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ABSTRACT
Relational database management systems (RDBMS) are widely used
for the storage of structured data. To derive insights beyond statis-
tical aggregation, we typically have to extract specific subdatasets
from the database using conventional database operations, and
then apply deep neural networks (DNN) training and inference
on these subdatasets in a separate analytics system. The process
can be prohibitively expensive, especially when there are various
subdatasets extracted for different analytical purposes. This calls
for efficient in-database support of advanced analytical methods.

In this paper, we introduce LEADS, a novel SQL-aware dynamic
model slicing technique to customize models for specified SQL
queries. LEADS improves the predictive modeling of structured
data via the mixture of experts (MoE) and maintains efficiency by a
SQL-aware gating network. At the core of LEADS is the construc-
tion of a general model with multiple expert sub-models trained
over the database. The MoE scales up the modeling capacity, en-
hances effectiveness, and preserves efficiency by activating neces-
sary experts via the SQL-aware gating network during inference. To
support in-database analytics, we build an inference extension that
integrates LEADS onto PostgreSQL. Our extensive experiments on
real-world datasets demonstrate that LEADS consistently outper-
forms the baseline models, and the in-database inference extension
delivers a considerable reduction in inference latency compared to
traditional solutions.
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1 INTRODUCTION
Relational Database Management Systems (RDBMS) are extensively
employed as the primary storage solution for structured data across
various applications [27, 31, 38, 45]. They serve as a fundamental
infrastructure for various domains and are critical to the operation
of numerous businesses [22, 25, 62]. In the contemporary business
landscape, structured data analytics via databases has become an
indispensable component for driving business growth and success
[22, 25, 41, 62]. Traditional structured data analytics approaches
rely on database-driven filtering or aggregation operations to derive
insights. However, these insights only offer a limited statistical view,
which often fails to capture the complexity and intricacies of the
underlying patterns [20, 44]. Fortunately, recent advancements in
Deep Neural Networks (DNNs) open up new horizons for advanced
analytics beyond simple statistical aggregation [10, 11, 18, 32].

At its core, exploiting DNNs for advanced structured data ana-
lytics comprises two main phases: training and inference [18]. The
former primarily involves the construction of a DNNmodel and the
training of this model on targeted data, while the latter utilizes the
trained model to make predictions on new data. Notably, to deliver
advanced DNN-driven analytics for informed decision-making, ef-
fectiveness, and efficiency are the two most important metrics to
optimize for [9, 15, 29]. Specifically, effectiveness focuses on the
inference phase, measuring the extent to which the predictions
delivered by the model are accurate. Meanwhile, efficiency evalu-
ates the requirements of the model in terms of response time and
computational resources in both phases [29].

In real-world scenarios, analysts are often more interested in per-
forming analytics on specific subsets of data. For instance, they may
assess trends among patients diagnosed with a particular disease, or
study behaviors of consumers in a certain age group. Consider the
scenario illustrated in Figure 1, where an analyst examines the in-
come situation within a specific demographic. This analysis informs
critical decision-making, such as setting personal loan limits and
adjusting local commodity prices. Naturally, the analyst seeks to
build an effective predictive model, delivering accurate predictions
for these subsets of tuples, meanwhile executing predictions effi-
ciently with minimal response time and computational resources.
However, there are two main challenges in achieving this objective.
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First, achieving efficient training for effective predictive model-
ing across analyst-specified subdatasets is challenging. Convention-
ally, a single general model is trained to support inference across all
data tuples [18, 22, 27]. This approach is efficient and requires train-
ing only one model. However, such a model, optimized to capture
the common patterns and general behaviors of the whole dataset,
is likely not as effective in providing accurate predictions as a ded-
icated model trained on a specific subdataset of interest. Taking
the scenario in Figure 1 as an example, a model trained explicitly
for the group of men living in NYC would probably identify finer-
grained patterns and behaviors pertinent to this subdataset. Given
sufficient training instances, this dedicated model could outperform
the general model significantly. Nonetheless, training a separate
model for each subdataset is computationally prohibitive due to
the combinatorial nature of potential subdatasets.

Secondly, enhancing the efficiency of inference execution for
subdatasets queried from the RDBMS is also challenging from a
system perspective. A major challenge is the coordination of the
RDBMS data processing and the execution of inference tasks. Many
existing solutions support the inference process using two separate
systems [14, 53, 60], which requires transferring the inference data
from an RDBMS to the inference system. However, this process is
time-consuming, susceptible to errors, and may violate privacy and
security requirements [56]. More critically, additional data transfer
overhead is introduced to adversely affect inference efficiency.

To address the above challenges, we propose a novel SQL-awarE
dynAmic moDel Slicing (LEADS) technique, which makes use of
the meta-information in SQL queries to dynamically customize a
predictive model, deriving meaningful insights in analysis tasks.
Specifically, LEADS first constructs a high-capacity general model
consisting of multiple replicas of the base model. These replicas,
termed as experts in MoE, are trained to specialize in different
problem subspaces for effective predictive modeling. To enhance
effectiveness via MoE without incurring reduced inference effi-
ciency, LEADS incorporates a SQL-aware gating network, which
generates sparse gating weights based on the SQL query embed-
ding to select necessary experts. Such a sliced model is trained to
tailor for SQL queries and dedicated to the specified subdataset
for inference effectiveness while maintaining efficiency. To further
improve efficiency, we build an extension to integrate the inference
process within the database via User-Defined-Function (UDF) with
three optimizations: efficient execution allocation, memory sharing,
and state caching. These approaches obviate the data transfer in
separate systems, reduce data copying overhead, and reduce the
cost associated with frequent model loading. We summarize our
main contributions as follows.

• We formulate the SQL-aware structured data analytics problem,
which requires efficient and effective predictive modeling on sub-
datasets specified by SQL queries. To the best of our knowledge,
this is the first work for solving the problem.
• We propose a novel SQL-aware dynamic model slicing technique

LEADS, which scales up the modeling capacity by replicating the
base model as experts and devises a SQL-aware gating network
to dynamically customize models for analytics tasks on SQL-
specified subdatasets.
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Figure 1: A workflow of supporting in-database analytics on
income using SQL-aware dynamic model slicing.

• We implement an in-database inference extension on PostgreSQL
to support SQL-aware structured data analytics, which incorpo-
rates three optimizations to improve inference efficiency.
• We conduct extensive experiments on five real-world datasets,
which confirms the effectiveness of LEADS, with up to 3.95% im-
provement in AUC for given data workloads, while the inference
extension achieves up to 2.06x speedup in terms of efficiency
compared with the baseline approaches.

We have integrated LEADSwith the extension ontoNeurDB [39, 61],
our ongoing AI-powered autonomous data system implementation.

The paper is structured as follows. We introduce preliminaries in
Section 2. We present details of LEADS in Section 3 and discuss the
implementation in Section 4. Experimental results are presented
in Section 5. We review related work in Section 6 and conclude in
Section 7.

2 PRELIMINARIES
In this section, we introduce the preliminaries of predictive mod-
eling on structured data and present two key techniques central
to our system, namely Mixture of Experts (MoE) for scaling up
the model capacity while maintaining its inference efficiency via
conditional computation [47], and sparsemax [35] for the informed
selection of active experts to enhance efficiency. We also formally
define the research problem, referred to as SQL-aware predictive
modeling. Scalars, vectors, and matrices in the following part are
denoted by 𝑥 , x and X respectively.
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Structured Data (or relational data, tabular data) [7, 8] refers to
the type of data that can be represented as tables. It is typically
stored in a series of tables (relations) {T1,T2, ...} of columns and
rows, which can be retrieved from a relational database with SQL
operations, e.g., the projection, join, and aggregation. Tables in
structured data are interconnected via foreign key attributes, where
the value of a column in one table points to a unique row in another
table. Technically, the structured data can be viewed as a logical
table T comprising 𝑁 rows and 𝑀 columns. Each row is a tuple
x = (𝑥1, 𝑥2, ..., 𝑥𝑀 ), serving as a feature vector, where 𝑥𝑖 is the value
of the 𝑖-th attribute and can be either numerical or categorical.
Mixture of Experts (MoE) [26, 47, 54] is a general ensemble learn-
ing and conditional computation technique to scale up the modeling
capacity without incurring much computational overhead. MoE is
particularly effective when the data exhibits complex patterns or
variations [16, 46, 63]. There are two main components in an MoE
layer: expert models and a gating network. Expert models can be
composed of homogeneous models that share the same architecture.
They are adopted to divide problem space into different regions,
where each expert specializes in handling a certain sub-region. The
gating network outputs a set of gating weights for a given input,
dynamically determining weights assigned to respective experts.

Denoting the gating weights and outputs of experts as w =

[𝑤1,𝑤2, ...,𝑤𝐾 ] and H = [h1, h2 ..., h𝐾 ] respectively, where 𝐾 is the
number of experts and h𝑖 is the output of the 𝑖-th expert. the output
of the MoE is a weighted average of these experts: ŷ =

∑︁𝐾
𝑖=1𝑤𝑖h𝑖 .

During training, the MoE model optimizes the gating network
and experts simultaneously. The gating network learns to assign
appropriate weight to experts, while the experts learn to make
accurate predictions within their respective regions of expertise.

MoE has found extensive application in various domains, notably
in the large languagemodel GPT-4 [40] for texts and the large vision-
language model MoE-LLaVA [33] for images, which combines the
benefits of large model capacity with efficient computation, by only
engaging a fraction of the model parameters for each input. In
LEADS, we apply the MoE technique to structured data, intending
to harness its scalable modeling capacity for enhanced predictive
effectiveness and efficiency.
Sparsemax [10, 35, 42]. Softmax transformation is a crucial func-
tion in the gating network, whichmaps an input vector z into a prob-
ability distribution p whose probabilities correspond proportionally
to the exponential of its input values, i.e., softmax(zj) =

exp(zj )∑︁
i exp(zi ) .

The output can be denoted as the class probabilities or weights
indicating the importance of corresponding inputs.

The softmax function is extensively used in DNNs due to its
differentiable and convex properties. However, the output prob-
abilities of the softmax function are dense, leading to less inter-
pretability and effectiveness [10, 19]. To overcome this limitation,
𝛼-entmax is proposed to generalize the dense and sparse soft-
max, offering a parameter to adjust the sparsity level of proba-
bility distribution. Specifically, given a d-dimension probability as
∆d := {p ∈ Rd : p ≥ 0. | |p| |1 = 1}, 𝛼-entmax [42] can be interpreted
in the variational form with Tsallis 𝛼-entropies H𝛼 (p) [50]:

𝛼-entmax(z) = argmax
p∈∆d

pTz + H𝛼 (p) (1)

where H𝛼 (p) = − 1
𝛼 (𝛼−1)

∑︁
𝑗 (𝑝 𝑗 − 𝑝𝛼𝑗 ) if 𝛼 ≠ 1, else H1 (p) =

−∑︁j pj log pj, the Shannon entropy. A larger 𝛼 causes 𝛼-entmax
to assign more zero in the probability distribution. Sparsemax is
adopted in LEADS to sparsify the activated experts in MoE to
enhance predictive efficiency.

Problem Formulation. In structured data analytics, data analysts
typically focus on specific subdataset characterized by shared at-
tributes. For example, analysts may assess the readmission rates
among patients diagnosed with a certain disease, or predict the
e-commerce click-through rate (CTR) within a particular age group.
Typically, for advanced analytical tasks that involve prediction,
WHERE statement in a SQL query is executed first to select relevant
tuples, to which DNNs are applied subsequently for inference. We
refer to this process as SQL-aware predictive modeling.

Given structured data T as illustrated in Section 2 and a SQL
query denoted by 𝑞, there are two main steps in SQL-aware pre-
dictive modeling: data selection and model prediction. Correspond-
ing to relational algebra, a generalized SQL query selection 𝑞 is
expressed as 𝜎𝜑 (T), where 𝜎 is the unary operator for selection
and 𝜑 is the propositional formula in 𝑞. Typically, 𝜑 consists of
multiple predicates connected by logical operators. The selection
𝜎𝜑 (T) retrieves all tuples in table T that satisfies 𝜑 , formally de-
fined as 𝜎𝜑 (T) = {x : x ∈ T, 𝜑 (x)}. For simplicity, the subdataset
retrieved by the SQL query 𝑞 is denoted as T𝜑 = {x1, x2, · · · , x𝑛},
where 𝑛 is the number of tuples. Each tuple x𝑖 ∈ R𝑀 comprises
𝑀 attributes, and x𝑖 can be represented as a vector of features,
i.e., x𝑖 = [𝑥𝑖,1, 𝑥𝑖,2, · · · , 𝑥𝑖,𝑀 ]. DNNs are then applied to perform
prediction on these selected tuples, e.g., to predict the labels y =

{𝑦1, 𝑦2, · · · , 𝑦𝑛}, aiming to derive meaningful insights, such as pa-
tients readmission rates in healthcare analytics or CTR in e-commerce.
Technically, SQL-aware predictive modeling refers to making
predictions on a selected subset of tuples retrieved from a logical
table T based on a SQL query 𝑞 with a propositional formula 𝜑 .

3 SQL-AWARE DYNAMIC MODEL SLICING
In this section, we introduce our SQL-aware dynamic model slicing
technique, LEADS, for supporting in-database predictive analytics
within existing RDBMSs such as PostgreSQL. Unlike conventional
machine learning approaches that make predictions based solely
on features of individual instances, LEADS identifies common at-
tributes of subdataset as specified by SQL queries and exploits this
meta-information for customized, efficient and effective predictive
modeling. For example, as illustrated in Figure 2b, the SQL query
specifies instances sharing attributes of gender (male), age (24),
and location (NYC). LEADS leverages these propositional formulas,
i.e., 𝜑 in SQL queries, to customize the predictive model, thereby
enhancing prediction accuracy for the specified subdataset.

We first propose a SQL query encoder to extract the informa-
tion encapsulated in 𝜑 into a representation vector for subsequent
predictive modeling. Next, we elaborate on the model architecture
and data processing flow of LEADS for SQL-aware structured data
modeling. Finally, we introduce the optimization schemes, with two
novel regularization terms proposed to balance the effectiveness
and efficiency of the modeling process.
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3.1 SQL Query Encoder
In SQL-aware predictive modeling, the WHERE clause filters tuples
based on a propositional formula 𝜑 . This formula consists of predi-
cates, each imposing a condition on a specific attribute, like "gender
= ‘M’". These predicates are combined using logical operators such
as "AND" or "OR" to form a propositional formula. Given the exponen-
tial number of possible predicate combinations, devising a general
approach to effectively transform SQL queries into feature vec-
tors for subsequent predictive modeling is challenging. To achieve
this, we focus on individual queries, referred to as primitive SQL
query. Considering a table T with𝑀 attributes, the 𝑗-th attribute
denoted as 𝐴 𝑗 , each attribute is linked to either a numerical or
categorical feature. Particularly, each numerical feature needs to
be converted into a corresponding categorical feature through dis-
cretization, which will be detailed subsequently. In a primitive SQL
query, each attribute 𝐴 𝑗 may be associated with zero or one predi-
cate, with predicates across attributes conjoined using the logical
operator ∧ (AND). Technically, a predicate for the attribute 𝐴 𝑗 in
a primitive SQL query can be expressed as 𝑃 𝑗 : 𝐴 𝑗 = 𝑎 𝑗 , where
𝑎 𝑗 ∈ D𝑗 ∪ {Δ 𝑗 }, D𝑗 represents the domain of possible values for
attribute 𝐴 𝑗 , and Δ 𝑗 denotes a default value assigned to 𝐴 𝑗 when it
is not specified in the query. Figure 2a illustrates a valid primitive
SQL query example, contrasting with two non-examples. Thus, the
propositional formula 𝜑 can be represented as:

𝜑 = 𝑃1 ∧ 𝑃2 ∧ · · · ∧ 𝑃𝑀 .

The objective of the SQL query encoder is to generate a categorical
feature vector q for each primitive SQL query to represent the
meta-information from 𝜑 , which is achieved by concatenating the
attribute values of the predicates. Formally, the feature vector of
the SQL query encoding can be obtained by:

q = [𝑞1, 𝑞2, · · · , 𝑞𝑀 ]

where𝑞 𝑗 is the categorical attribute value for predicate 𝑃 𝑗 . Figure 2b
demonstrates the transformation of a primitive SQL query into a
feature vector. Notably, the numerical attribute "age" here is dis-
cretized before encoding, and any attribute 𝐴𝑖 without predicates
is assigned the default value Δ𝑖 .
Discretization. Discretization is essential for encoding numerical
attributes like weight or salary, as their infinite possible valuesmake
direct encoding infeasible. The discretization algorithm partitions
the domain D of each numerical attribute into a predetermined
number of bins, and then, assigns values to their respective nearest
bins. This process aims to retain the key information of numerical
data in the embedding space for preserving predictive capacity.

To this end, we employ a supervised discretization approach that
takes into account the correlation between numerical attributes
and the predictive target. This method aims to maximize informa-
tion value (IV), which measures the uncertainty reduction within
each bin relative to the prediction target. Higher IV values indi-
cate a significant decrease in uncertainty, thereby preserving the
predictive capacity. Specifically, we introduce OptBinning [37] im-
plementation for discretization to optimize IV while supporting
constraints like the maximum bin count per attribute. The binning
rule is learned on the training set and applied to the test set.

SELECT * FROM Census WHERE city = “NYC” OR city = “BOS”

SELECT * FROM Census WHERE age > 25  AND gender = “Male”

SELECT * FROM Census WHERE edu = “MSc.” AND gender = “Male”

(a) Examples of a primitive SQL query.

SELECT * FROM Census  WHERE
city = “NYC” AND     gender = “Male” AND age = 24

Discretization

age = “20-25”
Encode

EncodeEncode

SQL query embedding vector

[ ∆! , 3 , … , 14 , ∆" , ∆"#! , … , 45]

(b) Process of encoding a SQL query.

Figure 2: SQL query encoder.

3.2 SQL-Aware Dynamic Model Slicing
The SQL feature vector q, derived from the SQL query encoder, cap-
tures key information that can be exploited to tailor the predictive
model for target subdatasets. Our objective is to construct a gen-
eral model with sufficient modeling capacity and then customize
this model based on q to enhance efficiency and predictive perfor-
mance in SQL-aware predictive modeling. While some approaches
[34, 51, 52] modify the model’s architecture or parameters to main-
tain its size, they can lead to unstable predictive performance. Con-
versely, ensemble approaches [17] improve performance by stack-
ing models, but at the cost of additional computation. To balance
effectiveness and efficiency, we introduce LEADS, which scales up
the modeling capacity via MoE by replicating the base models as
expert models, and integrates a SQL-aware gating network based
on q of SQL queries to selectively activate specific experts. The
overview of LEADS is illustrated in Figure 3, and the key compo-
nents following the data flow are introduced in this subsection.
Preprocessing Module There are two sets of input constructed
for the SQL-aware prediction modeling given an input tuple. The
first set of input is constructed for the gating network and can
be uniformly represented as a categorical feature vector q. q =

[𝑞1, 𝑞2, . . . , 𝑞𝑀 ] comprises 𝑀 feature values from respective at-
tribute fields, where numerical attributes need to be converted
into categorical attributes via discretization, as described in the
previous subsection. The second set is the attribute values of the
input tuple x = [𝑥1, 𝑥2, . . . , 𝑥𝑀 ], and each attribute value 𝑥𝑖 can be
either categorical or numerical.

For both q and x, each field of attribute value 𝑣𝑖 (𝑞𝑖 /𝑥𝑖 ) needs
to be transformed into a corresponding embedding vector e𝑖 to
participate in the subsequent predictive modeling. Specifically,
each categorical attribute is transformed via embedding lookup,
i.e., e𝑖 = E𝑖 [𝑞𝑖 ], e𝑖 ∈ R𝑛𝑒 , where 𝑛𝑒 is the dimension of embed-
ding, and E𝑖 is the embedding matrix of this categorical attribute.
Note that different embedding vectors in E𝑖 correspond to their
respective attribute values. As for each numerical attribute 𝑥 𝑗 in x,
the corresponding embedding vector is obtained by linearly scal-
ing up a learnable embedding vector ê𝑗 , i.e., e𝑗 = 𝑥 𝑗 · ê𝑗 . In this
way, we can obtain fixed-size inputs, namely embedding vectors
q̂ = [q1, q2, . . . , q𝑀 ] and x̂ = [x1, x2, . . . , x𝑀 ].
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Figure 3: Overview of SQL-aware dynamic model slicing.

General Model and SQL-aware Gating Network. LEADS repli-
cates the base model 𝐾 times to construct the general model, de-
noted as F = [F1, F2, . . . , F𝐾 ] , where each base model is referred
to as an “expert model ” in MoE. These expert models share the
same architecture but learn distinct model parameters during train-
ing, which take the same input x̂ and produce different outputs that
are later aggregated to form the final prediction. The output of the
𝑖-th expert for a given input x is denoted as F𝑖 (x̂).

The SQL-aware gating network G takes the SQL query embed-
ding vectors q̂ as input to produce a 𝐾-dimensional vector, termed
the gating weight w, with w ∈ R𝐾 . Specifically, a two-layer multi-
layer perceptron (MLP) is employed as the gating network following
the practice [16, 40, 46]. We concatenate all embeddings in q̂ as the
input of the gating network˜︁q = q1 ⊕ q2 . . .⊕ q𝑀 , where˜︁q ∈ R𝑀 ·𝑛𝑒 ,
then feed˜︁q to G, and obtain the gating weight w by:

z = 𝜙 (W1˜︁q + b1)
w = G(s) = W2z + b2

(2)

where W1 ∈ R𝑛𝑧×𝑀𝑛𝑒 ,W2 ∈ R𝐾×𝑛𝑧 and b1 ∈ R𝑛𝑧 , b2 ∈ R𝐾 are
the weights and biases respectively, 𝑛𝑧 is the hidden layer size, and
𝜙 represents the ReLU activation function.

Given the gating weight w, the 𝛼-entmax function [13, 42] is
further applied to recalibrate w to a probability distribution. As in-
troduced in Section 2, the hyper-parameter 𝛼 in 𝛼-entmax controls
the level of sparsity, and a larger value of 𝛼 sets more gating weights
to zero and thus deactivates more experts for higher efficiency. The
output of 𝛼-entmax ˜︁w is:

˜︁w = 𝛼-entmax(w), ˜︁w ∈ R𝐾 (3)

which is utilized as weights to aggregate expert outputs. The final
output of the general model is a weighted average of expert outputs:

ŷ =

𝐾∑︂
𝑖=1

˜︁𝑤𝑖 · F𝑖 (x) (4)

where ŷ is the prediction given the input x and the corresponding
query q in the SQL-aware predictive modeling.
DynamicModel Slicing via Gating Network.Given a SQL query,
all retrieved data tuples share the same recalibrated gating weight˜︁w. Notably, ˜︁𝑤𝑖 = 0 in Equation 4 indicates that the 𝑖-th expert is not
required for the current current predictive task, and thus, only a
selected subset of experts F𝑖 are activated, ensuring a more efficient
inference process.

Denoting the set of indices of activated experts as {𝐼1, 𝐼2, · · · , 𝐼𝑛𝑜 },
where 𝑛𝑜 is the current number of activated experts and ˜︁𝑤𝐼 𝑗 ≠

0,∀𝑗 ∈ {1, 2, . . . , 𝑛𝑜 }, and given the corresponding SQL feature vec-
tor q, we index the activated experts to form a sliced model, i.e.,
Fq = [F𝐼1 , F𝐼2 , · · · , F𝐼𝑛𝑜 ]. Thus, the final output is as follows:

ŷ =

𝑛𝑜∑︂
𝑗=1

˜︁𝑤 [𝐼 𝑗 ] · F𝐼 𝑗 (x) (5)

where the number of activated experts 𝑛𝑜 directly affects the ef-
fectiveness and efficiency of the sliced model. A large 𝑛𝑜 indicates
larger model capacity while incurring higher computational over-
head, and vice versa. In LEADS, 𝑛𝑜 is determined by the gating
network based on the SQL feature vector q and the hyper-parameter
𝛼 of the sparsemax function. Notably, instead of predefining a fixed
value, 𝛼 in 𝛼-entmax is learnable and optimized based on the input
tuples and corresponding queries during training. Subsequently,
during inference, LEADS can dynamically adapt 𝑛𝑜 based on the
current SQL query, trading off between the effectiveness and effi-
ciency of the predictive modeling.

3.3 Optimization
Our LEADS technique can be applied to different predictive tasks
by configuring a proper objective function, such as mean squared
error (MSE) for regression or cross-entropy for classification. For
example, in binary classification, the objective function employed
is binary cross-entropy:
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Figure 4: Breakdown of inference response time for the
Inference-Decouple Strategy.

LogLoss(�̂�, 𝑦) = − 1
𝑁

𝑁∑︂
𝑖

{𝑦𝑖 log𝜎 (𝑦�̂� ) + (1−𝑦𝑖 )log(1− 𝜎 (𝑦�̂� ))} (6)

where �̂� is the prediction label, 𝑦 is the ground truth label, 𝑁 is the
number of tuples, and 𝜎 (·) is the sigmoid function.

To make the optimization more robust and effective, we intro-
duce two regularization terms into the main loss function. The first
term is the balance loss, L𝑏𝑎𝑙𝑛 , which is to address imbalanced
expert utilization, a common issue in training MoE-based models.
This imbalance arises when the gating network G disproportion-
ately favor a few experts, which skews the training dynamics. As a
consequence, preferred experts become overutilized while others
remain underutilized, which compromises the MoE capacity and
degrades overall model performance.

Let X denote a mini-batch of training instances with 𝑛𝑏 tu-
ples, and ˜︁W = [˜︁w1, ˜︁w2, · · · , ˜︁w𝑛𝑏 ] represent the recalibrated gating
weights of X. Here, ˜︁𝑤𝑖 𝑗 is the 𝑗-th weight of ˜︁w𝑖 . L𝑏𝑎𝑙𝑛 is defined
as follows:

L𝑏𝑎𝑙𝑛 = cv(Φ) =
𝐾∑︂
𝑗=1

𝜙 𝑗 − E(Φ)
E(Φ)2

Φ = [𝜙1, 𝜙2, · · · ,𝜙𝐾 ], 𝜙 𝑗 =
𝑛𝑏∑︂
𝑖=1

˜︁𝑤𝑖 𝑗 (7)

where E(Φ) = 1
𝐾

∑︁𝐾
𝑗=1 𝜙 𝑗 . This balance loss term promotes a uni-

form distribution of weights across experts in the mini-batch, en-
couraging equal contribution from each expert. However, this term
empirically tends to activate a large number of experts due to its
drive for balance, which is contrary to the intent of sparse softmax
to maintain sparsity. To counterbalance this and enhance compu-
tational efficiency, we further introduce an additional term, the
sparsity loss term, L𝑠𝑝𝑟𝑠 :

L𝑠𝑝𝑟𝑠 = −
1
𝑛𝑏

𝑛𝑏∑︂
𝑖=1
(˜︁w𝑖 )2 (8)

which encourages the gating network to allocate higher weights
on a select few experts while assigning minimal or zero weights
to others. Both loss terms are weighted by their respective regu-
larization coefficient, 𝜆1 and 𝜆2, and incorporated into the overall
objective function:

Loss(ŷ, y) = LogLoss(ŷ, y) + 𝜆1𝐿𝑏𝑎𝑙𝑛 + 𝜆2𝐿𝑠𝑝𝑟𝑠 . (9)

With this objective function, LEADS can then be optimized effec-
tively using gradient-based optimizers, e.g., SGD [5] or Adam [28].
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Figure 5: Design and execution of inference UDF.

4 IN-DATABASE MODEL INFERENCE
This section presents the implementation details of the in-database
inference extension, which integrates the LEADS technique into
NeurDB to deliver more accurate predictions. The typical infer-
ence pipeline consists of four stages: (1) model loading, where the
model is loaded into memory; (2) data retrieval, where subdatasets
specified by SQL queries are fetched; (3) data preprocessing, which
transforms the raw data from the RDBMS into the tensor format
for model inputs; and (4) inference execution, where the model
performs forward computation to generate predictions. A straight-
forward approach to support LEADS is to decouple the database
and inference systems, referred to as the Inference-Decouple
Strategy (IDS). In this approach, analysts retrieve subdatasets from
the database, preprocess them, and run inference in a dedicated
external inference system. However, it has several drawbacks. First,
exporting data from the database introduces security risks and may
violate compliance regulations. Second, managing two separate
systems complicates the analytics workflow, increases operational
complexity, and imposes additional learning requirements. Third,
transferring large volumes of data from the database to an external
system incurs significant overhead and latency. Figure 4 illustrates
the time usage breakdown of IDS when running inference tasks.
Notably, data retrieval accounts for around 40% of the total infer-
ence time primarily due to the overhead from database connections,
data I/O, and network communication. To address these issues, we
utilize the In-database Inference Strategy (IIS), in which the
database performs inference and avoids transferring data. This ap-
proach not only enhances security and simplifies workflow, but
also accelerates the inference process.

4.1 Inference UDF Design
For the implementation, we design UDFs to encapsulate all stages
of the inference process and integrate them into the database as an
extension. As illustrated in Figure 5., users begin by initiating pre-
dictive queries, specifying parameters ‘TableName’ and ‘WHERE’
conditions. The UDF then retrieves relevant subdatasets by apply-
ing the ‘WHERE’ condition on specified table, dynamically loads
the trained model, and performs the inference. Upon completion,
the results are returned to the users. However, directly embedding
the decoupled inference process into UDFs is suboptimal due to
Python’s performance limitation. Therefore, we introduce three
key optimizations to improve UDF execution efficiency.
Efficient Execution Allocation. To optimize UDF performance,
we adopt amulti-language strategy, combining the strengths of both
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Rust and Python. Rust is used for efficient data retrieval, leverag-
ing the PostgreSQL extension development library PGRX [2]. This
allows us to utilize PostgreSQL’s built-in APIs, the Server Program-
ming Interface (SPI) for high-performance data access. Meanwhile,
Python is employed for data preprocessing and inference, bene-
fiting from its compatibility with machine learning libraries like
PyTorch and Scikit-learn. This combination ensures that we balance
efficiency in data retrieval with the flexibility required for advanced
data processing and machine learning tasks. However, two main
challenges remain for efficient inference: (1) data copying overhead,
caused by the need for extensive data transfers between different
execution environments. (2) state initialization overhead, resulting
from the frequent loading of predictive models for each inference
task. To address these issues, we introduce memory sharing and
state caching in our UDF designed to improve efficiency.
Memory Sharing. Data transfer between different execution envi-
ronments requires two read-write operations: fetching data from
RDBMS into Rust, then moving it to Python. To avoid this ineffi-
ciency, we introduce shared memory. Data is filtered in Rust using
SPI and written directly to the shared memory, which is allocated
before UDF invocation and accessible in both execution environ-
ment. The shared memory allows data to be used in Python without
additional copying, eliminating unnecessary overhead.
State Caching.As shown in Figure 4, model loading takes up about
10% of the total inference time per request. With many requests, the
overhead of repeatedly loading the model grows. To reduce it, we
implement session-level caching for the general model andmaintain
a state cache for the frequently used sliced models. Specifically,
when processing a SQL query with a new filter condition, the UDF
first checks the state cache for an existing sliced model. If none
is found, a new sliced model is derived from the cached general
model. We employ a Least Recently Used (LRU) cahcing strategy to
manage the model cache, ensuring efficient memory use.

4.2 SystemWorkflow
In this section, we describe the workflow of the in-database in-
ference extension, which comprises both training and in-database
inference phases as shown in Figure 6.
Training Phase. In the training phase, a general model is con-
structed according to the table schemas and the predictive task SQL
query logs from real-world scenarios are collected as the representa-
tive workload for training. These queries are utilized to retrieve the
corresponding subdatasets, both of which are then preprocessed

and fed into the general model for iterative training (Step 1 in Fig-
ure 6). Upon completion of training, the general model is serialized
and stored as a state dictionary (Step 2). In response to the incom-
ing SQL query, an associated UDF is invoked, and then the model
is loaded into the database memory and sliced to handle various
online inference requests.
In-Database Inference Phase. The inference process is encapsu-
lated into a UDF, which is integrated into database through exten-
sion installation. The UDF, named infer, provides a SQL interface
for inference queries, as shown in the statement below:

SELECT infer(<tableName>, <task>, <propositional formula>);

Here, <tableName> indicates the source table for the subdataset.
<task> specifies the prediction target (such as click-through rate or
readmission rate) and directs to a particular deep learning model.
<propositional formula> defines the filter conditions following the
WHERE clause. Upon receiving the inference query (Step 3 in Fig-
ure 6), the UDF is executed as illustrated in Figure 5 (Step 4). The
UDF performs four main tasks for an online inference request: (1)
The prediction target and model are specified by <tableName> and
<task>. If the model is not cached, the UDF will locate and load the
general model (Step 5). (2) The UDF slices this model according
to the <propositional formula> under the guidance of the LEADS
technique. (3) Predictive data is retrieved via the SPI and written
into shared memory (Step 6). (4) The sliced model is applied to the
data for inference. Finally, the UDF returns a view containing the
original data alongside a new predictive column.

5 EXPERIMENTS
In this section, we evaluate the effectiveness of LEADS and effi-
ciency of our in-database inference extension, using five real-world
datasets. We first introduce the datasets and experimental setup,
and then design experiments and report findings to address four
key research questions (RQs):

• RQ1: Does the LEADS technique improve the SQL-aware predic-
tive modeling task compared to base models?
• RQ2: How effective is each component in LEADS technique?
• RQ3: Does our in-database inference extension improve the effi-

ciency compared to traditional approaches?
• RQ4: How effective is our extension in complex scenarios?
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Table 1: Dataset statistics.

Dataset Tuples Positive Ratio Attributes Features
Payment 30,000 21.4% 23 350
Credit 244,280 7.8% 69 550
Census 269,356 6.4% 41 540
Diabetes 101,766 46.8% 48 850
Avazu 40,428,967 17.2% 22 1,544,250

5.1 Experimental Setup
5.1.1 Datasets. We conduct experiments on five real-world datasets
from the domains of finance, sociology, and healthcare. The statis-
tics of the datasets are summarized in Table 1.
(1) Payment [58, 59] consists of credit card clients’ profiles and
their past bill payments. The task is to predict if a credit card pay-
ment will default next month.
(2) Credit [6, 24] is gathered by Home Credit Group, focusing on
the unbanked population. The task is to predict the repayment
abilities of this population for better loan experience.
(3) Census [1, 57] contains data from the Current Population Sur-
vey conducted by the U.S. Census Bureau. The task is to determine
whether a person’s annual income exceeds 50K based on their pro-
file information, including age, class education, etc.
(4) Diabetes [12, 49] comprises ten years of clinical care at 130
US hospitals. Each tuple pertains to hospital records of patients
diagnosed with diabetes, including details like medications and
laboratory results. The task is to predict the patient’s readmission.
(5) Avazu [48] collects data from a mobile platform to predict click-
through rates on ads. The dataset comprises millions of records and
22 attribute fields, covering mobile application and device informa-
tion, with a total of 1,544,250 unique features.

5.1.2 Workloads. In SQL-aware predictive modeling, traditional
OLAP benchmarks like TPC-DS [36] and TPC-H focus on evaluat-
ing query performance using operations such as JOIN and GROUPBY,
which lack prediction tasks. In contrast, existing prediction datasets
used for evaluating predictive modeling performance do not in-
corporate SQL queries. To address this deficiency, we develop a
method to sample synthetic inference queries for the evaluation of
SQL-aware predictive modeling.

Our method, detailed in Algorithm 1, employs a random strategy
to create a set of synthetic SQL queries. The generation procedure
is as follows: (1) randomly select a data tuple x from the dataset 𝐷
(Step 3); (2) sample a value𝑚 as the number of predicates in the cur-
rent query from the range [1,min(𝑚𝑎𝑥_𝑐𝑜𝑙, 𝑀)], where𝑚𝑎𝑥_𝑐𝑜𝑙
is the maximum number of predicates allowed in SQL queries, and
𝑀 is the number of attributes in 𝐷 (Step 4); (3) sample𝑚 attributes
from x and use their values to construct a propositional formula
for the SQL query (Steps 5-6); (4) add the generated SQL query
to the workload (Step 7). This procedure is repeated 𝑁 to create
a comprehensive workload. In experiments, we set 𝑁 to 50 and
𝑚𝑎𝑥_𝑐𝑜𝑙 to 3, and generate workloads on each dataset accordingly.

5.1.3 Baseline Methods. We select four kinds of base predictive
models and enhance these models via the LEADS technique. We
evaluate LEADS’s effectiveness by comparing the performance of
these base models with and without the integration of LEADS. The
base models are as follows

Algorithm 1 Synthetic Workload Generation
Require: dataset 𝐷 , the number of SELECT queries 𝑁 , the maxi-

mum filter condition size𝑚𝑎𝑥_𝑐𝑜𝑙
Ensure: a synthetic workload𝑊 containing 𝑁 SELECT queries
1: 𝑊 = ∅
2: for 𝑖 ← 1 to 𝑁 do
3: Randomly select a data tuple x ∈ R𝑀 from 𝐷

4: Randomly sample the number of selected columns 𝑚 ∈
[1,min(𝑚𝑎𝑥_𝑐𝑜𝑙, 𝑀)]

5: Randomly sample𝑚 columns from data tuple x along with
their corresponding values

6: Form a SELECT query with a filter condition of size𝑚 based
on the selected columns and values

7: Add the generated SELECT query to the workload𝑊
8: end for
9: return synthetic workload𝑊

(1) DNN [18]: contains fully-connected linear and activation layers,
representing the most fundamental neural network.
(2) CIN [32]: it models higher-order feature combinations through
compressed interaction with input embeddings.
(3) AFN [11]: it incorporates logarithm neurons in the network
layer, aiding in capturing the feature interaction in arbitrary order.
(4) ARMNet [10]: it introduces multi-head attention to adaptively
extract the combination of features, demonstrating state-of-the-art
performance in structured data prediction tasks.

Additionally, to evaluate the efficiency of the in-database infer-
ence extension, we compare it with the traditional analytic approach
IDS described in Section 4, in which data is retrieved out of the
database through network communication based on psycopg, while
no data is copied between execution environments.

5.1.4 Evaluation Metric. A workload consists of a set of inference
queries, each representing a prediction request. We evaluate the
effectiveness of LEADS on a single inference query, denoted by 𝑞,
using the AUC (Area Under the ROC Curve) metric, where higher
values indicates better performance. To assess LEADS’s overall
performance across the entire workload, we use two metrics. The
first is the average AUC for all queries, denoted as Workload-AUC:

𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑-𝐴𝑈𝐶 (𝑊 ) = 1
𝑁

𝑁∑︂
𝑖=0

𝐴𝑈𝐶 (𝑞𝑖 ) (10)

where 𝑁 is the number of SQL queries, 𝑞𝑖 is the 𝑖-th query in the
workload𝑊 . The second is the lowest AUC value among all queries,
termed Worst-AUC and calculated as:

𝑊𝑜𝑟𝑠𝑡-𝐴𝑈𝐶 (𝑊 ) = 𝑀𝑖𝑛{𝐴𝑈𝐶 (𝑞1), 𝐴𝑈𝐶 (𝑞2), . . . , 𝐴𝑈𝐶 (𝑞𝑁 )} (11)

In fields like finance and healthcare where mistakes can lead to
significant losses, it’s important to focus on the worst-case per-
formance. The Worst-AUC reveals whether the technique per-
forms reliably and helps avoid poor decisions. To assess model-
level efficiency, we utilize the floating-point operations per second
(FLOPs) to measure the computations during the inference phase.
For system-level evaluation, we measure the performance using
response time, which tracks the CPU time elapsed from when a user
initiates a query to when the prediction results are received.
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Table 2: Evaluation of performance improvements with LEADS.

DNN CIN AFN ARMNetDatasets Metric w/o w/ Imprv. w/o w/ Imprv. w/o w/ Imprv. w/o w/ Imprv.

Workload-AUC 0.7003 0.7089 +1.23% 0.7164 0.7189 +0.35% 0.7067 0.7143 +1.08% 0.7141 0.7212 +0.99%Payment Worst-AUC 0.4733 0.5467 +15.51% 0.3836 0.4463 +16.35% 0.4467 0.6333 +41.77% 0.5267 0.6067 +15.19%

Workload-AUC 0.7145 0.7427 +3.95% 0.7234 0.7408 +2.41% 0.7171 0.7218 +0.66% 0.7231 0.7347 +1.60%Credit Worst-AUC 0.3852 0.6000 +55.76% 0.3333 0.4074 +22.23% 0.3852 0.4074 +5.76% 0.4444 0.6264 +40.95%

Workload-AUC 0.9157 0.9200 +0.47% 0.9187 0.9224 +0.40% 0.9151 0.9216 +0.71% 0.9196 0.9237 +0.45%Census Worst-AUC 0.7692 0.8041 +4.54% 0.7692 0.7845 +1.99% 0.7577 0.7892 +4.16% 0.7692 0.7962 +3.51%

Workload-AUC 0.8308 0.8375 +0.81% 0.8322 0.8419 +1.17% 0.8329 0.8390 +0.73% 0.8342 0.8402 +0.72%Diabetes Worst-AUC 0.5495 0.6374 +16.00% 0.6264 0.7033 +12.28% 0.6484 0.6813 +5.07% 0.6044 0.6593 +9.08%

Workload-AUC 0.7355 0.7424 +0.94% 0.7324 0.7443 +1.62% 0.7364 0.7424 +0.81% 0.7387 0.7440 +0.71%Avazu Worst-AUC 0.4231 0.5562 +31.46% 0.4531 0.5625 +24.14% 0.5031 0.5594 +11.19% 0.4615 0.5625 +21.88%
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Figure 7: Top-4 SQL queries in terms of AUC improvement.

5.1.5 Hyper-parameter Settings. For fair comparisons, we set the
feature embedding size to 10 and the hidden layer size to 32 for all
base models. Since LEADS allows multiple experts, we reduce the
hidden layer size of each expert to 16 for efficiency. For ARMNet,
we set the self-attention module to 4 heads and a hidden size of
16. The initial 𝛼 in sparsemax is 2.5. The number of experts in
LEADS is selected between 2 and 256 and fixed at 16. The balance
regularization factor 𝜆1 and sparsity factor 𝜆2 are chosen between
1e-3 and 5e-2, both fixed at 1e-3. We conduct a sensitivity analysis
on these hyperparameters and report the best results.

5.1.6 Training Details. Since the training dataset lacks specific SQL
queries to update the gating network parameters, we simulate a SQL
query for each input following Steps 3-6 in Algorithm 1 . We use the
Adam optimizer [28] with a learning rate range of 1e-3 to 0.1 and a
batch size of 1024 for all base models and datasets. Experiments are
conducted on a server with a Xeon Silver 4114 CPU @ 2.2GHz (10
cores), 256GB of memory, and a GeForce RTX 3090 Ti. All models
are implemented using PyTorch 1.6.0 with CUDA 10.2.

5.2 SQL-aware Predictions
To answer the question RQ1, we investigate the performance of four
base models with LEADS. and the results are summarized in Ta-
ble 2. The main observation is that the prediction performance w.r.t.
Workload-AUC andWorst-AUC consistently improve when utilizing
LEADS on base models Notably, the most significant improvement
is observed in the Worst-AUC metric. For instance, when using
DNN as the base model, LEADS achieves improvements of 55.76%
and 16.00% on the Credit and Diabetes datasets, respectively. The
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Figure 8: Effects of SQL-aware gating network on accuracy.

Table 3: Effects of the number of predicates on AUC.

Dataset #predicates 1 2 3 4 5 6

Credit
#tuple 24375 9902 9900 9896 9856 5208

w/o LEADS 0.7432 0.7495 0.7495 0.7494 0.7483 0.7494
w/ LEADS 0.7522 0.7589 0.7591 0.7581 0.7577 0.7604

reason for the base model’s low performance could be significant
variability or nuances in the instances of the retrieved subset that
are not well-represented in the training data. Consequently, the
trained base model fails to provide accurate predictions.

To further analyze the Worst-AUC improvement, we perform
a breakdown analysis on the Diabetes dataset with the DNN base
model. Figure 7 presents the top-4 SQL queries with the highest
AUC improvements from LEADS, along with their query profiles.
We notice that these queries have lower AUC values compared
to the overall Workload-AUC (see Table 2) and involve small sub-
sets of the training data. For instance, query#1 uses only 0.13% of
the training data, about 130 out of 101,766 tuples. With such lim-
ited data, the base model struggles to generalize, resulting in poor
predictions. LEADS addresses this by leveraging the propositional
formulas in SQL queries to help the general model identify patterns
in these small subdatasets, enhancing performance on queries with
few training samples. In Diabetes dataset, many queries involve
the drug status. For example, query#3 indicates a reduced dosage
of glipizide, which significantly impacts readmission rates. This
demonstrates LEADS’s value in improving healthcare predictions.

We also investigate the impact of predicate numbers on predic-
tive results, as it represents query complexity. In our experiment,
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Figure 9: Effects of 𝛼-entmax and number of experts.
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Figure 10: Effects of the regularization terms on accuracy.

we incrementally added up to 6 predicates to evaluate the predic-
tion. As shown in Table 3, LEADS outperforms baseline methods
across different levels of query complexity. Additionally, there is
an upward trend in predictive performance with the increase of
the predicate number, indicating that complex primitive queries
provide richer meta-information and enhance prediction accuracy.

5.3 Ablation Study
In this part, we conduct the ablation study to answer the question
RQ2, evaluating the effectiveness of each component in LEADS.
SQL-aware gating network. In this evaluation, we remove the
SQL-aware gating network to demonstrate the importance of dy-
namic expert selection. A default model is created using a special
SQL query embedding, where a set of padding values for each at-
tribute, denoted as q𝑑 = [Δ1,Δ2, · · · ,Δ𝑀 ], indicating the absence
of predicates in the SQL query. The comparison results are shown
in Figure 8. There are two main observations. First, the w/o LEADS
method achieves the lowest Workload-AUC because it simply uses
the base model to handle all SQL queries. Second, the LEADS w/o
SQL-aware gating network method results in a performance re-
duction compared to LEADS. For example, on the Credit dataset,
this reduction can reach up to 0.02 in terms of Workload-AUC. It
is because without the SQL-aware gating network, LEADS loses
the ability for dynamic model customization based on SQL query
vectors, leading to unsatisfactory results.
𝛼-entmax. We evaluate the effect of the 𝛼-entmax function by
comparing LEADS to w/o LEADS and LEADS w/o 𝛼-entmax (which
uses the softmax function) Using DNN as the base model, we vary
the number of experts from 2 to 256 and measure the performance
w.r.t. Workload-AUC and FLOPs on Payment and Credit datasets.
As shown in Figures 9, increasing the number of experts from 2
to 256 leads to notable AUC improvements, as more experts allow
the model to make more accurate predictions. However, beyond 32
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Figure 11: Analysis of the activated frequency for each expert.
The value denotes the frequency and 1.0 means the expert is
activated in every SQL query.

experts, LEADS w/o 𝛼-entmax sees a decline in AUC on the Credit
dataset due to easily overfitting, as the model becomes too complex.
Figure 9 also highlights the advantages of 𝛼-entmax in terms of
FLOPs saving. Specifically, the FLOPs of LEADS w/o 𝛼-entmax
grow linearly with more experts, while LEADS with 𝛼-entmax has
a gentler increase, because 𝛼-entmax assigns small values to zero,
reducing the number of active experts compared to softmax. We
remove these unused experts to conserve computational resources.
Regularization terms. We compare the performance of LEADS
with three variants: without the balance term (LEADS w/o 𝐿𝑏𝑎𝑙𝑛),
without the sparsity term (LEADS w/o 𝐿𝑠𝑝𝑟𝑠 ), and without both
terms (LEADS w/o both). Using DNN as the base model, we conduct
experiments on the Payment and Credit datasets. Figure 10 presents
the comparison results in w.r.t. Workload-AUC, and Figure 11 ana-
lyzes the frequency of expert usage during query execution. Three
main findings emerge: First, removing the balance term significantly
reduces the Workload-AUC of LEADS, Without the balance term,
fewer experts are used for each query, leading to lower prediction
accuracy. This is evident in Figure 11, where only two experts are
predominately selected. Second, adding solely the balance term
results in lower performance than LEADS but utilizes almost all
experts for every query. The balance term encourages even expert
selection, leading to higher computational costs. Lastly, enabling
both terms simultaneously in LEADS balances expert usage while
achieving the best performance.

5.4 System Efficiency
To answer question RQ3, we assess the system-level efficiency in
end-to-end response time by comparing the IIS that is used in our
system with IDS. We implement IIS as an extension that can be
installed in PostgreSQL 14.
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Figure 12: Efficiency evaluation of In-database Inference Strategy (IIS) and Inference-Decouple Strategy (IDS).
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Figure 13: Effects of optimizations on response time.

Comparison with the baseline. Given an SQL query that selects
100k records for inference, We report the response time of IIS and
IDS on the five datasets, as presented in Figure 12a. Compared to
IDS, IIS achieves a speedup of 1.94x, 2.06x, 2.00x, 1.82x, and 1.53x on
the Census, Credit, Diabetes, Payment, and Avazu. There are two
reasons for such superior performance. One, IIS reduces the costly
data movement overheads between PostgreSQL and the inference
system, with lower data retrieval time usage. Secondly, IIS is further
enhanced with the optimizations: shared memory to reduce data
copying overhead, and state caching to eliminate the cost of model
loading during the inference UDF execution process.
Effects of the number of predicting records. Next, we examine
how the number of predictive records in the SQL query impacts
response time. In the Payment dataset, this number ranges from
40k to 640k records. Figure 12b shows the response time for two
strategies, IIS and IDS. We observe that IIS consistently surpasses
IDS across various record numbers, with performance improve-
ment ranging from 1.47x to 1.93x. Moreover, the response time of
IIS increases more slowly than that of IDS, since the data movement
overhead between the database and the inference system becomes
more pronounced with the increase of records. Therefore, with
more predictive records, IIS performs even more favorably.
Evaluation of optimization techniques Further, we evaluate
the benefits of the optimizations mentioned in Section 4.1. Specif-
ically, we compare the in-database inference process with (i) w/o
memory sharing; (ii) w/o SPI ; (iii) w/o state caching; and (iv) w/o all
optimizations. Figure 13 presents the comparison results w.r.t. the
response time in predicting 100k records on the Payment dataset.
The absence of shared memory leads to significant overhead due to
data copying between different execution environments. Likewise,
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Figure 14: OptimizingUDFs: analyzing the trade-offs between
response time and memory usage.

without SPI (PostgreSQL’s built-in data access API), data retrieval
times are considerably longer. Moreover, there is considerable over-
head from repeatedly loading the model without state caching.
When all optimizations are enabled, the in-database inference ex-
tension achieves a 3x speed improvement compared to it without
optimizations. Additionally, we investigate the trade-offs between
response time and memory usage brought by memory sharing and
state caching. In this analysis, we set a workload containing 300
inference queries and record memory usage during the process.
The results presented in Figure 14 reveal that state caching and
memory sharing enhance inference efficiency, with minimal impact
on overall memory usage from these optimizations.

5.5 Complex Inference Scenarios
In this subsection, we address question RQ4 by examining LEADS’s
effectiveness under data updates and schema changes, as well as the
efficiency of our in-database inference extension when handling
SPJ (Select-Project-Join) queries.
Effectiveness when data updates. We evaluate the effectiveness
of LEADS for tuple insertion and deletion by executing the same
SQL queries between data changes. Using the Credit and Diabetes
datasets with a DNN as the base model, each dataset is equally
divided into original and new tuples. The new tuples are inserted
into the database in five stages, with the model evaluated after
each insertion. As shown in Figure 15, the model enhanced by
LEADS consistently outperforms the base model as the dynamic
combination of multiple experts discussed in Section 5.2. In conclu-
sion, when data updates follow the same distribution, the model
enhanced by LEADS effectively generalizes to various subdatasets.
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Figure 15: Effects of data insertion on Workload-AUC.

Effectivenesswhen the schema changes.As for schema changes,
altering attributes changes the feature dimension of each tuple, lead-
ing to a dimension mismatch with the predictive model. To continue
using the original model, we need to construct matched inputs. For
insertion, required attributes can be fetched and fed to the model,
while newly added attributes will not be considered in predictive
modeling. For deletion, the values in the deleted attributes will be
missing. We pad these missing values, but this will degrade perfor-
mance. The impact of deleted attributes on model performance is
shown in Figure 16. We notice that as more attributes are deleted,
model performance drops rapidly. Therefore, retraining the model
based on the new feature dimensions is advisable to ensure effective
inference following schema changes.
Efficiency for SPJ queries. To evaluate in-database inference on
SPJ queries, we vertically split the Diabetes and Credit datasets
into two sub-tables (e.g., diabetes_left and diabetes_right). During
inference, these sub-tables are joined to select tuples, as shown
in the SQL example in Figure 12d, and the efficiency is compared
to the baseline approach IDS. We also assess performance using
the original table without JOIN to measure the impact of query
complexity. As expected, Figure 12c shows that JOIN operations
introduce additional overhead, leading to higher response times
compared to queries without JOIN. However, IDS outperforms the
baselines due to reduced data movement, as data remains within
the database. For JOIN queries, the speed advantage of in-database
inference is less pronounced since query planning and execution
times dominate over the benefit of eliminating network latency.

6 RELATEDWORK
Mixture-of-Experts (MoE) is initially proposed by [26] to handle
different samples using independent expert modules. [47] intro-
duces the Sparse Gated MoE into language model training, develop-
ing large-scale LSTM-based MoE models, in which only one expert
is chosen for each input data. With the rise of the Transformer as
the dominant NLP architecture, researchers began to incorporate
MoE layers by extending the Feed-Forward Networks (FFNs) in
Transformers to build MoE language models. Despite these innova-
tions, the Sparse Gated MoE [47] struggled with stability due to the
expert route strategy where it brute-forcely selects the top-1 expert.
To mitigate this, various studies [16, 30, 43, 63] explored different
learnable routing strategies for managing experts and input tokens.
For example, Fast MoE [21] monitors the training status and dynam-
ically adjusts the load for each expert. Expert Choice Routing [63]
lets experts choose tokens rather than selecting experts to prevent
under-training. Soft MoE [43] performs an implicit soft assignment
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Figure 16: Effects of schema deletion on Workload-AUC.

by passing different weighted combinations of all input tokens to
each expert. In addition to these works on MoE architectures and
training strategies, recent years have witnessed the application of
MoE in vision-related and multimodal predictive tasks [46]. How-
ever, our research delves into the potential of MoE in structured
data analytics. We closely combine it with database data analytics,
dynamically selecting necessary experts corresponding to the filter
conditions in SQL queries.
In-DatabaseMachine Learning involves executingmachine learn-
ing within the database. MADlib [23] is an open-source library
providing SQL-based ML functions in PostgreSQL. Google ML
library[3], and Microsoft’s SQL Server Machine Learning Services
[4] offer SQL APIs for ML functions on Oracle, bigquery, and Mi-
crosoft SQL Server, respectively. However, they only support feed-
ing the static model with tuples in a data table and do not adapt feed-
ing it with meta-information such as query encoding to customize
the model for inference. Adding this support requires significant
changes to their infrastructure, which is either non-trivial or unfea-
sible since infrastructure code is not accessible. Therefore, none of
them are directly comparable. Complementary to LEADS, we pro-
pose an effective in-database model selection technique, TRAILS,
in [55], and we will report their integration in the future.

7 CONCLUSIONS
In this paper, we propose a novel SQL-aware dynamic model slicing
technique called LEADS. We enhance the general model with the
Mixture of Experts (MoE) technique and devise a SQL-aware gating
network to dynamically customize a sliced model given the propo-
sitional formula in the user’s SQL query. We further encapsulate
LEADS into an in-database inference extension for PostgreSQL.
In the implementation, we incorporate three key optimizations
to accelerate the in-database inference process. Extensive experi-
ments on five real-world datasets show that LEADS consistently
outperforms four baseline models, and the in-database inference ex-
tension significantly reduces inference time compared to traditional
approaches. We have integrated LEADS into NeurDB, our ongoing
implementation of an AI-powered autonomous data system.
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