
MTSClean: Efficient Constraint-based Cleaning for
Multi-Dimensional Time Series Data

Xiaoou Ding

dingxiaoou@hit.edu.cn

Harbin Institute of Technology

Yichen Song

22S003013@stu.hit.edu.cn

Harbin Institute of Technology

Hongzhi Wang
∗

wangzh@hit.edu.cn

Harbin Institute of Technology

Chen Wang

wang_chen@tsinghua.edu.cn

Tsinghua University, China

Donghua Yang

yang.dh@hit.edu.cn

Harbin Institute of Technology

ABSTRACT
The widespread existence of time series data in information systems

poses significant challenges to data cleaning due to its quality is-

sues, particularly the complex interdependencies among attributes

and the persistence of errors. Existing semantic constraints, such

as conditional regression rules and speed constraints, though help-

ful, remain insufficient for this task. This paper introduces two

novel online cleaning methods: MTSClean and MTSClean-soft, de-
signed to improve cleaning efficiency and robustness. By combin-

ing row and column constraints, we significantly accelerate the

cleaning process, reducing the time complexity of the exact solu-

tion MTSClean from 𝑂
(︁
(𝑁𝑀)3.5 |Σ|

)︁
to 𝑂

(︁
𝑁𝑀3.5 |Σ|

)︁
. Meanwhile,

MTSClean-soft achieves𝑂
(︁
𝑁𝑀2

)︁
and more precise repairs through

optimized search for key cells and a novel repair cost function. Com-

parative experiments against nine benchmark methods highlight

our approach’s superiority in multiple metrics, completing cleaning

tasks faster and performing better than state-of-the-art methods.

This demonstrates the practicality and advantage of the proposed

methods in cleaning multidimensional time series data.

PVLDB Reference Format:
Xiaoou Ding, Yichen Song, Hongzhi Wang, Chen Wang, and Donghua

Yang. MTSClean: Efficient Constraint-based Cleaning for

Multi-Dimensional Time Series Data. PVLDB, 17(13): 4840 - 4852, 2024.

doi:10.14778/3704965.3704987

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/dx0o0/DataQualityGroup-MTSClean.

1 INTRODUCTION
With the rapid development of the IoT technology, time series data

has become a widely prevalent data type in various fields, referring

to a sequence of measurements taken at regular (typically fixed)

intervals from measurable quantities in the physical world [11, 32,

40]. Modeling and analytical computations on time-series data have

yielded valuable insights. However, it is crucial to acknowledge that

real-world time series data often encounters significant data quality

problems. In the industrial field, for instance, data loss or distortion

*Corresponding author.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 13 ISSN 2150-8097.

doi:10.14778/3704965.3704987

due to equipment failures is a common occurrence when sensor

data is recorded in databases [40]. Research indicates that industrial

time series data frequently harbors over 20% of erroneous records

[11, 36]. Even in the finance industry, notorious for its stringent

data quality standards, a substantial amount of erroneous time

series data exists. For example, stock information on Yahoo Finance

has a 93% accuracy rate, while Travelocity’s airline data stands at

only 95% accuracy [22].

The prevalence of dirty data can significantly hinder downstream

time series data analysis tasks, including the training and prediction

of machine learning models, by causing them to learn incorrect

patterns, thus degrading performance. This problem has attracted no-

table attention both in database [26] and machine learning [21, 30]

fields. For instance, inaccurate historical weather data can under-

mine the reliability of forecasting. Furthermore, decisions based on

such data can yield undesirable outcomes, such as inadequate or

delayed healthcare plans. Besides, using erroneous data for subse-

quent tasks can result in a substantial waste of resources, especially

in large-scale time series data processing and analysis.

From the above, data quality management is also a crucial as-

pect of time series data management [40]. In this process, we can

leverage data cleaning techniques to effectively identify and cor-

rect dirty data, thereby eliminating biases introduced by such data.

Traditional cleaning techniques for poor-quality time series data

primarily include statistical smoothing methods and constraint-

based cleaning techniques (as reviewed in our surveys [11, 41]).

The former, an automation-oriented approach prevalent in IoT set-

tings, is noted for its simplicity and low cost. However, smoothing

methods typically focus solely on the trend and seasonality of time

series data, often modifying a significant portion of the original

dataset. This can lead to the loss of valuable information in the

original, accurate time series data, subsequently diminishing its

utility for downstream applications [26]. For the latter, constraint-

based methods require user input of domain-specific knowledge,

which can be translated into data quality constraints. We can then

examine whether the data satisfies these quality constraints to iden-

tify dirty data as violations. Subsequently, algorithms are designed

to determine which cells should be modified and their respective

repaired values, leading to an improved data quality.

However, compared to traditional relational data, time series

data possesses unique characteristics, rendering the problem of

data quality more complex. On one hand, the interdependencies

between attributes in multi-dimensional time series data are more

intricate. For example, when collecting working data of induced

4840

https://doi.org/10.14778/3704965.3704987
https://github.com/dx0o0/DataQualityGroup-MTSClean
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3704965.3704987
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Figure 1: Motivated example demonstration
draft fans, attributes such as mechanical temperature, inlet and

outlet air pressure, and power exhibit linear regression relation-

ships. On the other hand, data collected across time points is also

interconnected in temporal context.

Recently, semantic constraints capable of describing the quality

requirements of time series data have been introduced, including

statistical constraints [43] that correlate numerical attributes, speed
constraints [45] describing the rate of change in attribute values

over time, and conditional regression rules (CRR) [24] expressing
regression relationships between attributes. We recently proposed

a new notation, TSDD, to capture the contextual relationships in-

herent in multivariate time series, enriching its semantic repre-

sentation. Despite advances in expressing quality constraints and

mining techniques, time series data cleaning methods based on

these constraints are still developing. Example 1.1 demonstrates

the current limitations in time series data cleaning effectiveness.

Example 1.1. Figure 1 illustrates a noticeable error record in the

water temperature data gathered by a sensor on the induced draft

fan over a certain period. This kind of error, known as a continuous

error, is frequently encountered in IoT time series data [25, 38]. We

present the repair results of potential data cleaning methods. [45]

employs speed and acceleration constraints to restrict temperature

values to gradually increase without surpassing a predefined thresh-

old. Nevertheless, its repair accuracy is significantly hampered by

erroneous data emerging shortly after the initial error. On the other

hand, one SOTA cleaning method based on labels, IMR [46], is influ-
enced by the number of label parameters and exhibits inconsistent

cleaning performance when dealing with continuous errors. Regard-

ing expressive data quality rules, such as CRR and TSDD, effective

cleaning strategies have not been introduced yet. However, when

applying these expressive constraints into the cleaning process, we

achieve notably improved cleaning outcomes, as exemplified by

our proposed methods, MTSClean and MTSClean-soft.

Investigating cleaning algorithms supporting complex quality

constraints for time series data is urgent. However, several key

considerations must be taken into account for constraint-based

cleaning, including:

• Efficiency. Taking into account the large-scale and high-dimensional

nature of time series data, the implementation of multiple complex

constraints implies high computational costs, both during the viola-

tion detection and repair phases. Consequently, it is imperative to

devise highly efficient algorithms to guarantee their applicability

to extensive time series datasets.

• Robustness. Given the characteristics of time series, the powerful

expressiveness of quality rules in describing relationships between

attributes and temporal dependencies can lead to complexity in the

repair process. More reliable cleaning strategies need to be devised

to address issues such as the representation of violation patterns

and the identification of more suitable repair objective functions.

• Online cleaning. In practical scenarios, such as real-time equip-

ment monitoring and early warning systems, there is a distinct

demand for real-time or near-real-time data cleaning. This enables
personnel to respond and make decisions more swiftly regarding

the actual issues reflected by poor-quality data. However, the detec-

tion complex data errors (e.g., continuous errors, contextual errors)
in a timely manner and provide repair solutions within a confined

cleaning timeframe present a considerable challenge.

Contribution. Motivated by this, we studied the problem of

constraint-based multi-dimensional time series data cleaning. We

summarize our contributions as follows:

(1)We formalize the constraint-based cleaning ofmulti-dimensional

time series data, emphasizing linear functional between attributes

and temporal constraints, as a linear programming task. Our novel

online algorithm, MTSClean, significantly reduces cleaning com-

plexity from𝑂
(︁
(𝑁𝑀)3.5 |Σ|

)︁
to𝑂

(︁
𝑁𝑀3.5 |Σ|

)︁
, where 𝑁 denotes the

length of multivariate time series data,𝑀 represents the number of

attributes, and |Σ| signifies the number of given constraints.

(2) To enhance cleaning efficiency and robustness, we transform

the aforementioned linear programming problem into a constrained

optimization search. We introduce MTSClean-soft, a three-stage

online cleaning approach (detection, localization, repair), reducing

cleaning complexity to 𝑂 (𝑁𝑀2). During localization, we refine

the traditional hypergraph model for constraint violations in time

series, proposing the FindKeyCell algorithm to pinpoint erroneous

cells swiftly and precisely by evaluating constraint violations. For

repair, we devise a new cost function, balancing minimum repair

and constraint violation costs, ensuring robust fixes for intricate

error patterns.

(3) We conduct comparative tests on four real-world industrial

datasets against nine benchmarks. Results show that MTSClean re-

duced cleaning errors by 40% compared to SOTA cleaning methods,

while MTSClean-soft achieved a 15% reduction with minimal time

cost. Ablation studies confirmed that our FindKeyCell boosts the

F1-score for violation detection by 0.18 above SOTA.

The paper’s organization is as follows. Section 2 outlines the clean-

ing problem. The MTSClean algorithm is detailed in Section 3, while

Section 4 presents MTSClean-soft with key theoretical argumenta-

tion and examples. Experimental results are reported in Section 5,

related works are discussed in Section 6, and Section 7 concludes.

2 PROBLEM OVERVIEW
2.1 Preliminaries
S = {𝑆1, ..., 𝑆𝑀 } contains aligned𝑀-dimensional (a.k.a𝑀-attribute)

time series. 𝑎𝑡𝑡𝑟 (S) denotes the attribute set of S. For each se-

quence 𝑆 = ⟨𝑠1, ..., 𝑠𝑁 ⟩, 𝑠𝑛 = (𝑥𝑛, 𝑡𝑛), (𝑛 ∈ 1, 2, ..., 𝑁) denotes a cell
in 𝑆 , where 𝑥𝑛 is a real-valued number with a time point 𝑡𝑛 . Be-

low we use 𝑆𝑖 [𝑡𝑛] as the value of sequence 𝑆𝑖 at time 𝑡𝑛 for short.

𝑤 = (𝑙, 𝑘) denotes a time window containing several consecutive

time points from 𝑡𝑙 to 𝑡𝑘 .

It is recognized that data quality constraints could be classified

according to the dependence on attributes (columns in a database ta-

ble) and instances (rows) [6]. Both constraints are prevalent in time

4841

Table 1: Examples of real data quality constraints
1○ 𝜎𝑟𝑜𝑤 : 0 ≤ (𝐶2𝐻2 +𝐶2𝐻4 +𝐶𝐻4 +𝐶2𝐻6) ≤ 150

2○ 𝜎𝑟𝑜𝑤𝑠: 𝐶2𝐻2 − 0.1𝐶2𝐻4 ≥ 0,𝐶2𝐻2 − 0.1𝐶2𝐻4 ≤ 3,𝐶𝐻4 − 𝐻2 ≤ 0

3○ 𝜎𝑐𝑜𝑙 : −0.5 ≤ 𝐻2 [𝑡𝑖+1] − 𝐻2 [𝑡𝑖] ≤ 0.5

4○ 𝜎𝑐𝑜𝑙 : −0.2 ≤ 𝐶𝐻4 [𝑡𝑖+2] − 2𝐶𝐻4 [𝑡𝑖+1] +𝐶𝐻4 [𝑡𝑖] ≤ 0.3

series data. To standardize the representation of quality constraints,

we formalize row constraints and column constraints below.

Definition 2.1. Each row data quality constraint is represented
as a quadruple 𝜎𝑟𝑜𝑤 = (𝑓 ,A, 𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥), where A ⊂ 𝑎𝑡𝑡𝑟 (S) rep-
resents the sequence set (a.k.a the attribute set) in𝜎𝑟𝑜𝑤 , 𝑓 represents

a multivariate linear function computed on A. 𝛿 : [𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥] rep-
resent the lower and upper bounds allowed by the computation

result of 𝑓 . Such linear combination of attribute values in A is

expressed as: 𝑓 (A) = 𝛼1𝐴1 + · · · + 𝛼𝑘𝐴𝑘 , where 𝛼 represents the

constant coefficient of each attribute value, 𝐴𝑖 ∈ A, (𝑖 ∈ [1, |A|]).
More specifically, the row constraint could be expressed as follows:

𝜎𝑟𝑜𝑤 (𝑡) : ∀𝑡 ∈ 𝑇 (S) : (𝑓𝑚𝑖𝑛 ≤ 𝛼1𝑆𝐴1
[𝑡] + · · · + 𝛼𝑘𝑆𝐴𝑘

[𝑡] ≤ 𝑓𝑚𝑎𝑥) .
It indicates that the subset of attribute values corresponding to data

S must satisfy the restriction imposed by the function 𝑓 .

Definition 2.2. Each column data quality constraint is repre-
sented as a quintuple 𝜎𝑐𝑜𝑙 = (𝑓 , 𝐴, 𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥 ,𝑤), where 𝐴 is one

attribute from 𝑎𝑡𝑡𝑟 (S), and 𝑓 is the prefined function expressing

the temporal dependencies of data values on 𝐴 in the 𝑤-length

time window. 𝛿 : [𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥] represent the bounds allowed by the

computation of 𝑓 . 𝛼 represents the constant coefficient. Specifically,
the column constraint 𝜎𝑐𝑜𝑙 (𝐴,𝑤) is formalized as

∀𝑡𝑞 − 𝑡1 ≤ 𝑤 : (𝑓𝑚𝑖𝑛 ≤ 𝛼1𝑆𝐴 [𝑡1] + · · · + 𝛼𝑞𝑆𝐴 [𝑡𝑞] ≤ 𝑓𝑚𝑎𝑥) .
Accordingly, a set Σ of expressive data quality constraints for data

S contains both row-constraints Σrow and column-constraints Σ
col

.

Example 2.3. Using the transformermonitoring scenario in power

grid systems as an example, data quality issues can be identified by

assessing the conformity of oil chromatographic data with prede-

fined patterns. Table 1 exhibits the semantic expression of practical

business needs through defined quality constraints. Specifically,

row constraint 1○ outlines the requirement for total hydrocarbon

concentration. The set of row constraints 2○ elaborate on the “three-

ratio method”, which involves analyzing gas concentration ratios

in transformer oil and comparing them to preset thresholds for di-

agnosing conditions like electrical discharges. A speed constraint is

represented by column constraint 3○, indicating that the hydrogen

concentration should not fluctuate by more than 0.5 over a certain

timeframe. Lastly, 4○ introduces an acceleration constraint for𝐶𝐻4.

2.2 An overview of constraint discovery
Data quality constraints discovery. Our methodology for discov-

ering data quality constraints involves a comprehensive analysis of

time series data, referring to SOTA discovery methods from clean

data. For row constraints discovery, we traverse each attribute of

the data as 𝑦 in the mapping function 𝑓 : 𝑋 → 𝑦 [8, 24]. We

then combine the remaining attributes to form the set 𝑋 and con-

struct all possible mappings 𝑓 . Using a linear model, we determine

the coefficients and biases for each mapping and assess the map-

ping errors across the dataset. We prioritize mappings based on

the minimal error to avoid redundancy and ensure comprehensive

attribute coverage without overlap, repeating the mapping for dif-

ferent attributes sequentially until all attributes are accounted for.

For column constraints, we mainly apply speed constraints and

acceleration constraint discovery methods in [35] with computing

statistical distributions of data in each attribute.

Consistency check. We address potential issues where the

constraint set might not provide viable solutions, especially un-

der restrictive conditions combining column constraints with row

constraints. By employing a fast linear programming technique

at the zero point, we verify the validity of the constraint solution

space. This verification is crucial to confirm that all constraints

integrated into the repair process are feasible and effective, thereby

guaranteeing that the final set of constraints is capable of providing

a valid repair solution under all tested conditions.

Implication check. We perform the implication test of con-

straints using solution spaces. By utilizing the implication axioms

demonstrated in our previousworks [7, 8, 27], we determinewhether

the solution spaces of two constraints are in a containment rela-

tionship. If the solution space of 𝜎1 contains that of 𝜎2, it indicates

that the constraint with the smaller solution space has stronger

restrictions, thus we delete the constraint with the larger solution

space. If the solution spaces of two constraints are not in a con-

tainment relationship and there are no conflicts, we merge the two

constraints and use the intersection of their solution spaces as the

candidate solution space.

2.3 Problem Statement
The repaired version S′ of multi-dimensional time series data S
involves modifying the numerical values of its data points 𝑆𝑖 [𝑡 𝑗].
To minimize the modification of the original data information, we

involve the minimum repair principle which is widely used in data

cleaning field to guide the repair process [22, 29]. The repair cost is

defined as the norm of the difference sequence between the original

data S and the cleaned data S′:

Δ(S,S′) =
𝑀∑︂
𝑖=1

𝑁∑︂
𝑗=1

|︁|︁𝑆𝑖 [𝑡 𝑗] − 𝑆 ′𝑖 [𝑡 𝑗]|︁|︁
Thus, the studied constraint-based cleaning problem are formalized

in Definition 2.4.

Definition 2.4. Given time series data S of length 𝑁 with 𝑀

dimensions, and the set Σ = Σrow ∪ Σ
col

of data quality constraints

that it is required to satisfy, the global cleaning problem of S
is to find a repair S′ that S′ satisfies the set Σ and Δ(S,S′) is
minimized, that is,

minΔ(S,S′)
𝑠 .𝑡 . ∀𝜎 ∈ Σ : 𝑓𝑚𝑖𝑛 ≤ 𝑓 (A𝜎) ≤ 𝑓𝑚𝑎𝑥

LP solution for global cleaning. From the above, the cleaning task

focuses on minimizing the distance between the repaired data and

the original data while satisfying given constraints. Note that the

cleaning cost Δ(S,S′) can be transformed into a form that is suit-

able as the objective function for linear programming (LP) problems.

Specifically, by introducing new variables𝑢 and 𝑣 to represent repair

costs, let |𝑆𝑖 [𝑡 𝑗] − 𝑆 ′𝑖 [𝑡 𝑗] | = 𝑢𝑖 𝑗 + 𝑣𝑖 𝑗 and 𝑆 ′𝑖 [𝑡 𝑗] − 𝑆𝑖 [𝑡 𝑗] = 𝑢𝑖 𝑗 − 𝑣𝑖 𝑗 ,
then it has Δ(S,S′) = ∑︁𝑁

𝑖=1

∑︁𝑀
𝑗=1 𝑢𝑖 𝑗 + 𝑣𝑖 𝑗 . Accordingly, by equiva-

lently converting quality constraint predicates in Σ into constraints

4842

of LP, LP solver can be used to calculate the cleaned data in the

global optimal solution. Therefore, the global optimal cleaning

problem can be solved in polynomial time 𝑂 ((𝑁𝑀)3.5 |Σ|) using
the interior-point method [45], where 𝑁𝑀 represents the number

of applied cells and |Σ| is the number of constraints.

3 LOCAL OPTIMAL CLEANING: MTSCLEAN
We highlight that the aforementioned basic global optimal repair

methods are not ideal. Firstly, even with polynomial time complex-

ity, cleaning methods can be time-intensive for practical use. In

industrial settings like power grids and manufacturing, time series

data often spans over 100K timestamps. Using global optimization

for such data means treating each point in the multidimensional

time series as a variable, leading the LP solver to handle a large

number of variables, thus impacting repair efficiency. Secondly,

global optimal repair treats the entire dataset S as a whole, neces-

sitating the collection of all data before cleaning can commence.

To enhance the efficiency of cleaning massive streaming data, we

transition from a global to a local optimal repair. This method con-

centrates solely on recently collected data within a designated time

window, preserving already cleaned historical data. Taking into

account the distinct characteristics of row and column constraints

on data requirements, we formally define the local optimal cleaning

problem in Definition 3.1.

Definition 3.1. Given low-quality time series data S and the set

Σ of data quality constraints, the local cleaning problem of S
is to find S′ that satisfies the following conditions, with computa-

tional complexity not exceeding the upper bound of global cleaning,

𝑂 ((𝑁𝑀)3.5 |Σ|).

min Δ(S,S′)
𝑠 .𝑡 . ∀𝜎𝑟𝑜𝑤 ∈ Σrow : 𝑓𝑚𝑖𝑛 ≤ 𝑓 (A, 𝑡) ≤ 𝑓𝑚𝑎𝑥

∀0 < 𝑡 ′ − 𝑡 ≤ 𝑤, 𝜎
col
∈ Σ𝑐𝑜𝑙 :𝑓𝑚𝑖𝑛 ≤ 𝑓 (𝐴, 𝑡, 𝑡 ′) ≤ 𝑓𝑚𝑎𝑥 .

As the local repair method retains all quality constraints, it en-

sures full compliance with cleaning standards. Consequently, com-

pared to global optimal repair, the local approach significantly cuts

cleaning time without compromising effectiveness.

3.1 Algorithm MTSClean
We adopt a row-by-row cleaning approach, MTSClean, instead of

cleaning the entire dataset. It involves assessing whether each row

of data meets a set of constraints and performing data repair ac-

cordingly. This effectively reduces the number of variables required

in LP problems and enhances the efficiency of the algorithm. Algo-

rithm 1 outlines the local optimal repair process.

MTSClean reads data from the time series database in an ordered

manner, i.e., for any 𝑖 < 𝑗 , the timestamp 𝑡𝑖 is less than 𝑡 𝑗 . Accord-

ing to the repaired data within the sliding window, it determines

the range of values for each attribute, 𝑋min
and 𝑋max

, according

to column constraints (e.g., 3○ in Table 1). Utilizing the column

constraints Σ
col

, the Build function is employed to construct a

LP problem. A LP solver is then invoked to compute the optimal

solution, establishing candidate repair results for each cell within

Algorithm 1: MTSClean(S, Σ)
Input :Data S, the set of constraints Σ.
Output :The repaired version S′ of S.
S′ ← Copy(S) ;
for 𝑘 ← 1 to 𝑛 do

Compute 𝑋min

𝑘
and 𝑋max

𝑘
according to Σ𝑐𝑜𝑙 ;

𝐿𝑃𝑃𝑟𝑜𝑏𝑙𝑒𝑚 ← Build(S, Σ, 𝑘,𝑋min

𝑘
, 𝑋max

𝑘
) ;

S′ [𝑘] ← LPsolver(𝐿𝑃𝑃𝑟𝑜𝑏𝑙𝑒𝑚) ;
𝑘 ← 𝑘 + 1;

return S′

Figure 2: Comparison of search spaces in global and local
cleaning

the constraints. During the process, the constraint 𝜎 could be trans-

formed into a combination of inequalities as follows:

𝜎 : (
𝑘∑︂
𝑖=1

𝛼𝑖A𝑖 ≤ 𝑓 𝜎𝑚𝑎𝑥 ,

𝑘∑︂
𝑖=1

𝛼𝑖A𝑖 ≥ 𝑓 𝜎𝑚𝑖𝑛) (1)

This enables the transformation of constraints into combinations of

inequality forms, defining a candidate space for the latest data point.

This space represents valid repair values that meet the constraints,

with any point within it considered clean. Thus, we only need to

optimize the modification cost function within the candidate space

to obtain the repair result.

Example 3.2. Given a row constraint 𝜎 between two sequences

𝐴 and 𝐵 in S: −0.05 ≤ 𝐴 − 𝐵 ≤ 0.05, while 𝐴 experiences a con-

tinuous error from 𝑡5 to 𝑡12. Figure 2 illustrates the difference in

solution space size between MTSClean and the naive global cleaning
approach when cleaning this instance.

For data values at 𝑡5, since in LP problem, the values of 𝐴 and

𝐵 are treated as variables at each time point, the search space for

the repaired value of𝐴 theoretically spans from (−∞,∞). However,
when adopting a locally optimal repair strategy according to Al-

gorithm 1, we first determine the candidate range for the repaired

value of 𝐴 based on column constraints (represented by the red

area in Figure 2(b)). Then, we derive the repair range based on the

row constraint 𝜎 (the green area in Figure 2(b)). The intersection

of these two spaces is taken as the candidate repair value range for

𝐴[𝑡5]. Evidently, this intersection is significantly smaller than the

value space considered by the global cleaning method, highlighting

the accelerated search efficiency of MTSClean.

We emphasize to introduce how to improve upon the scenario

where local cleaning repairs data to the exact boundary satisfying

constraints, by utilizing a novel repair cost function in Section 4.4.

This will enable the repaired data to be closer to ground truth within

the range that satisfies the constraints.

Proposition 3.3. The global optimal repair costs𝑂 ((𝑀𝑁)3.5 |Σ|),
while the local optimal repair MTSClean costs𝑂 (𝑁 ·𝑀3.5 |Σ|) in time.

4843

Proof. It is acknowledged that the time complexity of LP prob-

lem is 𝑂 (𝑛3.5 · 𝐿), where 𝑛 is the number of applied variables and

𝐿 is the number of constraints in the optimization problem. While

for the local optimal repair MTSClean, it limits the LP problem to

each row, then the number of variables in the window is𝑀 . Com-

pared with global LP, we reduce the size of 𝑛 from 𝑁𝑀 to 𝑀 , so

the number of bits encoded by the problem is also reduced by the

same proportion. The time complexity for calculating 𝑋min

𝑘
and

𝑋max

𝑘
using column constraints is 𝑂 (1), where the calculation is

derived from the method Speed+Acc[35]. Thus, MTSClean costs

𝑂 (𝑁 ·𝑀3.5 |Σ|) in time. □

3.2 Theoretical guarantee for MTSClean
As we consider both row and column constraints in the cleaning

process, this section discusses their theoretical impact on the repair

search space.

3.2.1 Candidate repair space. We extend the candidate range de-

termined by column constraints to multiple dimensions. For each

attribute 𝐴 of S at timestamp 𝑘 , it corresponds a candidate range

[𝑥min

𝑘,𝐴
, 𝑥max

𝑘,𝐴
]. These ranges form a hypercube in high-dimensional

space, which we refer to as the candidate repair space determined

by column constraints e.g., speed constraints and acceleration con-

straints. Similarly, each row constraint also defines two hyperplanes

in high-dimensional space based on its upper and lower bounds.

The intersection of the space enclosed by these hyperplanes and the

hypercube constitutes the final candidate repair space, determined

jointly by the set of row constraints and column constraints.

3.2.2 Theoretical guarantee. We apply Figure 3 to present the

search space under both row and column constraints. First, we

state in Lemma 3.4 that the optimal solution of the LP problem is

equivalent to the optimal solution of the local cleaning problem.

We extract two columns (representing the amplitude in the in-

duced draft fan) 𝐴 and 𝐵 with row and column constraints from

multivariate time series data (in the diagram, 𝐴 is represented in

black, and 𝐵 in gray), represent. The red area represents the value

range of the same attribute at different timestamps calculated based

on velocity constraints starting from any moment 𝑡 . The blue area

represents the value range calculated based on acceleration con-

straints. The green area represents the value range obtained from

row constraints, where our row constraint implies that the differ-

ence in values of sequences 𝐴 and 𝐵 at the same timestamp should

be maintained between −0.03 and 0.05. In the subsequent proof

process, we use 𝑥 to represent the value of sequence 𝐴. Lastly, the

blue braces represent the candidate range at 𝑡10.

Lemma 3.4. Given data S and the set of constraints Σ, the repair
solution obtained by MTSClean for each row in S is equivalent to the
optimal solution of the local cleaning problem.

Proof. To take speed constraints and acceleration constraints

in [35] for example, we can relax the restrictions of speed con-

straints and acceleration constraints from the global cleaning prob-

lem to within a timewindow of length𝑤 . When considering column

constraints, instead of any 𝑡 𝑗 − 𝑡𝑖 ≤ 𝑤 , we focus on the current

timestamp 𝑡𝑘 and only consider 𝑡 𝑗 satisfying 𝑡𝑘 −𝑤 ≤ 𝑡 𝑗 < 𝑡𝑘 as

constraints for 𝑡𝑘 . This relaxation is summarized as [𝑥min

𝑘
, 𝑥max

𝑘
]

described in Section 3.2.1. In Figure 3, this is equivalent to the

boundary of the purple region. Our MTSClean, by restricting each

attribute’s value within its candidate range and then transforming

row constraints into constraints for constructing a LP problem, en-

sures that its optimal solution is equivalent to the optimal solution

of the local cleaning problem. □

Next, we prove that the candidate range mapped to each attribute

from the candidate repair space is superior to the candidate range

obtained by only row constraints or only column constraints.

Lemma 3.5. The candidate range obtained from the set of con-
straints Σ is more compact than that obtained from either the row
constraints Σrow or the column constraints Σcol.

Proof. Considering the sparsity of errors, assume that for row

constraints, only one column attribute contains an error. Hence,

we map the candidate repair space to the potential range of the

erroneous attribute as follows. We use the green, blue and red

area corresponding to the allowed range of the attribute 𝐴 which

is restricted by row, velocity and acceleration constraint.

If 𝑡𝑘 is distant from 𝑡𝑘−1, both speed and acceleration constraints

yield a broader candidate range [35]. However, row constraints

mitigate this by restricting the range, thereby aiding in narrowing

the repair options. This effect is not only beneficial at the current

timestamp 𝑡𝑘 but also continues to benefit subsequent timestamps

due to the persistence of speed and acceleration constraints. Row

constraints, at the least, do not widen the candidate range; at best,

they significantly reduce it. Conversely, when 𝑡𝑘 is proximal to

𝑡𝑘−1, the range is primarily influenced by column constraint limits.

More specifically, Figure 3(b)(c) shows the repair process for

attribute 𝐴 and 𝐵. Given a row constraint: 𝑓min ≤ 𝛼1S𝐴 [𝑡] +
𝛼2S𝐵 [𝑡] ≤ 𝑓max, it has two cases:

(1). In the case𝛼1 ≥ 𝛼2, modifying values on𝐴 canmeet the row con-

straint with a smaller modification cost, while𝐴 violates the column

constraints. Therefore, we do not modify the values on 𝐵 and can

derive the candidate range for 𝐴 determined by the row constraint

(in green). This range may not always fall within [𝑥min

𝑘
, 𝑥max

𝑘
]. If

there is an intersection, the value closest to 𝑥𝑘 within the intersec-

tion is the repair solution. Otherwise, we can directly use 𝑥max

𝑘
as

the repair solution. (2). If 𝛼1 < 𝛼2, then modifying 𝐵 can satisfy the

row constraint with a smaller modification cost. However, it is first

necessary to repair 𝑥𝑘 of 𝐴 to 𝑥max

𝑘
, then perform the same repair

as case (1) for sequence 𝐵 based on this modification.

From the above, row constraints provide a more compact candi-

date range on top of column constraints, at least not expanding the

cleaning constraint space. Further, when row constraints are not

tight enough, column constraints can also provide a more compact

candidate range. Hence, combining row and column constraints

provides a more optimal range than using either row or column

constraints alone. □

Further, we state that the influence of constraints can be propa-

gated forward during the repair process.

Lemma 3.6. The tightening of the candidate range caused by row
constraints has transitivity on the column constraints.

Proof. Assume that 𝑥𝑘 has been cleaned to 𝑥 ′′
𝑘
. If only column

constraints are used, the result would be 𝑥 ′
𝑘
. Now we aim to prove

that even if 𝑥𝑘+1 considers only column constraints, the following

holds: [𝑥min

𝑘+1,𝑘 ′′ , 𝑥
max

𝑘+1,𝑘 ′′] ⊂ [𝑥
min

𝑘+1,𝑘 ′ , 𝑥
max

𝑘+1,𝑘 ′].

4844

(a) The candidate space calculated from 𝑡1 (b) The candidate space calculated from 𝑡4 (c) Row constraint when 𝑡 not evenly distributed

Figure 3: Demonstration for the repair search space under both row and column constraints

If the row constraint did not play a role in cleaning 𝑥𝑘 , then

𝑥 ′′
𝑘

= 𝑥 ′
𝑘
and the equation obviously holds. Therefore, without

loss of generality, assume that the row constraint played a role

in cleaning 𝑥𝑘 , leading to a better repair solution 𝑥 ′′
𝑘
, such that

𝑥 ′′
𝑘

< 𝑥 ′
𝑘
(𝑥𝑘 > 𝑥max

𝑘
). Hence, we can derive 𝑥max

𝑘+1,𝑘 ′′ and 𝑥max

𝑘+1,𝑘 ′
based on the formulas for speed and acceleration constraints:

𝑥max

𝑘+1,𝑘 ′′,𝑠 = 𝑥 ′′
𝑘
+ 𝑠max (𝑡𝑘+1 − 𝑡𝑘), 𝑥max

𝑘+1,𝑘 ′,𝑠 = 𝑥 ′
𝑘
+ 𝑠max (𝑡𝑘+1 − 𝑡𝑘)

From 𝑥 ′′
𝑘

< 𝑥 ′
𝑘
, it is evident that 𝑥max

𝑘+1,𝑘 ′′,𝑠 < 𝑥max

𝑘+1,𝑘 ′,𝑠 . As for the
acceleration constraint, we have:

𝑥max

𝑘+1,𝑘 ′′,𝑎 = (𝑎max (𝑡𝑘+1 − 𝑡𝑘) +
𝑥 ′′
𝑘
− 𝑥 ′′

𝑘−1
𝑡𝑘 − 𝑡𝑘−1

) (𝑡𝑘+1 − 𝑡𝑘) + 𝑥 ′′𝑘 ,

𝑥max

𝑘+1,𝑘 ′,𝑎 = (𝑎max (𝑡𝑘+1 − 𝑡𝑘) +
𝑥 ′
𝑘
− 𝑥 ′

𝑘−1
𝑡𝑘 − 𝑡𝑘−1

) (𝑡𝑘+1 − 𝑡𝑘) + 𝑥 ′𝑘
Since 𝑥 ′′

𝑘
< 𝑥 ′

𝑘
, both terms in 𝑥max

𝑘+1,𝑘 ′,𝑎 are smaller than the corre-

sponding terms in 𝑥max

𝑘+1,𝑘 ′′,𝑎 . □
In summary, these lemmas ensure that by simultaneously utiliz-

ing row and column constraints during the cleaning process, we

can more efficiently and accurately identify the candidate repair

space for erroneous data.

4 ALGORITHM MTSCLEAN-SOFT
4.1 Solution Overview
Note that MTSClean constructs LP problems for all constraints in Σ
and all cells to ensure an accurate search space. However, in practi-

cal scenarios, it is unlikely for data to violate numerous constraints

simultaneously and rapidly. Our preliminary experiments reveal

that, typically, only one to three constraints are violated concur-

rently during most data quality issues. Given that MTSClean can

utilize over dozens of constraints for LP formulation, the optimal

solutions for most cells often align with their original values, lead-

ing to unnecessary computational efforts. Additionally, the reliance

on the minimum modification principle for the optimization ob-

jective can yield overly broad repair values for extreme outliers,

compromising repair accuracy.

To accelerate the repair process, we focus on reducing both the
number of constraints really involved in violations and the number
of cells that actually need to be repaired. Towards this, we introduce
an approximate local repair approach, MTSClean-soft, detailed in

Algorithm 2. This method comprises three phases.

Algorithm 2:MTSClean-soft(S, Σ)
Input :Data S, the set of constraints Σ.
Output :The repaired version S′ of S.
S′ ← Copy(S) ;
foreach row in S′ do

𝑉𝑖𝑜 ← ViolationDetect(Σ) ;
G ← BuildHypergraph(𝑉𝑖𝑜) ;
𝑉𝑖𝑜 (𝐸) ← getViolationDegree(G(𝐸)) ;
Σ
sorted

← SortByVio(Σ) ;
𝑂𝑝𝑡𝑃𝑟𝑜𝑏𝑙𝑒𝑚 ← FindKeyCell(S′, Σ

sorted
, G) ;

S′ [row] ← UnconstrainedSolver(𝑂𝑝𝑡𝑃𝑟𝑜𝑏𝑙𝑒𝑚) ;
return S′;

Step 1: Violation Detection and Constraint Hypergraph Con-
struction. For each data row, we use the ViolationDetect func-
tion to assess data integrity, capturing constraint violations and

affected cells within a constraint hypergraph G. We employ the

BuildHypergraph function to shape the fundamental structure

of G based on violation cells in S. Unlike previous methods like

Holistic [5], our approach integrates time-dependent constraints,

focusing on constraint violations across time series columns. This

enables a single violation hypergraph for all subsequent computa-

tions. (see Section 4.2)

Step 2: Key Cell Determination. We introduce a metric to assess

the violation degree for each hyperedge in the violation hypergraph,

denoted as 𝑉𝑖𝑜 (𝐸). We then prioritize constraints in Σ based on

their violation degree using SortByVio. This helps us pinpoint
key cells where actual errors likely occurred. To solve this, we

apply a minimum vertex cover (MVC) approximation algorithm

and devise a heuristic method. This heuristic weighs constraint

violation degrees and the number of vertices linked to hyperedges,

enhancing key cell identification accuracy. (see Section 4.3)

Step 3: Data repairing. Following the above steps, we repair

the identified key cells. Note that we construct a LP problem to

solve for the repair values of the vertices output by FindKeyCell

function and the sorted constraint in Σ
sorted

. Specifically, we employ

UnconstrainedSolver to solve the unconstrained optimization

problemwith a well-design objective function (see Section 4.4). This

effectively reduces the size of the repairing problem. The process is

repeated for each row in S′ until all rows have been processed.

4845

4.2 Violation Detection
Our initial step involves evaluating the data’s compliance with

constraints Σ. Taking into account the nature of time series data,

we mandate two tasks to be fulfilled during violation detection,

i.e., (i) Identification and representation of violated data cells, and
(ii) Quantification of the degree of constraint violation. Below we

introduce these two parts sequentially.

4.2.1 Constraint hypergraph representation. We introduce constraint
hypergraph [5] as an effective representation method for character-

izing patterns of constraint violations in time series data. Existing

constraint hypergraphs do not support the representation of vio-

lations involving value constraints on the same attribute across

different time points in time series. Therefore, we propose the con-

cept of an intra-window constraint hypergraph in Definition 4.1 to

enable the simultaneous representation of both row and column

constraints within a time window.

Definition 4.1. The intra-window constraint hypergraph, de-
noted as an undirected graph G𝑤 = (𝑉 , 𝐸), consists a set of vertices
𝑉 and hyperedges 𝐸 for data in a 𝑤-length time window. Each

𝑣 ∈ 𝑉 corresponds to a cell 𝑆𝐴 [𝑡] in S. Violated constraints are

denoted by hyperedges, formatted as 𝑒 ∈ 𝐸 = (𝜎 ; 𝑣1, ..., 𝑣𝑘), where
𝑘 represents the number of cells involved in constraint 𝜎 .

We examine the constructed G𝑤 from both row and column

dimensions. G𝑤 can be treated as a collection of slices, denoted as

𝑃 = {𝑝1, ..., 𝑝𝑤}, where each slice 𝑝 represents the values of S at a

specific timestamp 𝑡 within the window𝑤 . Hence, row constraints

exist within each individual slice, while column constraints link the

same attribute across all slices. By arranging all the slices in a planar

manner, we obtain the visualized solution representation of the

temporal window in Figure 4. In Figure 4(a), each vertex represents

a different attribute at the same timestamp, and each hyperedge

that covers multiple vertices represents a row constraint, while in

Figure 4(b), each hyperedge represents a column constraint, and

the two vertices it covers represent the values of the same attribute

at two timestamps within a window length𝑤 .

Therefore, values of the same attribute at different timestamps

correspond to distinct vertices within the intra-window G𝑤 . We

put it formally in Proposition 4.2.

Proposition 4.2. Given S and Σ, the representation of data vi-
olations using the slice set formalism is equivalent to that with an
constraint hypergraph representation G𝑤 .

In this manner, we are able to identify errors by representing

them with G𝑤 . The vertex set is directly generated based on the

attribute set 𝑎𝑡𝑡𝑟 (S) and the window length𝑤 . Subsequently, we

connect these vertices with hyperedges. For a violated row con-

straint 𝜎row, we connect the vertices {𝑆𝐴 [𝑡] |𝐴 ∈ A(𝛼)} with the

hyperedge 𝑒 (𝜎row; 𝑡) for every timestamp 𝑡 in window [𝑡1 : 𝑡𝑤]. For
a violated column constraint 𝜎

col
, we form a hyperedge between

the vertex set {𝑆𝐴 [𝑡] |𝑡 ∈ [𝑡1 : 𝑡𝑤]}, denoted as 𝑒 (𝜎𝑐𝑜𝑙 ; 𝑡1, 𝑡𝑤).

4.2.2 Violation Degree calculation. After representing violations

in G𝑤 , the next important step involves computing the violation

degree for each instance. Considering the complex functional mech-

anism constraints on sequences, it is imperative to quantify the di-

vergence of each violation from the prescribed constraints. This aids

us better understand the gravity of data deviations from business

requirements, enabling more wide decisions in selecting critical

cells for repair. Definition 4.3 formalizes the violation degree.

(a) from the row perspective (b) from the column perspective

Figure 4: The slice representation of the intra-window con-
straint hypergraph

Definition 4.3. For a given constraint 𝜎 and the set of cells in-

volved in the content of 𝜎 , i.e., 𝐶 (𝜎), the degree of violation of 𝐶

w.r.t 𝜎 is represented as a piecewise function 𝑉𝑖𝑜𝐷𝑒𝑔𝑟𝑒𝑒 (𝐶, 𝜎)

=

{︄
min

{︁
|𝑓 (𝐶, 𝜎) − 𝑓𝑚𝑖𝑛 |, |𝑓 (𝐶, 𝜎) − 𝑓𝑚𝑎𝑥 |

}︁
,𝐶 ̸ |= 𝜎.

0, 𝐶 |= 𝜎.

where 𝑓 (𝐶, 𝜎) represents the value obtained through the function

expressed by 𝜎 for cell 𝐶 . 𝐶 |= 𝜎 denotes that data in 𝐶 satisfy 𝜎 ,

while ̸ |= denotes the violation.

The value of the piecewise function𝑉𝑖𝑜𝐷𝑒𝑔𝑟𝑒𝑒 (𝐶, 𝜎) depending
on whether the data in 𝐶 satisfies 𝜎 or not. If a violation of 𝜎

occurs in S, the actual values among the data have exceeded the

boundaries specified by 𝜎 (either below the lower bound or above

the upper bound), we stipulate that the minimum value from the

boundary should be taken as the representation of the degree of

violation. Moreover, the severity of the violation is reflected in the

increasing scores of the violation degree function, with more severe

violations resulting in higher values.

4.3 Key cell determination
With hyperedges in G𝑤 representing violation cells, we note that

not all cells in these hyperedges are actual erroneous data. There-

fore, accurately identifying the cells with actual errors, termed key
cells, is essential. This identification process forms the backbone

of our cleaning approach. We draw inspiration from Holistic [5],

which employs the Minimum Vertex Cover (MVC) algorithm [17]

for constraint-based relational data cleaning. However, the MVC

algorithm employed by Holistic is a 𝑘-approximation algorithm

(where 𝑘 denotes the maximum number of vertices connected by a

hyperedge in the hypergraph). It relys on random hyperedge selec-

tion and vertex cover set generation with a size ratio of
|𝑉𝐶𝑘 |
|𝑉𝐶∗ | ≤ 𝑘

compared to the optimal solution.

In practice, a 𝑘 approximation ratio might not be acceptable.

We have explored SOTA MVC approximation algorithms for hy-

pergraphs like Shuffle and MaxDegree [17], offering an improved

approximation ratio of 1 + lg
2
|𝑉 | at an average time of 𝑂 (|𝑉 |2 |𝐸 |).

By leveraging the unique characteristics of time series data quality

issues, we further identify key cells through weighted hyperedge

assignments, enhancing search efficiency and effectiveness.

4.3.1 Priority Weighting of Hyperedges. We prioritize hyperedges

in G𝑤 based on the severity of constraint violations, quantified as

edge weights. Our selection criteria consider both the edges with

the most intersections with other edges and the degree of constraint
violation for each edge. Edges with higher violation degree are

more likely to contain cells that require correction. Similarly, edges

4846

Algorithm 3: FindKeyCell(S, Σ,G𝑤)
Input :S, Σ, G𝑤 .

Output : the unconstrained optimization problem.

while Σ ≠ ∅ do
𝜎max ← PopMax(Σ) ;
UpdateObjectiveFunction(S, 𝜎max,𝐶𝑜𝑠𝑡) ;
UpdateHypergraph(G𝑤 , 𝜎max);

𝑂𝑝𝑡𝑃𝑟𝑜𝑏𝑙𝑒𝑚 ← Construct(S,𝐶𝑜𝑠𝑡) ;
return𝑂𝑝𝑡𝑃𝑟𝑜𝑏𝑙𝑒𝑚;

Function UpdateHypergraph(G𝑤 , 𝜎max):
foreach 𝑢 ∈ 𝜎max do

foreach 𝜎 ∈ 𝐹 (𝑢) do
G𝑤 ← G𝑤\𝜎 ;

G𝑤 ← G𝑤\𝜎max;

with more intersections are also more likely to represent actual

violations. Specifically, for an edge 𝑒 in G𝑤 , its priority is given by

𝑤𝑒𝑖𝑔ℎ𝑡 (𝑒) = 𝑉𝑖𝑜𝐷𝑒𝑔𝑟𝑒𝑒 (𝑒) +
∑︁

𝑣∈𝑒 |𝑑 (𝑣) |
max𝑣∈𝑒 |𝑑 (𝑣) |

,

where 𝑉𝑖𝑜𝐷𝑒𝑔𝑟𝑒𝑒 calculates the constraint violation degree for a

hyperedge, and 𝑑 (𝑣) denotes the degree of a vertex 𝑣 in 𝑒 , i.e., the
number of edges connected to 𝑣 .

We normalize the components in𝑤𝑒𝑖𝑔ℎ𝑡 (𝑒). For𝑉𝑖𝑜𝐷𝑒𝑔𝑟𝑒𝑒 , nor-
malization involves computing the shortest distance from a linear

function to constraint bounds and scaling based on the extreme

values from the violation function across all constraints. As the

minimum vertex degree in a hypergraph is inherently 0, we forego

minimum value retention for vertex degrees.

4.3.2 Algorithm FindKeyCell. After calculating the vertexweights,

we prioritize the vertices for repair in descending order of their

weights. Algorithm 3 is proposed to identify the key cells. The al-

gorithm initially selects the most significant constraint, denoted as

𝜎max, from the non-empty set Σ using the PopMax function. It then

updates the objective function based on S and 𝜎max, adjusting the

associated costs. Simultaneously, the UpdateHypergraph function

modifies G𝑤 by iterating over each vertex 𝑢 within 𝜎max and re-

moving related constraints using the 𝐹 function. This includes the

elimination of constraints directly connected to vertex 𝑢 and 𝜎max

itself from the hypergraph. Upon processing all constraints in Σ, the
algorithm constructs the final 𝑂𝑝𝑡𝑃𝑟𝑜𝑏𝑙𝑒𝑚 based on the updated

S and the total accumulated cost. The formulated unconstrained

optimization problem, 𝑂𝑝𝑡𝑃𝑟𝑜𝑏𝑙𝑒𝑚, is returned as the output.

FindKeyCell serves two crucial roles: firstly, it identifies the

cells that genuinely require repair and effectively reduces the scale

of subsequent problem-solving by pruning cells that are not inher-

ently erroneous. Secondly, for each hyperedge, the calculation of

their degree of violation provides more reliable guidance for the

construction of the repair cost model in the following step.

4.4 Repairing with the designed cost function
We introduce the cost function for repair operations, emphasiz-

ing that merely pinpointing the cells needing repair is inadequate.

Determining suitable repair values demands further assessment,

which is a non-trivial task. This is because, unlike traditional rela-

tional data repair, the repair scope for time series is broader and

more intricate. If all erroneous data were only corrected to the

constraint set’s boundary, the overall outcomes would significantly

diverge from the ground truth. Hence, during the repair, we must

consider the extent of deviation from constraints, rather than just a

binary assessment of whether data meets constraints or not (refer

to Figure 2). Consequently, we propose a novel objective function

for time series data repair in Definition 4.4.

Definition 4.4. The objective function of cleaning S w.r.t Σ is

𝐶𝑜𝑠𝑡 (S,S′) = minΔ(S,S′) +∑︁𝑠∈S′ 𝑑𝑖𝑠𝑡 (𝑠, Σ), where Δ(S,S′) is
the norm repair cost presented in Section 2.3, 𝑑𝑖𝑠𝑡 () represents the
repair cost constructed based on the plane bounded by the set Σ of

the constraints, denoted as

𝑑𝑖𝑠𝑡 (𝑠, Σ) =
∑︂
𝜎∈Σ

(︁
𝜆𝑙𝑏 ·

1

1 + 𝑒−𝑠 ·𝑛𝑙𝑏 + 𝜆𝑢𝑏 ·
1

1 + 𝑒−𝑠 ·𝑛𝑢𝑏
)︁
.

This calculation involves summing two components for each

𝜎 in Σ. The first component represents the distance of data point

𝑠 to the lower bound of 𝜎 , approximated by the product of 𝑠 and

the lower bound normal vector 𝑛𝑙𝑏 , transformed via a sigmoid
function, and weighted by 𝜆𝑙𝑏 . Similarly, the second component

involves the upper bound, using 𝑛𝑢𝑏 and 𝜆𝑢𝑏 . Specifically, 𝑠 · 𝑛𝑙𝑏 =

𝑓𝑚𝑖𝑛− 𝑓 (𝑠), 𝑠 ·𝑛𝑢𝑏 = 𝑓 (𝑠)− 𝑓𝑚𝑎𝑥 . Due to sigmoid function properties,
the final repair remains within the search space defined by Σ.

Consequently, compared to only repairing to boundary values

that exactly satisfy the constraints, we achieve a more fine-grained

repair. This precise repair offers two main advantages: 1) increased

robustness of the repair algorithm, which yields more reliable repair

results even when the given constraints have insufficient accuracy

(e.g., the allowable deviation threshold 𝛿 : [𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥] for 𝜎 is set

large), and 2) a more accurate “restoration" of the ground truth,

which has the potential to ensure the reliability of downstream data

analysis tasks based on such repair results [23, 26, 30].

Proposition 4.5. MTSClean-soft costs 𝑂 (𝑁𝑀2) in time.

Proof. In MTSClean-soft, the initial copying of original data

takes 𝑂 (𝑁𝑀) time. Each data row is then processed iteratively.

Violation detection during this process requires 𝑂 (𝑁 |Σ|). Hyper-
graph construction involves creating a Boolean matrix of vertices

and edges, costing 𝑂 (𝑁𝑀 |Σ|) time. Sorting the hyperedges in the

graph demands 𝑂 (𝑁 |Σ| log |Σ|). FindKeyCell, an approximation

for MVC, is called with a time complexity of 𝑂 (𝑁 |Σ| log |Σ|). Fi-
nally, the unconstrained problem is solved within 𝑂 (𝑁𝑀2). Given
that 𝑁 ≫ 𝑀 ≈ |Σ|, the overall time complexity of MTSClean-

soft is dominated by the highest order term, resulting in 𝑂 (𝑁𝑀) +
𝑂 (𝑁 |Σ|) +𝑂 (𝑁𝑀 |Σ|) +𝑂 (𝑁 |Σ| log |Σ|) +𝑂 (𝑁𝑀 |Σ|) +𝑂 (𝑁𝑀2) =
𝑂 (𝑁𝑀2). □

4.5 Comparison of MTSClean and MTSClean-soft
Table 2 summarizes the similarities and differences between MTSClean
and MTSClean-soft from cleaning efficiency and cleaning accuracy.

MTSClean-soft has an advantage over MTSClean in cleaning effi-

ciency. MTSClean-soft costs 𝑂 (𝑁𝑀2), and before constructing the

optimization problem, MTSClean-soft uses an MVC strategy to esti-

mate the set of attributes that need cleaning and the data quality

constraints should be used. This allows MTSClean-soft to construct

4847

a smaller optimization problem compared to MTSClean, which di-

rectly uses all attributes and constraints.

In terms of cleaning accuracy, both MTSClean and MTSClean-soft
have their advantages. MTSClean emphasizes minimizing modifica-

tion costs and strictly requires the repaired data to adhere to all row

and column constraints. Therefore, in scenarios with guaranteed

constraint quality, MTSClean can achieve higher precision cleaning

results. On the other hand, MTSClean-soft strives to find repair so-

lutions within the constraint limits, additionally considering the

degree of constraint violation as a repair cost. Therefore, in scenar-

ios where constraint quality is difficult to guarantee, MTSClean-soft
is more likely to obtain repair solutions close to the true values

within the constraints. However, since MTSClean-soft estimates the

attributes that need cleaning beforehand, it may occasionally re-

sult in incorrect repairs in some cases, whereas the strictness of

MTSClean ensures that incorrect repairs do not occur.

5 EXPERIMENTS
5.1 Experimental setting
All programs are implemented in Python. Experiments were per-

formed on a server with 3.70GHz CPU and 64 GB RAM. We have

developed a data cleaning system, Clean4TSDB [9, 10, 12], which

connects to the time series database Apache IoTDB [39, 40] and

implements the cleaning algorithm proposed in this paper.

Experimental dataset. We utilize four real datasets: IDF, SWaT,

WADI, and PUMP, as outlined in Table 3. IDF captures daily data

on induced draft fans from a power plant’s historical database

between 2017-01 and 2017-05, amounting to over 1000k timestamps.

Its features comprise total power, outlet gas pressure, temperature,

inlet gas flow, coil temperature, and more. SWaT, gathered from

an industrial water treatment facility, involves parameters such as

flow rates, tank levels, and valve statuses, distinctively documenting

both regular operations and cyber-attack events. WADI originates

from an actual water distribution network, spanning 16 days in

2017. Its records encompass water flow, pressure, and chemical

dosages during both normal and attack scenarios. PUMP consists of

sensor data monitoring a pump, including metrics like temperature,

vibration, and power usage.

Implementation. Since we intercept the clean part of the data, fol-

lowing the same line of precisely evaluating the repair effectiveness,

we use the additive Gaussian white noise to synthetically generate

noisy data provides a realistic simulation of errors encountered in

real-world scenarios [35]. That is, we randomly sample several at-

tributes to inject errors, and the types of errors include single-point

errors, continuous errors, inter-attribute relationship errors, etc.

The error rate erate = 0.1 denotes that 10% rows are replaced.

Comparison Methods. We compare our proposedMTSClean and

MTSClean-soft to the benchmark cleaning approaches for time se-

ries data, including (1) SOTA constraint-based time series cleaning

method Speed [37], and its extended version with acceleration con-

straints Speed+Acc [35]. We implement both global (G) and local (L)

modes. (2) HoloClean [33], a SOTA cleaning tools for general big

data. (3) IMR [46], a SOTA time series cleaning method with labels.

(3) smoother and filter-based EWMA[18], Median[41], Kalman[41].
Preparation of data quality constraints. All the applied con-

straints are pre-defined by SOTA discoverymethods from clean data.

For speed constraints and acceleration constraints, all constraints

are pre-defined by observing the speed and acceleration statistical

distributions of data according to [35]. For row constraints discov-

ery, we apply CRR [24], which gets linear model with the minimum

loss [19, 21], and TSDDiscover [8], which mines accurate functional

structure and allowable error bound 𝛿 for constraints in time series.

All discovery methods are available in our git repository.

For IMR, we appropriately adjust the iteration parameters and

precision parameters to suit data with error tolerance in iterations

to be 0.0001 and the maximum number of iterations to 10000. For

HoloClean, since several SOTA algorithms, e.g., IMR and Speed,
have adapted HoloClean for time series data cleaning. We follow

these approaches.

Metrics. For the original𝑀-dimensional S containing 𝑁 records,

let Srepair and Struth be the repaired data and the ground truth,

respectively. We apply four kinds of metrics to evaluate the effec-

tiveness of data cleaning methods besides the time cost.

(1). L1-error [37], which evaluates the closeness of repair to the

ground truth, denoted as:Δ(Srepair,Struth) =
∑︁𝑀

𝑚=1

∑︁𝑁
𝑛=1 |𝑆𝑖 [𝑡 𝑗]−𝑆 ′𝑖 [𝑡 𝑗] |

𝑀 ·𝑁 .

The lower the L1 error between the repair and truth value is, the

closer (more accurate) the repair is to the ground truth.

(2). Relative Repair Accuracy (RRA) [37]: to normalize L1-error
measures and take the errors in S into consideration. RRA verifies

the cleaning effectiveness by 1 − Δ(Srepair,Struth)
Δ(S,Struth)+Δ(S,Srepair) .

(3). F1-score = 2·𝑃 ·𝑅
𝑃+𝑅 , where Precision P =

#correctRepairCells
#RepairCells mea-

sures the ratio of the number of cells which are closer to the corre-

sponding ground truth to the number of cells which are changed

after cleaning. Recall R =
#correctRepairCells

#ErrCells measures the ratio of

the number of cells where the method makes a “good” repair to the

number of cells where true error takes place.

(4). Violation rate after repair (VRate): To evaluate the ratio of the

number of constraints still violated in the repaired data to the

number of violated constraints in the original data, denoted as

VRate = #VioCellsAfterRepair
#ErrCells . The closer VRate is to 0, the more the

cleaning method focuses on the inter-attribute correlations.

5.2 Overall performance evaluation
Table 4 outlines the performance of the cleaning methods. In eval-

uating the L1-error and RRA, both MTSClean and MTSClean-soft
exhibit superior performance. Basic statistical cleaning techniques

fare poorly, while SOTAmethods, such as IMR, Speed, and Speed+Acc,
despite achieving respectable scores, still lag behind our proposed

methods. Interestingly, Holoclean performs less well than SOTA

time series-specific cleaners, echoing findings from previous studies

[37, 46]. This underscores the importance of tailoring constraint-

based cleaning to time series data.

Despite some performance differences, MTSClean-soft offers a
time cost advantage over MTSClean and IMR. Both MTSClean vari-
ants achieve an F1 score above 93% in error detection, highlighting

the effectiveness of our combined row and column constraints in en-

suring accuracy and minimizing false positives. In terms of runtime,

our methods prove significantly faster than most others, except

smoothing techniques and certain local algorithms. Moreover, our

methods exhibit notably lower constraint violations after cleaning,

compared to all other tested methods.

Overall, MTSClean achieves the best cleaning results across mul-

tiple metrics within an acceptable time cost. When compared to

4848

Table 2: Comparison of MTSClean and MTSClean-soft
Aspect MTSClean MTSClean-soft

Time Complexity 𝑂 (𝑁𝑀3.5 |Σ|) 𝑂 (𝑁𝑀2)
Data Quality Constraint Requires high accuracy input constraints. Aims for near-correct values within 𝛿 .

Optimization Objective Minimizes costs strictly. Flexibly balances costs and violations.

Error Sensitivity Highly sensitive, immediate correction needed. Tolerates some violations for better overall repair.

Table 3: Summary of datasets
Dataset #Attrs #Size erate
IDF [28] 44 1000k -

SWaT [31] 51 946k 5.85%

WADI [2] 123 2000k 10.7%

PUMP [44] 38 500k -

Table 4: Overall performance comparison
IDF SWaT PUMP WADI

L1error ↓ RRA ↑ F1 ↑ Time(𝑠) VRate ↓ L1error RRA F1 Time(𝑠) VRate L1error RRA F1 Time(𝑠) VRate L1error RRA F1 Time(𝑠) VRate
MTSClean 0.1249 0.975 0.97 112.1 0.294 0.4048 0.927 0.99 183.3 0.002 0.6008 0.751 0.94 24.3 0.001 0.3591 0.942 0.98 250.2 0.001

MTSClean-soft 0.3219 0.792 0.97 79.9 0.413 1.1732 0.753 0.99 47.46 0.376 0.6476 0.644 0.94 12.5 0.216 0.8783 0.752 0.98 64.7 0.372

Speed(L) 1.7797 0.171 0.31 24.7 1.064 2.5708 0.251 0.28 40.65 1.468 1.2335 0.028 0.15 3.81 0.994 1.8612 0.183 0.32 42.9 1.092

Speed(G) 0.9671 0.735 0.67 164.8 1.799 2.7043 0.180 0.41 274.6 1.315 1.2345 0.025 0.14 25.9 0.996 1.2974 0.711 0.69 301.4 1.401

Speed+Acc(L) 1.9543 0.145 0.47 40.4 1.104 2.9594 0.136 0.31 68.1 1.206 1.2459 0.029 0.26 6.83 0.998 1.9876 0.167 0.44 71.9 1.173

Speed+Acc(G) 0.8963 0.767 0.68 339.9 1.769 2.6690 0.199 0.44 609.1 1.303 1.2306 0.032 0.18 59.1 0.994 1.1162 0.782 0.68 631.2 1.356

EWMA 1.6130 0.308 0.22 0.01 1.628 2.4749 0.301 0.22 0.02 1.388 1.388 0.308 0.22 0.02 0.948 1.8239 0.321 0.24 0.02 1.457

Median 1.9710 0.003 0.22 0.01 0.999 2.9935 0.059 0.21 0.02 1.002 1.2507 0.003 0.22 0.04 0.999 1.6123 0.006 0.21 0.02 0.993

Kalman 1.8160 0.147 0.22 147.1 1.318 2.7699 0.147 0.22 243.9 1.183 1.1502 0.150 0.22 23.5 0.971 1.4310 0.154 0.24 289.3 1.275

IMR 0.9579 0.668 0.56 171.2 1.320 1.2535 0.736 0.61 221.8 0.535 0.6911 0.618 0.57 83.43 0.494 0.8835 0.702 0.61 243.7 0.482

HoloClean 1.6900 0.429 0.83 310.3 0.891 2.1408 0.518 0.78 560 0.921 0.9491 0.693 0.82 172.1 0.727 1.1125 0.601 0.81 621.3 0.754

MTSClean, the distinct advantage of MTSClean-soft lies in its abil-

ity to achieve almost the same repair F1 score while improving

computational time by at least 30%. It is important to note that

MTSClean-soft may slightly underperform MTSClean in terms of

metrics like 𝐿1-𝑒𝑟𝑟𝑜𝑟 and 𝑅𝑅𝐴, due to its relaxation of constraint

satisfaction. Nonetheless, it still maintains a significant advantage

over other cleaning algorithms (e.g., IMR, HoloClean, Speed).

5.3 Evaluation with varying parameters
Below we report on the impact of two crucial parameters on the

cleaning effectiveness, i.e., the data volume and the error rate.

Exp1: Repairing performance with varying data amount. Fig-
ure 5 evaluates the performance of various algorithms as the data

volume increases in the WADI dataset. Notably, MTSClean and

MTSClean-soft maintain superior cleaning performance as data vol-

ume expands, producing repairs closest to the ground truth. Con-

versely, methods like EWMA, Median, and Kalman alter a significant

proportion of data points, leading to poor performance in metrics

like RRA and VRate. HoloClean, despite good error detection and an
F1 score ranking third after MTSClean and MTSClean-soft, is limited

to denial constraints and traditional FDs. This restricts its ability to

handle more expressive constraints, such as speed constraints or the

row constraints introduced in this paper. Additionally, HoloClean’s
strength lies in processing string-type data, contributing to its less

than optimal repair effectiveness. Speed+Acc(L) relies on speed

and acceleration constraints for local data cleaning. However, its

effectiveness decreases when dealing with complex, significantly

deviating errors. It tends to repair only the initial segment of er-

roneous data, limited by constraint boundaries, leaving middle

segment errors untreated (as exemplified in Example 1.1).

Regarding global methods such as Speed(G), Speed+Acc(G), and
IMR, despite showing improved L1-error compared to HoloClean,
they still fall behind MTSClean and MTSClean-soft.While Speed+Acc(G)’s
computational approach is inefficient for multivariate time series,

IMR relies on external data labeling, using accurate data subsets for

repairs. Despite this, its L1-error remains inferior to MTSClean. All
these methods, including HoloClean, treat multivariate time series

holistically, unsuitable for real-time repairs. Conversely, our online

algorithms process data row-by-row, demonstrating scalable run-

time growth, balancing efficiency and repair effectiveness. In terms

of VRate, MTSClean and MTSClean-soft maintain low constraint vio-

lation rates, with stable performance as data volumes increase. This

underscores our method’s superiority in error detection sensitivity

and repair accuracy, with competitive runtime performance.

Exp2: Repairing performance with varying error rate. Figure 6
reports the performance of algorithms onWADI, with a data volume

of 20K, when different proportions of rows contain erroneous values.

It shows that the repair effectiveness of MTSClean and MTSClean-
soft does not decline as the error rate increases. MTSClean can

maintain high cleaning accuracy when dealing with a large num-

ber of errors, further confirming the robustness of the algorithm.

L1-error growth of Speed(L), Speed+Acc(L), and smoothing meth-

ods is significant, demonstrating their inability to handle cleaning

tasks with number of errors. The L1-error growth of Speed(G),
Speed+Acc(G), IMR, and HoloClean is relatively slower but still

higher than that of MTSClean-soft. This is because Speed+Acc(G)
do not utilize row constraints compared to MTSClean, leading to

insufficient repair effectiveness. IMR can only use limited correct

data labels, and as errors increase, the proportion of errors that IMR
can repair decreases. HoloClean, on the other hand, consistently

exhibits insufficient repair accuracy, resulting in its error increasing

with the number of errors.

The time cost of MTSClean and MTSClean-soft increases with the
injection of more errors, which is reasonable. This is because both

algorithms need to detect constraint violations for each row of data

and only perform cleaning if a violation is detected. Therefore, when

there are more errors, the algorithms need to performmore cleaning

operations. However, overall, both algorithms maintain a relatively

low time cost. Regarding the F1 score, MTSClean and MTSClean-soft
continue to maintain a clear advantage with stable performance.

Note that the F1 scores of EWMA, Median, and Kalman increase as

the error ratio increases, but this is a misleading phenomenon.

For the three algorithms, their error detection results consistently

label almost all rows as erroneous data. Therefore, as more errors

increase, F1 scores increase, but this does not indicate that these

smoothing algorithms have stronger error detection capabilities.

4849

Table 5: The influence of the accuracy of the input constraints
IDF 𝜌 = 0.05 𝜌 = 0.5 𝜌 = 5.0

L1error RAA F1 Time(𝑠) VRate L1error RAA F1 Time(𝑠) VRate L1error RAA F1 Time(𝑠) VRate
MTSClean 0.1026 0.973 0.836 23.12 0.298 0.3759 0.895 0.863 25.44 0.187 0.4113 0.883 0.872 26.90 0.159

MTSClean-soft 0.9758 0.782 0.836 11.70 0.524 0.9774 0.774 0.863 12.61 0.404 0.9725 0.773 0.872 15.60 0.496

WADI 𝜌 = 0.5 𝜎 = 2.5 𝜌 = 5.0

L1error RAA F1 Time(𝑠) VRate L1error RAA F1 Time(𝑠) VRate L1error RAA F1 Time(𝑠) VRate
MTSClean 0.1443 0.884 0.891 76.24 0.001 0.1831 0.762 0.778 105.64 0.167 0.2208 0.637 0.733 108.97 0.263

MTSClean-soft 0.1966 0.814 0.891 14.48 0.288 0.2042 0.661 0.778 26.37 0.331 0.2158 0.648 0.733 25.95 0.416

PUMP 𝜌 = 5.0 𝜌 = 6.0 𝜌 = 7.0

L1error RAA F1 Time(𝑠) VRate L1error RAA F1 Time(𝑠) VRate L1error RAA F1 Time(𝑠) VRate
MTSClean 0.6548 0.684 0.858 28.09 0.000 0.8542 0.585 0.839 28.22 0.000 1.0623 0.463 0.812 27.91 0.000

MTSClean-soft 0.5271 0.767 0.858 4.36 0.081 0.5674 0.758 0.839 4.31 0.201 0.6095 0.773 0.812 3.90 0.214

SWaT 𝜌 = 0.5 𝜌 = 2.5 𝜌 = 5.0

L1error RAA F1 Time(𝑠) VRate L1error RAA F1 Time(𝑠) VRate L1error RAA F1 Time(𝑠) VRate
MTSClean 0.1398 0.892 0.889 60.12 0.002 0.1792 0.768 0.791 102.48 0.178 0.2176 0.645 0.739 105.76 0.264

MTSClean-soft 0.1925 0.822 0.889 12.87 0.281 0.1986 0.672 0.791 23.47 0.323 0.2098 0.655 0.739 24.15 0.402

 HoloClean

(a) L1-error, WADI (erate=0.2)

 HoloClean

(b) RRA, WADI (erate=0.2)

4000 8000 12000 16000 20000
0

100

200

300

400

R
un

tim
e

 MTSClean
 MTSClean-soft
 Speed(L)
 Speed(G)
 Speed+Acc(L)
 Speed+Acc(G)
 EWMA
 Median
 Kalman
 IMR
 HoloClean

(c) Time cost, WADI (erate=0.2)

 HoloClean

(d) F1 score, WADI (erate=0.2)

 HoloClean

(e) VRate, WADI (erate=0.2)

Figure 5: Evaluation with varying data amount
This set of experiments fully demonstrates the necessity of si-

multaneously using multiple types of expressive constraints for

multivariate time series data cleaning and the robustness of the

proposed cleaning methods.

5.4 Ablation experiment
This section presents two sets of ablation experiments to demon-

strate the reliability of the proposed cleaning techniques.

 HoloClean

(a) L1-error, WADI (20K)

 HoloClean

(b) RRA, WADI (20K)

0.1 0.2 0.3 0.4 0.5
0

100

200

300

400

R
un

tim
e

 MTSClean
 MTSClean-soft
 Speed(L)
 Speed(G)
 Speed+Acc(L)
 Speed+Acc(G)
 EWMA
 Median
 Kalman
 IMR
 HoloClean

(c) Time cost, WADI (20K)

 HoloClean

(d) F1 score, WADI (20K)

 HoloClean

(e) VRate, WADI (20K)

Figure 6: Evaluation with varying error rate
Exp3: The influence of the accuracy of the input constraints.
Considering that the accuracy of the input constraint set signifi-

cantly impacts the cleaning effect, we examine the cleaning per-

formance using constraints of varying accuracy. Specifically, we

assess the accuracy of constraints by measuring an allowable con-
straint filtering threshold 𝜌 for each applied constraint 𝜎 . During

4850

the selection of linear models for row constraints, we calculate

the cumulative loss of each linear model across the entire dataset,

ranked the models based on their losses, and then applied 𝜌 as a

criterion to limit the use of constraints. A higher 𝜌 indicates lower

accuracy in the constraints used for cleaning. We gradually relax 𝜌

to get more coarse-grained constraints, and then report the change

and comparison of the cleaning performance under constraints

with different accuracy granularity.

The results are presented in Table 5. The L1-error of MTSClean-
soft is not significantly affected by the accuracy of the constraints,

whereas L1-error of MTSClean gradually increases as the constraint
accuracy decreases. This aligns with the discussion in Section 3, as

MTSClean consistently repairs erroneous data to the boundary of

the constraint. MTSClean-soft, owing to the proposed superior cost

function, balances the minimization principle with the degree of

constraint violation when repairing erroneous data. This confirms

the effectiveness of our proposed cost function.

As constraint precision decreases, the execution time of both

methods slightly rises. This increase is due to a larger search space

during optimization caused by reduced constraint reliability, neces-

sitating longer computation time for repaired solutions. Addition-

ally, the F1 score for both MTSClean and MTSClean-soft decreases
with decreasing constraint accuracy. This decrease occurs because

inaccurate constraints fail to identify certain subtle errors, leading

to a reduction in error detection accuracy. Moreover, the VRate for
both methods displays inconsistent variations, which can be attrib-

uted to potential degradation in constraint quality. This degradation

may result in incorrect associations being identified, subsequently

affecting repair outcomes. These findings highlight the suitability

of our proposed repair cost function for time series data cleaning

and emphasize the significance of constraint quality.

Exp4: The influence of various MVC strategies for repairing.
Considering that identifying genuinely erroneous data is the core

aspect of data cleaning techniques, we conduct comparative ex-

periments by replacing the violation-driven vertex cover strategy

proposed in MTSClean-soft with several SOTA algorithms for the

key cell determination on the constraint violation hypergraph. The

results, presented in Table 6, demonstrate that our method achieves

the best repair performance with the lowest time consumption.

This underscores the effectiveness of our priority sorting strategy

based violation degrees. As our method only requires a single prior-

itization function-based sorting, its complexity is comparable to the

baseline Shuffle. Moreover, our approach identifies more accurate

constraint sets, computes the MVC problem more efficiently, and

results in a smaller final hypergraph size (i.e., GSize). In contrast,

methods like MaxDegree, VertexSupport have higher time com-

plexities since they require recalculating the degrees of all vertices

after each vertex removal. Specifically, VertexSupport calculates
the support as the sum of the degrees of all neighbors of a vertex.

The experimental results validate that our heuristic priority func-

tion, based on constraint violation degrees, effectively improves

the selection of critical cells for repair.

6 RELATEDWORK
Rule-based data cleaning. Relational data cleaning techniques

mainly include rule-based [15, 29], statistical-based [3], human-in-

the-loop [14, 34, 42], and learning-based [30] methods. Rule-based

Table 6: Evaluation of various MVC strategies for repairing
Method L1 RAA F1 T(s) VRate GSize

MTSClean-Soft 0.3297 0.812 0.973 82.31 0.394 0.1212
Shuffle 0.7562 0.561 0.808 85.15 0.617 0.1238

MaxDegree 0.7431 0.560 0.809 181.97 0.474 0.1459

VertexSupport 0.7139 0.562 0.813 1029 0.582 0.2422

Greedy 0.7018 0.564 0.810 639.2 0.426 0.2151

cleaning utilizes domain-specific knowledge and fully leverages

the relationships in the data to improve data quality [1]. There

are two types of repairs in this process: one is to fully trust the

given constraints and only consider repairing the data; the other

is to not fully trust the constraints, and to modify both the data

and the (imperfect) constraints. The research on the former has

been extensively conducted, which contains local cleaning (e.g.,
[4]) and holistic cleaning. [5] proposed to detect conflicts in data

representation based on hypergraph model, and developed cleaning

tool Holoclean [20, 33]. [13] studied the multiple data cleaning on

incompleteness and inconsistency with currency reasoning.

Time series data cleaning. Survey papers [11, 25, 41] summa-

rized the research progress of time series data cleaning, mainly

including smoothing-based, statistical-based, and constraint-based

repair methods. [36] conducted data quality assessments on IoT

data from the perspectives of data validity, integrity, and consis-

tency. [6] formalized four types of data quality rules for temporal

numerical data from the perspectives of “entity" and “attribute".

[35] solved the time series data cleaning problem based on speed

constraints on single sequence. In recent years, to support arith-

metic operations, [24] provided conditional regression rules and

discovered regression models from time series data. [16] proposed

conformance constraints and evaluated them in trusted machine

learning and data drift. Our recent work, TSDDiscover [8] mines

accurate functional structure with allowable error bound to obtain

expressive quality constraints from time series. Since the quality of

constraints is of great importance for cleaning, the reliable mining

of quality constraints for time series data also remains a direction

worthy of further exploration.

7 CONCLUSIONS
This paper introduces a novel constraint-based data cleaning al-

gorithm, MTSClean, capable of effectively repairing complex error

instances in time series data. We further optimize its efficiency by

proposing MTSClean-soft. A key innovation lies in utilizing the de-

gree of constraint violation on the constraint violation hypergraph

for rapid identification of genuinely erroneous cells. Additionally,

we design a repair cost function tailored for time series data. Ex-

perimental results across multiple baseline algorithms confirm the

effectiveness, efficiency, and necessity of our cleaning approach and

strategy formulation. Our methods exhibit promise in enhancing

the quality of time series data.

ACKNOWLEDGMENTS
This work is supported by the National Key Research and Develop-

ment Program of China (2023YFB3308003); National Natural Science

Foundation of China (NSFC) (62202126, 62232005, 92267203); China

Postdoctoral Science Foundation (2022M720957); Heilongjiang Post-

doctoral Financial Assistance (LBH-Z21137).

4851

REFERENCES
[1] Ziawasch Abedjan, Lukasz Golab, and Felix Naumann. 2015. Profiling relational

data: a survey. VLDB J. 24, 4 (2015), 557–581. https://doi.org/10.1007/S00778-

015-0389-Y

[2] Chuadhry Mujeeb Ahmed, Venkata Reddy Palleti, and Aditya P Mathur. 2017.

WADI: a water distribution testbed for research in the design of secure cyber

physical systems. In Proceedings of the 3rd international workshop on cyber-
physical systems for smart water networks. 25–28.

[3] Asif Iqbal Baba, Manfred Jaeger, Hua Lu, Torben Bach Pedersen, Wei-Shinn Ku,

and Xike Xie. 2016. Learning-Based Cleansing for Indoor RFID Data. In SIGMOD.
ACM, 925–936. https://doi.org/10.1145/2882903.2882907

[4] Philip Bohannon, Michael Flaster, Wenfei Fan, and Rajeev Rastogi. 2005. A

Cost-Based Model and Effective Heuristic for Repairing Constraints by Value

Modification. In SIGMOD. ACM, 143–154.

[5] Xu Chu, Ihab F. Ilyas, and Paolo Papotti. 2013. Holistic data cleaning: Putting

violations into context. In 29th IEEE International Conference on Data Engineering,
ICDE 2013, Brisbane, Australia, April 8-12, 2013, Christian S. Jensen, ChristopherM.

Jermaine, and Xiaofang Zhou (Eds.). IEEE Computer Society, 458–469. https:

//doi.org/10.1109/ICDE.2013.6544847

[6] Tamraparni Dasu, Rong Duan, and Divesh Srivastava. 2016. Data Quality for

Temporal Streams. IEEE Data Eng. Bull. 39, 2 (2016), 78–92. http://sites.computer.

org/debull/A16june/p78.pdf

[7] Xiaoou Ding, Yingze Li, ChenWang, Hongzhi Wang, and Haoxuan Li. 2023. Time

Series Data Quality Rules Discovery with Both Row and ColumnDependencies.

Journal of Software (Chinese) 34, 3 (2023), 1065–1086.
[8] Xiaoou Ding, Yingze Li, Hongzhi Wang, Chen Wang, Yida Liu, and Jianmin

Wang. 2024. TSDDISCOVER: Discovering Data Dependency for Time Series

Data. In 40th IEEE International Conference on Data Engineering, ICDE 2024,
Utrecht, The Netherlands, May 13-16, 2024. IEEE, 3668–3681. https://doi.org/10.

1109/ICDE60146.2024.00282

[9] Xiaoou Ding, Yichen Song, Hongzhi Wang, Donghua Yang, and Yida Liu. 2023.

Cleanits-MEDetect: Multiple Errors Detection for Time Series Data in Cleanits.

In 28th International Conference, DASFAA, Vol. 13946. 674–678.
[10] Xiaoou Ding, Yichen Song, Hongzhi Wang, Donghua Yang, ChenWang, and Jian-

min Wang. 2024. Clean4TSDB: A Data Cleaning Tool for Time Series Databases.

Proc. VLDB Endow. 17, 12 (2024), 4377–4380. https://www.vldb.org/pvldb/vol17/

p4377-wang.pdf

[11] Xiaoou Ding, Hongzhi Wang, Genglong Li, Haoxuan Li, Yingze Li, and Yida Liu.

2022. IoT data cleaning techniques: A survey. Intell. Converged Networks 3, 4
(2022), 325–339. https://doi.org/10.23919/ICN.2022.0026

[12] Xiaoou Ding, Hongzhi Wang, Jiaxuan Su, Zijue Li, Jianzhong Li, and Hong Gao.

2019. Cleanits: A Data Cleaning System for Industrial Time Series. Proc. VLDB
Endow. 12, 12 (2019), 1786–1789. https://doi.org/10.14778/3352063.3352066

[13] Xiaoou Ding, Hongzhi Wang, Jiaxuan Su, Muxian Wang, Jianzhong Li, and Hong

Gao. 2022. Leveraging Currency for Repairing Inconsistent and Incomplete Data.

IEEE Trans. Knowl. Data Eng. 34, 3 (2022), 1288–1302. https://doi.org/10.1109/

TKDE.2020.2992456

[14] Ju Fan and Guoliang Li. 2018. Human-in-the-loop Rule Learning for Data Inte-

gration. IEEE Data Eng. Bull. 41, 2 (2018), 104–115. http://sites.computer.org/

debull/A18june/p104.pdf

[15] Wenfei Fan and Floris Geerts. 2012. Foundations of Data Quality
Management. Morgan & Claypool Publishers. https://doi.org/10.2200/

S00439ED1V01Y201207DTM030

[16] Anna Fariha, Ashish Tiwari, Arjun Radhakrishna, Sumit Gulwani, and Alexandra

Meliou. 2021. Conformance constraint discovery: Measuring trust in data-driven

systems. In Proceedings of the 2021 International Conference on Management of
Data. 499–512.

[17] Muhammad Fayaz, Shakeel Arshad, Abdul Salam Shah, and Asadullah Shah.

2018. Approximate methods for minimum vertex cover fail to provide optimal

results on small graph instances: A review. International Journal of Control and
Automation 11, 2 (2018), 135–150.

[18] Roland Fried and Ann Cathrice George. 2011. Exponential and Holt-Winters

Smoothing. In International Encyclopedia of Statistical Science, Miodrag Lovric

(Ed.). Springer, 488–490. https://doi.org/10.1007/978-3-642-04898-2_244

[19] Elad Hazan and Tomer Koren. 2012. Linear Regression with Limited Observation.

In Proceedings of the 29th International Conference on Machine Learning, ICML
2012, Edinburgh, Scotland, UK, June 26 - July 1, 2012. icml.cc / Omnipress. http:

//icml.cc/2012/papers/433.pdf

[20] Alireza Heidari, Joshua McGrath, Ihab F. Ilyas, and Theodoros Rekatsinas. 2019.

HoloDetect: Few-Shot Learning for Error Detection. In SIGMOD. 829–846.
[21] Igor Ilic, Berk Görgülü, Mucahit Cevik, and Mustafa Gökçe Baydogan. 2021.

Explainable boosted linear regression for time series forecasting. Pattern Recognit.
120 (2021), 108144.

[22] Ihab F. Ilyas and Xu Chu. 2019. Data Cleaning. ACM Books, Vol. 28. ACM.

https://doi.org/10.1145/3310205

[23] Ihab F. Ilyas and Theodoros Rekatsinas. 2022. Machine Learning and Data

Cleaning: Which Serves the Other? ACM J. Data Inf. Qual. 14, 3 (2022), 13:1–
13:11. https://doi.org/10.1145/3506712

[24] Rui Kang, Shaoxu Song, and ChaokunWang. 2022. Conditional Regression Rules.

In ICDE. IEEE, 2481–2493.
[25] Aimad Karkouch, Hajar Mousannif, Hassan Al Moatassime, and Thomas Noël.

2016. Data quality in internet of things: A state-of-the-art survey. J. Netw.
Comput. Appl. 73 (2016), 57–81. https://doi.org/10.1016/J.JNCA.2016.08.002

[26] Peng Li, Xi Rao, Jennifer Blase, Yue Zhang, Xu Chu, and Ce Zhang. 2021. CleanML:

A Study for Evaluating the Impact of Data Cleaning on ML Classification Tasks.

In ICDE. IEEE, 13–24.
[27] Zijue Li, Xiaoou Ding, and Hongzhi Wang. 2020. An Effective Constraint-Based

Anomaly Detection Approach on Multivariate Time Series. In APWeb-WAIM,

Vol. 12318. 61–69.

[28] Zheng Liang, Hongzhi Wang, Xiaoou Ding, and Tianyu Mu. 2021. Industrial

time series determinative anomaly detection based on constraint hypergraph.

Knowl. Based Syst. 233 (2021), 107548.
[29] Ester Livshits, Benny Kimelfeld, and Sudeepa Roy. 2020. Computing Optimal

Repairs for Functional Dependencies. ACM Trans. Database Syst. 45, 1 (2020),
4:1–4:46. https://doi.org/10.1145/3360904

[30] Mohammad Mahdavi and Ziawasch Abedjan. 2021. Semi-Supervised Data Clean-

ing with Raha and Baran. In 11th Conference on Innovative Data Systems Research,
CIDR 2021, Virtual Event, January 11-15, 2021, Online Proceedings. www.cidrdb.org.

http://cidrdb.org/cidr2021/papers/cidr2021_paper14.pdf

[31] Aditya P Mathur and Nils Ole Tippenhauer. 2016. SWaT: A water treatment

testbed for research and training on ICS security. In 2016 international workshop
on cyber-physical systems for smart water networks (CySWater). IEEE, 31–36.

[32] Zhongyi Pei, Zhiyao Cen, Yipeng Huang, ChenWang, Lin Liu, Philip S. Yu, Ming-

sheng Long, and Jianmin Wang. 2024. BTTackler: A Diagnosis-based Framework

for Efficient Deep Learning Hyperparameter Optimization. In Proceedings of the
30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD
2024, Barcelona, Spain, August 25-29, 2024, Ricardo Baeza-Yates and Francesco

Bonchi (Eds.). ACM, 2340–2351. https://doi.org/10.1145/3637528.3671933

[33] Theodoros Rekatsinas, Xu Chu, Ihab F. Ilyas, and Christopher Ré. 2017. Holo-

Clean: Holistic Data Repairs with Probabilistic Inference. Proc. VLDB Endow. 10,
11 (2017), 1190–1201. https://doi.org/10.14778/3137628.3137631

[34] El Kindi Rezig, Mourad Ouzzani, Ahmed K. Elmagarmid, Walid G. Aref, and

Michael Stonebraker. 2019. Towards an End-to-End Human-Centric Data Clean-

ing Framework. In Proceedings of the Workshop on Human-In-the-Loop Data Ana-
lytics, HILDA@SIGMOD 2019, Amsterdam, The Netherlands, July 5, 2019. ACM,

1:1–1:7. https://doi.org/10.1145/3328519.3329133

[35] Shaoxu Song, Fei Gao, Aoqian Zhang, Jianmin Wang, and Philip S. Yu. 2021.

Stream Data Cleaning under Speed and Acceleration Constraints. ACM Trans.
Database Syst. 46, 3 (2021), 10:1–10:44. https://doi.org/10.1145/3465740

[36] Shaoxu Song and Aoqian Zhang. 2020. IoT Data Quality. In CIKM. ACM, 3517–

3518. https://doi.org/10.1145/3340531.3412173

[37] Shaoxu Song, Aoqian Zhang, Jianmin Wang, and Philip S. Yu. 2015. SCREEN:

Stream Data Cleaning under Speed Constraints. In SIGMOD. 827–841.
[38] Yunxiang Su, Yikun Gong, and Shaoxu Song. 2023. Time Series Data Validity.

Proc. ACM Manag. Data 1, 1 (2023), 85:1–85:26. https://doi.org/10.1145/3588939

[39] Chen Wang, Xiangdong Huang, Jialin Qiao, Tian Jiang, Lei Rui, Jinrui Zhang,

Rong Kang, Julian Feinauer, Kevin Mcgrail, Peng Wang, Diaohan Luo, Jun Yuan,

Jianmin Wang, and Jiaguang Sun. 2020. Apache IoTDB: Time-series database for

Internet of Things. Proc. VLDB Endow. 13, 12 (2020), 2901–2904.
[40] Chen Wang, Jialin Qiao, Xiangdong Huang, Shaoxu Song, Haonan Hou, Tian

Jiang, Lei Rui, Jianmin Wang, and Jiaguang Sun. 2023. Apache IoTDB: A Time

Series Database for IoT Applications. Proc. ACM Manag. Data 1, 2 (2023), 195:1–
195:27.

[41] Xi Wang and Chen Wang. 2020. Time Series Data Cleaning: A Survey. IEEE
Access 8 (2020), 1866–1881. https://doi.org/10.1109/ACCESS.2019.2962152

[42] Mohamed Yakout, Ahmed K. Elmagarmid, Jennifer Neville, Mourad Ouzzani, and

Ihab F. Ilyas. 2011. Guided data repair. Proc. VLDB Endow. 4, 5 (2011), 279–289.
https://doi.org/10.14778/1952376.1952378

[43] Jing Nathan Yan, Oliver Schulte, Mohan Zhang, Jiannan Wang, and Reynold

Cheng. 2020. SCODED: Statistical Constraint Oriented Data Error Detection. In

SIGMOD], June 14-19, 2020. ACM, 845–860.

[44] Aoqian Zhang, Shuqing Deng, Dongping Cui, Ye Yuan, and Guoren Wang. 2023.

An Experimental Evaluation of Anomaly Detection in Time Series. Proceedings
of the VLDB Endowment 17, 3 (2023), 483–496.

[45] Aoqian Zhang, Shaoxu Song, and Jianmin Wang. 2016. Sequential Data Cleaning:

A Statistical Approach. In SIGMOD. 909–924.
[46] Aoqian Zhang, Shaoxu Song, Jianmin Wang, and Philip S. Yu. 2017. Time Series

Data Cleaning: From Anomaly Detection to Anomaly Repairing. PVLDB 10, 10

(2017), 1046–1057.

4852

https://doi.org/10.1007/S00778-015-0389-Y
https://doi.org/10.1007/S00778-015-0389-Y
https://doi.org/10.1145/2882903.2882907
https://doi.org/10.1109/ICDE.2013.6544847
https://doi.org/10.1109/ICDE.2013.6544847
http://sites.computer.org/debull/A16june/p78.pdf
http://sites.computer.org/debull/A16june/p78.pdf
https://doi.org/10.1109/ICDE60146.2024.00282
https://doi.org/10.1109/ICDE60146.2024.00282
https://www.vldb.org/pvldb/vol17/p4377-wang.pdf
https://www.vldb.org/pvldb/vol17/p4377-wang.pdf
https://doi.org/10.23919/ICN.2022.0026
https://doi.org/10.14778/3352063.3352066
https://doi.org/10.1109/TKDE.2020.2992456
https://doi.org/10.1109/TKDE.2020.2992456
http://sites.computer.org/debull/A18june/p104.pdf
http://sites.computer.org/debull/A18june/p104.pdf
https://doi.org/10.2200/S00439ED1V01Y201207DTM030
https://doi.org/10.2200/S00439ED1V01Y201207DTM030
https://doi.org/10.1007/978-3-642-04898-2_244
http://icml.cc/2012/papers/433.pdf
http://icml.cc/2012/papers/433.pdf
https://doi.org/10.1145/3310205
https://doi.org/10.1145/3506712
https://doi.org/10.1016/J.JNCA.2016.08.002
https://doi.org/10.1145/3360904
http://cidrdb.org/cidr2021/papers/cidr2021_paper14.pdf
https://doi.org/10.1145/3637528.3671933
https://doi.org/10.14778/3137628.3137631
https://doi.org/10.1145/3328519.3329133
https://doi.org/10.1145/3465740
https://doi.org/10.1145/3340531.3412173
https://doi.org/10.1145/3588939
https://doi.org/10.1109/ACCESS.2019.2962152
https://doi.org/10.14778/1952376.1952378

	Abstract
	1 Introduction
	2 Problem Overview
	2.1 Preliminaries
	2.2 An overview of constraint discovery
	2.3 Problem Statement

	3 Local Optimal Cleaning: MTSClean
	3.1 Algorithm MTSClean
	3.2 Theoretical guarantee for MTSClean

	4 Algorithm MTSClean-soft
	4.1 Solution Overview
	4.2 Violation Detection
	4.3 Key cell determination
	4.4 Repairing with the designed cost function
	4.5 Comparison of MTSClean and MTSClean-soft

	5 Experiments
	5.1 Experimental setting
	5.2 Overall performance evaluation
	5.3 Evaluation with varying parameters
	5.4 Ablation experiment

	6 Related Work
	7 Conclusions
	Acknowledgments
	References

