmark is designed to assess
these methods, not only in terms of their intrinsic effectiveness but
also their influence on subsequent predictive tasks.

In this paper, we rigorously test every possible combination of
error detection and error repair methods. For clarity, we categorize
these methods into two groups in our analysis: learned methods
(denoted by ML) and non-learned methods (denoted by SI). This
categorization is visually represented in Figure 7, where we illus-
trate the permutations tested. It is important to note that certain
methods are exclusively applicable to numerical data, while others
can handle both numerical and categorical data. To address this, we
introduce the term 𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 − 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 repair methods to de-
scribe those that are versatile in their application. For instance, the
abbreviation MF-datawig denotes a hybrid approach that employs
MissForest (MF) for numerical error correction and Datawig [4] for
categorical data issues, which is a learned method. To ensure clarity
and ease of reference throughout our paper, we employ concise
abbreviations for the various error repair methods under consid-
eration. For example, we use BR to refer to Bayesian Ridge, MF to
denote MissForest, and DT to signify Decision Tree.

Training and inference. Important is that our Lopster models
have been trained only on a subset of these error types used in REIN
while it has been tested on all of them. This is different from the
baseline models which have been trained in a supervised fashion on
training data that contains all error types. For inference, we applied
our Lopster to the datasets shown in Table 1, containing a mixed
set of column types, data domains, and value ranges. Not all error
detector and repair combinations are shown across all datasets,
due to either being too resource intensive (e.g. Baran [19] out of
memory errors) or having worst results that are too far away from
the distribution of the remaining methods. Moreover, we do not
show non-applicable methods (e.g., methods that do not work on
categorical values are not shown on the categorical evaluation).

Setup and Hyperparameters. The code for Lopster has been
implemented in Python using Tensorflow as ML backend. The REIN
benchmark includes a set of Python scripts for injecting, detect-
ing, and repairing errors using the examined methods. PostgreSQL
is used as a data repository, and the FDX profiler 5 to automatic-
ally generate functional dependencies for the baselines. Moreover,
RAHA expects the user to provide labels. We set the labeling budget
to 20× the number of columns, and these user labels are obtained
from the ground truth version of the dataset.

The training procedure of Lopster is similar to other learned
methods w.r.t. hyperparameters tuning. One addition is the T𝑑

𝑘
set

of input transformations that are going to be equivariant to shifts
in the latent space. As aforementioned, the set T𝑑

𝑘
used across all

5https://github.com/sis-ethz/Profiler-Public, last access on 30/10/2024.

experiments comprises a series of predefined scalar increases and de-
creases of values, missing values, and the identity operation, in a cir-
cular group. For instance, T𝑑

𝑘
= {𝐼 , 0.33×, 0.66×, 1.66×, 𝑀𝑉 }𝑚𝑜𝑑 5

for 𝑘 = 5, or T𝑑
𝑘

= {𝐼 , 0.25×, 0.5×, ..., 1.50×, 1.75×, 𝑀𝑉 }𝑚𝑜𝑑 8 for
𝑘 = 8. Unless specified, we kept 𝑘 = 12 (i.e., 12 error types) for
all models, which seems to be a good tradeoff between fine- and
coarse-grained error sets across all datasets. In our ablation study,
we do show an evaluation when varying 𝑘 .

Independent of the 𝑘 parameter, we defined a fixed learning rate
of 0.001 and 100 epochs for all models. Furthermore, our encoder
model contains a single linear layer with 𝑧 neurons, and our de-
coder has one hidden layer with 128 neurons and ReLU activation,
totaling around 2, 000 parameters per model. The scalar 𝑧 refers to
the dimensionality of our latent space, kept as 120 for the REIN
experiments. Notice that we have one model per column. Our goal
is to show that a very small set of parameters is enough to reach
generalizable data cleaning, by applying an equivariant training
procedure as in Lopster.

5.2 Numerical Data Cleaning
The quality of numerical columns can be measured by the RMSE
between the original clean dataset and the repaired version. Import-
antly, we do not check for errors in the original data and use them
as is from the provided sources as ground truth. Lopster only uses a
small sample of clean data (15% of the training data). In contrast to
the other baselines, which use the full training data set and require
labeled training data for error detection and repair.

Adult. For the first experiment on the Adult dataset (Figure 7a),
Lopster achieves the lowest RMSE across all methods, even though
it has been trained on fewer clean tuples than the baselines. It is a
detection-bound task for this dataset, and we outperform the best
alternative dBoost (i.e., Lopster has an average RMSE of 0.70 while
the best baseline has an average RMSE of 0.82).

Soccer. For the next experiment, we evaluated our method on
the numerical columns of the Soccer dataset, as seen in Figure 7b.
This dataset is as challenging as the Adult dataset, with both cat-
egorical and numerical columns. In addition, it is the largest dataset
with 180, 000 tuples and 37 columns. Remarkably, even on this more
challenging dataset, Lopster still has the lowest RMSE. Further-
more, as we report in the next Section, it is the only method that
can handle the categorical data robustly with the same model ar-
chitecture. Showing high performance on the large Soccer dataset,
while using only 15% of clean data for training, clearly shows the
generalization capabilities of our model.

HAR. Next, we evaluated Lopster on the HAR (Human Action
Recognition) dataset depicted in Figure 7c. The HAR dataset con-
sists of a set of time series of human actions (e.g. sitting, walking,
running). In this dataset, the values are highly correlated to the
timestamp. As expected, for a dataset with high column correlations
Lopster reaches the lowest RMSE by a margin.

Nasa, Bikes and Smart Factory.We experimented also with
three challenging numeric datasets for Lopster: Nasa, Bikes and
Smart Factory. Nasa is challenging for learned methods for having
only 1, 500 tuples. As shown in Figure 7d, Lopster also performs
consistently well on Nasa, but using RAHA for error detection
shows slightly better performance. However, RAHA only achieves

4793

Error Detection Method

Error Repair Method

Error Repair Method

R
M

S
E

 (
lo

w
er

 is
 b

et
te

r)
R

M
S

E
 (

lo
w

er
 is

 b
et

te
r)

(a) Adult (b) Soccer (c) HAR

(d) Nasa (e) Smat Factory (f) Bikes

Lopster

Figure 7: Evaluation on the numerical columns. RMSE (lower is better) of the data cleaning baselines on the numerical columns
of all six datasets. Notice that Lopster consistently achieves a low RMSE across all datasets. Moreover, Lopster does not require
labeled training data in contrast to all other baselines.

Lopster

Figure 8: Average RMSE across all datasets (numeric data)
for all baselines vs. Lopster. For the baselines, we combine
each error repair with all detector methods (blue bars) and
combine each detector with all error repair methods (orange
bars). The average for Lopster is considerably lower, support-
ing our domain agnostic claims.

good results when combined with some of the cleaning methods.
In Figure 7e we show our results on the Smart Factory numeric
dataset, composed of electrical sensor data that varies largely in
range. Overall, on this dataset, Lopster is comparable to many of the
baselines while some baselines (e.g., raha+datawig) outperformed
our model. In turn, different from the baselines, Lopster has not
seen all errors and uses a smaller clean sample for training. Finally,
on the Bikes dataset shown in Figure 7f, Lopster achieved better
performance than most baseline methods. The only exception on
this dataset is based on dBoost as the error detector.

Takeaway: Lopster can consistently provide high performance
across a wide spectrum of datasets. This is also shown in Figure 8,
which averages the results across datasets and clearly shows that

Lopster provides robust performance while not requiring labeled
training data as the others. Ultimately, Lopster never increases the
RMSE compared to the dirty data, which happens to some of the
baselines. This consistency is important for practical use, since one
cannot verify the improvement provided by the data-cleaning step.

5.3 Categorical Data Cleaning
In this experiment, we show the performance of Lopster vs. baselines
on the two datasets that contain categorical data: Soccer and Adult.
In contrast to numerical columns, performance on categorical columns
is measured by F1-score, comparing clean and repaired versions
of the dataset cell by cell. Moreover, there is no notion of order in
categorical data. The order used for the error indexing of Lopster
is the order of appearance in the dataset.

Therefore, it is a hard scenario for our model that relies on a
sequence of shifts to repair the values, since any additional shift may
move the representation far enough to change the decoded category
and yield a mismatch. Fortunately, the shaping of our latent space
induced by our equivariant training procedure suffices, as seen
in our results in Figure 9. The reported results are the average
across all categorical columns. The same trained models used for
the numerical evaluation of Soccer and Adult datasets were used
for repairing the categorical columns. Hence, both types of repair
models were trained jointly, without any additional hyperparameter
tuning. Interestingly, Lopster is the best overall for Soccer, with
F1-score of 0.85 against only 0.55 from the second best method
HoloClean. Moreover, HoloClean was the only baseline that was
able to detect categorical errors in this dataset at all. Our hypothesis
is that the error detectors fail to detect the player name, since they

4794

F
1

S
co

re
 (

hi
gh

er
 is

 b
et

te
r)

Error Detection Method

Lopster

Error Repair Method
(b) Adult(a) Soccer

Figure 9: Evaluation on the categorical columns. Average F1-score of Lopster on all categorical columns of the (a) Soccer and
(b) Adult datasets. Higher is better. Baselines that are not shown have F1-score close or equal zero, due to the error detection
method being unable to detect the dirty tuples. Lopster is the only method to achieve high F1-scores on both datasets.

have to match names to the statistics of each player, which is a hard
task. Also, the other two categorical columns are challenging for
having weak correlation to the other statistics (e.g. attacking work
rate, preferred foot).

Takeaway: Although categorical columns are especially chal-
lenging to Lopster, due to the lack of a semantic order between
categories, we reached the second-best F1-score in Adult, and the
highest one in Soccer by a margin. Also, we used the same models
from the numerical evaluation, without any hyperparameter tuning
or retraining, showing how general our training procedure is.

5.4 Ablation Study
In the following, we discuss our ablation study for the important
hyperparameters (i.e., the number of error transformations 𝐾 and
the latent space size) of Lopster models and show the effects on
runtime and accuracy. All other hyperparameters were fixed for
this experiment: we used 80 training epochs, 0.001 as the learning
rate, and the Adam optimizer to study the effect of the important
hyperparameters in isolation.

Number of Error Types During Training. The main hyper-
parameter for Lopster is the number of error types available during
training, defined in the set T𝑑

𝑘
of size𝐾 . In this experiment, we vary

𝐾 between 4 (few error classes) and 64 (fine-grained error classes).
The minimal value is 𝐾 = 4 to allow for the two default transform-
ations, Identity and marker value, in addition to at least one scalar
increase and one decrease. Otherwise, the model is not able to map
the orthogonal error dimension to an ordered sequence of shifts,
it is a necessary inductive bias for ”sorting” the transformations.
Unfortunately, a single transformation in each direction (reductions
and increases) does not suffice, since the model tends to map them
as a static transformation, i.e. as jumps from one position to the
next in the latent space, without intermediary representations.

The results on REIN for the Adult dataset are shown in Fig-
ure 10a. Interestingly, when looking at the RMSE (turquoise line) in
Figure 10a, we can see that with only a few error transformations
(i.e. 𝐾 = 12) we reach already a low RMSE, while with 𝐾 ≤ 30 we
see diminishing returns. These diminishing returns are expected,

since increasing 𝐾 above a certain threshold makes the error trans-
formation too fine-grained, i.e., the error types are too similar and
Lopster models start overfitting. Moreover, we see that training
time (brown line) in Figure 10a increases minimally with larger 𝐾 .

Takeaway: Overall, we argue that a small 𝐾 such as 𝐾 = 12 is
sufficient for Lopster to learnmodels that provide high accuracy and
low training overhead. As such, we have used 𝐾 = 12 throughout
our evaluation.

Latent space dimensionality. As a second experiment in the
ablation study, we varied the dimensionality of the latent space
from 12 up to 480 (per column) as depicted in Figure 10b. While
Lopster does not overfit with higher dimensionality since the error
transformations add regularization to our training procedure, it
also does not benefit significantly from it. For example, going from
120 dimensions to 500 only minimally reduces the error (turquoise
line). We argue this because a reasonably-sized model in terms
of dimensions suffices to represent the data correlations, and - as
reported in other papers [20] - the model "discards" the additional
dimensions by encoding redundant information. Furthermore, the
training time linearly increases with the dimensionality of the latent
space which is also a known effect [20].

Takeaway: The latent space dimensionality has much less of
an impact than 𝐾 on the error while training time significantly
increases. In our evaluation, we thus use 120 dimensions per column
throughout all experiments since it provides high accuracy with
reasonable runtime overheads.

Inference overhead. Finally, we evaluate the inference runtime
overheads vs. RMSE in the Adult dataset (Figure 10c), while varying
𝐾 . As we see the inference time increases with larger 𝐾 . This is
due to our index discovery trick. For each column, we must decode
every one of the 𝐾 available indexes in T𝑑

𝑘
. Once 𝑘𝑚𝑎𝑥 is reached

we can infer the index of the current tuple in our error dimension.
Moreover, the impact of increasing 𝐾 is much less pronounced than
expected, due to the marker value 𝑘𝑚𝑎𝑥 being reached on average
after half of the transformations.

Takeaway: Inference time is clearly impacted by 𝐾 , but since
Lopster models do not require large 𝐾 , the impact is not significant.

4795

(a) 𝐾 vs. RMSE & Training Time (b) Latent space vs. / RMSE & Training Time (c) 𝐾 vs. RMSE & Inference time

Figure 10: Ablation studies on the Adult dataset. RMSE and training time in minutes, lower is better. (a) training time vs. Lopster
models trained on increasing sizes 𝐾 of the error transformation group T𝑑

𝑘
. (b) training time vs. Lopster models trained on

increasing latent space sizes (per column). Clearly, the hyperparameter that impacts the RMSE the most is 𝐾 , while the training
time slows down with larger latent space sizes. (c) inference time vs. increasing 𝐾 . Notice that the impact on inference time is
lower than expected due to the way we implement the index discovery trick.

Clean tuples available for training. To verify if Lopster is
indeed more efficient during training, i.e., requires less clean train-
ing tuples to learn the error repair than all other baselines, we
used clean training samples of different sizes. Figure 11 depicts
our results against the best baseline in the Adult dataset numerical
evaluation (Figure 7a), the Metadata-driven error detection method.
Metadata-driven is a semi-supervised error detection tool that relies
on metadata of the input to construct its feature vector. In this paper,
we only show the numerical comparison of the Adult dataset, but
we see a similar behavior across all datasets, and also for categorical
data. As Figure 11 shows, with only 5, 000 training tuples out of the
45, 000 available, Lopster achieves an improvement over the best
baseline of 50% (0.70 vs 1.50). Tuple efficiency during training is a
huge advantage of Lopster in practical applications, since acquiring
a set of clean representative tuples causes high overheads.

Takeaway: Lopster is more efficient concerning the number of
clean training tuples required. In addition, the training time is
almost linearly reduced by using fewer tuples.

Qualitative evaluation of the disentanglement claims. We
conducted a qualitative evaluation for Lopster, again for the Adult
dataset. The goal is to check if our error dimension is indeed dis-
entangled from all the other latent dimensions. Hence, we have
defined a procedure that allows us to show that shifts along the
error dimensions of individual columns do not affect the values
of other columns. The procedure for the qualitative evaluation is
composed of two steps: (1) a simulated cleaning step and (2) a step
to check disentanglement. In (1) we first encode a given tuple to
its latent representation, then shift along our error dimension on a
subset of columns (i.e., two in this experiment), simulating a clean-
ing procedure. Next, on (2) we decoded this shifted tuple back to
data space and fed it again to Lopster, this time without apply-
ing any shift. The second step is used to test the disentanglement
(i.e. if the shift of step 1 on individual columns affects the latent
representation of other dimensions in Lopster).

Figure 12 shows results by comparing the distribution (mean and
quartiles) for 7 columns of the Adult dataset (due to visual clarity).
The same behavior was observed in the full dataset, as well as in the
Smart Factory dataset. The green boxes are the distribution of values

for each column of the original tuples before applying the procedure.
The orange boxes show the distribution of the same columns for
the reconstructed tuples (after our two-step procedure). Notice
that, as expected, the shift on the last two columns along the error
dimension did not affect the other columns, i.e., the distribution
of the other columns remains almost unchanged. In contrast, if
the representations of these columns were entangled to the error
dimension of the two shifted ones, this shift would result in a change
of distributions of other columns as well.

Takeaway:Our qualitative evaluation clearly shows the disentan-
glement between column representation and the error dimension,
otherwise the non-shifted columns’ distribution would not be un-
changed in Figure 12.

6 RELATEDWORK
In the following, we discuss related work on learned data cleaning
and the origins of equivariant models in computer vision.

Learned Error Detection. Flagging tuples as dirty is the base
task for data cleaning, and can heavily influence its quality. In RAHA
and Baran [19], the authors propose a semi-supervised approach to
error detection called RAHA: it applies a collection of error detec-
tion models with different configurations, encodes and clusters cells
with similar errors, and then asks the user to label the center point
of each cluster. RAHA is the best baseline in our evaluation by amar-
gin, but Lopster is overall better, and requires no user supervision.
In contrast to this clustering-based approach, more recent error
detection methods, e.g., ED2 [23], HoloDetect [8], and SAGED [2],
exploit active learning, data augmentation, and meta-learning to
reduce the labeling budget. For instance, HoloDetect, and also Tab-
Reformer [22], report on the imbalance between dirty and clean
training tuples for training, and thus rely on data augmentation
techniques. Closer to our learned method is the Transformer-based
PicketNet [18], which applies self-supervision by masking some
attributes of the tuple and training the model to fill the gaps. In
contrast to PicketNet, Lopster adopts weak supervision by defining
the transformations that compose T𝑑

𝑘
.

Learned Error Repair In the deep learning-dominated state-of-
the-art, models can tolerate noisy data through regularization, but

4796

Lopster

Figure 11: Lopster vs best REIN’s baseline on increasing the
number of clean training tuples (Adult dataset). Lower is
better. We verify the low data hypothesis: Lopster shows
lower RMSE even with only 5, 000 tuples (9% of the dataset).

only to some extent [17]. Hence, error repair is still a key challenge,
which can be extremely time-consuming if done manually [19, 29].
Accordingly, several efforts have been exerted to automate the re-
pair process [12, 14–16, 29]. For example, Baran [19] uses user su-
pervision plus multiple context types, such as cell values and neigh-
bor tuples, to first classify and then repair errors. HoloClean [28]
relies on functional dependencies (FDs) to learn statistics over the
data and generates a graph of data repair candidates. Similarly,
Horizon [29] builds graphs of FDs and then chooses repairs with
maximum support. Again, Lopster does not rely on predefined rules,
nor on user-supervision.

Other methods propose variations of the Transformer’s attention
mechanism, such as the successor of HoloClean, AimNet [32], or
DeepMVI [3]. Both methods are specific to missing values, and
time series respectively. In contrast, Lopster aims at being agnostic
to both error types and data domains. Aside from self-attention,
another architecture explored for missing values was generative
adversarial networks(GANs) in the works DAGAN [17] and Peng
et al. [25], with a focus on explainability. In this regard, Lopster can
detail the error repair function used, and which error type - among
the ones used for training - was the closest to the identified error.

Recently, the use of large language models (LLMs) has emerged
as a prevailing trend in different domains. Some table representa-
tion LLM models tackle error repair indirectly, mainly for the miss-
ing value imputation and string repair tasks [6, 10, 21, 30, 33, 34].
However, so far, these approaches are at the very beginning and
they have thus only been used for specific errors and data types,
such as text, but not numeric data. Moreover, other works showed
that LLMs, originally designed to deal with natural language, still
struggle with tabular data engineering tasks [21, 34].

Finally, in practice several benchmarks [1, 24] found tools such
as Baran and HoloClean to be time-consuming, due to feature gen-
eration or enforcing FDs. Most of the baselines did not terminate
within 24 hours on a 32GB memory machine with an 8-core CPU,
as reported in [29]. Alternatively, Lopster offers a generalizable
data cleaning, with a lower overhead.

Equivariance in Computer Vision. Equivariance is common-
place in the computer vision literature, where developing models
that are equivariant to transformations of the input images is an
important topic of research [5, 7, 11, 13, 31].

Original and reconstructed
distributions are the same
for non-shifted columns.

Simulated data
cleaning on 2 cols.

Figure 12: Qualitative evaluation on the Adult dataset with
2 shifted columns. We compare the original tuples distribu-
tion by column (green boxes), to partially shifted and then
reconstructed tuples (orange boxes). It shows disentangle-
ment between the columns and our error dimension, since
only the distributions of the shifted columns change.

Initially, Worrall et al. [31] proposed an interpretable feature
space, i.e., a latent space with a notion of order and distance, as a
metric space. Building from these initial ideas, Keller and Welling
[13] proposed topographically organized latent spaces: models in
which activations are spatially organized based on salient features
of the input, such as color or scale. Fundamental to our work, the
authors argue that temporal coherence is the key factor to induce
the ML models to group input transformations in a semantically
meaningful set. To achieve temporal coherence they train using a
discrete and ordered set of transformations ("rolls" of the latent
space), which must be composed of enough intermediate steps
("slow enough"). We got to the same conclusion in our ablation
study on the ideal number of error transformations (Figure 10a).

7 CONCLUSION
In this paper, we presented the Lopster framework that simplifies
the data cleaning task by moving it from the input space to the
model’s latent space. Through our extensive evaluation procedure,
we have shown the effectiveness of our model, even under great
distribution-shift between error types seen during training and the
REIN benchmark. As a potential avenue of future work, we aim
to extend our work also towards other data engineering tasks. For
example, latent space representations have also been used in data
augmentation on images, and we aim to use the idea for tabular
data, where the latent space is shaped to represent meaningful
augmentations instead of errors. Ultimately we want to investigate
how complete data engineering pipelines (e.g., data augmentation,
feature selection, data wrangling) can be mapped to latent space
transformations, and thus provide generalizability for full pipelines.

ACKNOWLEDGMENTS
This research is funded by the BMBF project AICoM (grant number
FKZ: 02P20A064), and partially funded by the LOEWE Spitzenpro-
fessur of the state of Hesse. Moreover, we want to thank hessian.AI,
TU Darmstadt as well as DFKI Darmstadt for their support.

4797

REFERENCES
[1] Mohamed Abdelaal, Christian Hammacher, and Harald Schoening. 2023. REIN:

A Comprehensive Benchmark Framework for Data Cleaning Methods in ML
Pipelines. In Proceedings of the 26th International Conference on Extending Data-
base Technology (EDBT).

[2] Mohamed Abdelaal, Tim Ktitarev, Daniel Staedtler, and Harald Schoening. 2024.
SAGED: Meta learning-powered Error Detection Technique for Tabular Data. In
27th International Conference on Extending Database Technology (EDBT).

[3] Parikshit Bansal, Prathamesh Deshpande, and Sunita Sarawagi. 2021. Missing
Value Imputation on Multidimensional Time Series. Proc. VLDB Endow. 14 (2021),
2533–2545.

[4] Felix Biessmann, Tammo Rukat, Phillipp Schmidt, Prathik Naidu, Sebastian
Schelter, Andrey Taptunov, Dustin Lange, and David Salinas. 2019. DataWig:
Missing value imputation for tables. Journal of Machine Learning Research 20,
175 (2019), 1–6.

[5] Diane Bouchacourt, Mark Ibrahim, and Stéphane Deny. 2021. Addressing
the Topological Defects of Disentanglement via Distributed Operators. CoRR
abs/2102.05623 (2021). arXiv:2102.05623 https://arxiv.org/abs/2102.05623

[6] Xiang Deng, Huan Sun, Alyssa Lees, You Wu, and Cong Yu. 2020. TURL: Table
Understanding through Representation Learning. Proc. VLDB Endow. 14, 3 (nov
2020), 307–319. https://doi.org/10.14778/3430915.3430921

[7] Emilien Dupont, Miguel Bautista Martin, Alex Colburn, Aditya Sankar, Josh
Susskind, and Qi Shan. 2020. Equivariant neural rendering. In International
Conference on Machine Learning. PMLR, 2761–2770.

[8] Alireza Heidari, Joshua McGrath, Ihab F Ilyas, and Theodoros Rekatsinas. 2019.
Holodetect: Few-shot learning for error detection. In Proceedings of the 2019
International Conference on Management of Data. 829–846.

[9] Mark Ibrahim, Diane Bouchacourt, and Ari Morcos. 2022. Robust self-supervised
learning with lie groups. arXiv preprint arXiv:2210.13356 (2022).

[10] Hiroshi Iida, DungNgoc Thai, VarunManjunatha, andMohit Iyyer. 2021. TABBIE:
Pretrained Representations of Tabular Data. In NAACL.

[11] Jianbo Jiao and João F Henriques. 2021. Quantised Transforming Auto-Encoders:
Achieving Equivariance to Arbitrary Transformations in Deep Networks. arXiv
preprint arXiv:2111.12873 (2021).

[12] Bojan Karlaš, Peng Li, Renzhi Wu, Nezihe Merve Gürel, Xu Chu, Wentao Wu,
and Ce Zhang. 2020. Nearest Neighbor Classifiers over Incomplete Information:
From Certain Answers to Certain Predictions. Proc. VLDB Endow. 14, 3 (nov
2020), 255–267. https://doi.org/10.14778/3430915.3430917

[13] T Anderson Keller and Max Welling. 2021. Topographic vaes learn equivariant
capsules. Advances in Neural Information Processing Systems 34 (2021), 28585–
28597.

[14] Sanjay Krishnan, Michael J. Franklin, Ken Goldberg, and Eugene Wu. 2017.
BoostClean: Automated Error Detection and Repair for Machine Learning. CoRR
abs/1711.01299 (2017). arXiv:1711.01299 http://arxiv.org/abs/1711.01299

[15] Sanjay Krishnan, Jiannan Wang, Eugene Wu, Michael J. Franklin, and Ken Gold-
berg. 2016. ActiveClean: Interactive Data Cleaning for Statistical Modeling. Proc.
VLDB Endow. 9, 12 (aug 2016), 948–959. https://doi.org/10.14778/2994509.2994514

[16] Yuening Li, Zhengzhang Chen, Daochen Zha, Kaixiong Zhou, Haifeng Jin,
Haifeng Chen, and Xia Hu. 2021. Autood: Neural architecture search for outlier
detection. In 2021 IEEE 37th International Conference on Data Engineering (ICDE).
IEEE, 2117–2122.

[17] Tongyu Liu, Ju Fan, Yinqing Luo, Nan Tang, Guoliang Li, and Xiaoyong Du. 2021.
Adaptive Data Augmentation for Supervised Learning over Missing Data. Proc.
VLDB Endow. 14 (2021), 1202–1214.

[18] Zifan Liu, Zhechun Zhou, and Theodoros Rekatsinas. 2022. Picket: guarding
against corrupted data in tabular data during learning and inference. The VLDB
Journal (2022), 1–29.

[19] Mohammad Mahdavi and Ziawasch Abedjan. 2021. Semi-Supervised Data Clean-
ing with Raha and Baran. In CIDR.

[20] Kien Mai Ngoc and Myunggwon Hwang. 2020. Finding the Best k for the
Dimension of the Latent Space in Autoencoders. In Computational Collective
Intelligence, Ngoc Thanh Nguyen, Bao Hung Hoang, Cong Phap Huynh, Dosam
Hwang, Bogdan Trawiński, and Gottfried Vossen (Eds.). Springer International
Publishing, Cham, 453–464.

[21] Avanika Narayan, Ines Chami, Laurel Orr, Simran Arora, and Christopher Ré.
2022. Can foundation models wrangle your data? arXiv preprint arXiv:2205.09911
(2022).

[22] Mona Nashaat, Aindrila Ghosh, James Miller, and Shaikh Quader. 2021. TabRe-
former: Unsupervised Representation Learning for Erroneous Data Detection.
ACM/IMS Transactions on Data Science 2, 3 (2021), 1–29.

[23] Felix Neutatz, Mohammad Mahdavi, and Ziawasch Abedjan. 2019. Ed2: A case
for active learning in error detection. In Proceedings of the 28th ACM international
conference on information and knowledge management. 2249–2252.

[24] Wei Ni, Xiaoye Miao, Xiangyu Zhao, Yangyang Wu, and Jianwei Yin. 2023.
Automatic Data Repair: AreWe Ready to Deploy? arXiv preprint arXiv:2310.00711
(2023).

[25] Jinfeng Peng, Derong Shen, Nan Tang, Tieying Liu, Yue Kou, Tiezheng Nie, Hang
Cui, and Ge Yu. 2022. Self-supervised and Interpretable Data Cleaning with
Sequence Generative Adversarial Networks. Proceedings of the VLDB Endowment
16, 3 (2022), 433–446.

[26] Clément Pit-Claudel, Zelda Mariet, Rachael Harding, and Sam Madden. 2016.
Outlier Detection in Heterogeneous Datasets using Automatic Tuple Expansion.
(02 2016).

[27] Alexander Ratner, Stephen H Bach, Henry Ehrenberg, Jason Fries, Sen Wu,
and Christopher Ré. 2017. Snorkel: Rapid training data creation with weak
supervision. In Proceedings of the VLDB Endowment. International Conference on
Very Large Data Bases, Vol. 11. NIH Public Access, 269.

[28] Theodoros Rekatsinas, Xu Chu, Ihab F. Ilyas, and Christopher Ré. 2017.
HoloClean: Holistic Data Repairs with Probabilistic Inference. Proc. VLDB Endow.
10, 11 (aug 2017), 1190–1201. https://doi.org/10.14778/3137628.3137631

[29] El Kindi Rezig, Mourad Ouzzani, Walid G. Aref, Ahmed K. Elmagarmid, Ahmed R.
Mahmood, and Michael Stonebraker. 2021. Horizon: Scalable Dependency-
Driven Data Cleaning. Proc. VLDB Endow. 14, 11 (jul 2021), 2546–2554. https:
//doi.org/10.14778/3476249.3476301

[30] Mukul Singh, José Cambronero, Sumit Gulwani, Vu Le, Carina Negreanu, and
Gust Verbruggen. 2023. DataVinci: Learning Syntactic and Semantic String
Repairs. arXiv preprint arXiv:2308.10922 (2023).

[31] Daniel E Worrall, Stephan J Garbin, Daniyar Turmukhambetov, and Gabriel J
Brostow. 2017. Interpretable transformations with encoder-decoder networks. In
Proceedings of the IEEE International Conference on Computer Vision. 5726–5735.

[32] Richard Wu, Aoqian Zhang, Ihab Ilyas, and Theodoros Rekatsinas. 2020.
Attention-based Learning for Missing Data Imputation in HoloClean. In Pro-
ceedings of Machine Learning and Systems, I. Dhillon, D. Papailiopoulos, and
V. Sze (Eds.), Vol. 2. 307–325. https://proceedings.mlsys.org/paper/2020/file/
202cb962ac59075b964b07152d234b70-Paper.pdf

[33] Pengcheng Yin, Graham Neubig, Wen tau Yih, and Sebastian Riedel. 2020.
TaBERT: Pretraining for Joint Understanding of Textual and Tabular Data. ArXiv
abs/2005.08314 (2020).

[34] Haochen Zhang, Yuyang Dong, Chuan Xiao, and Masafumi Oyamada. 2023.
Large Language Models as Data Preprocessors. arXiv:2308.16361 [cs.AI]

4798

https://arxiv.org/abs/2102.05623
https://doi.org/10.14778/3430915.3430921
https://doi.org/10.14778/3430915.3430917
http://arxiv.org/abs/1711.01299
https://doi.org/10.14778/2994509.2994514
https://doi.org/10.14778/3137628.3137631
https://doi.org/10.14778/3476249.3476301
https://doi.org/10.14778/3476249.3476301
https://proceedings.mlsys.org/paper/2020/file/202cb962ac59075b964b07152d234b70-Paper.pdf
https://proceedings.mlsys.org/paper/2020/file/202cb962ac59075b964b07152d234b70-Paper.pdf
https://arxiv.org/abs/2308.16361

	Abstract
	1 Introduction
	2 Latent Operators Overview
	2.1 Model Architecture
	2.2 Training and Inference Procedures

	3 Learning a Lopster Model
	3.1 Why is Equivariance Needed?
	3.2 Learned Cleaning with Equivariance
	3.3 Training Goal
	3.4 Training Procedure
	3.5 Important Design Considerations

	4 Data Cleaning Using Lopster
	4.1 Error Detection Procedure
	4.2 Error Correction Procedure
	4.3 Why Lopster works for Unseen Errors?

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Numerical Data Cleaning
	5.3 Categorical Data Cleaning
	5.4 Ablation Study

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

