
Neighborhood-Preserving Graph Sparsification
Abd Errahmane Kiouche

Universite Claude Bernard Lyon 1,

CNRS, INSA Lyon, LIRIS, UMR5205

69622, Villeurbanne, France

abderrahmane.kiouche@gmail.com

Julien Baste

Univ. Lille, CNRS, Centrale Lille, UMR

9189 CRIStAL

59000, Lille, France

julien.baste@univ-lille.fr

Mohammed Haddad

Universite Claude Bernard Lyon 1,

CNRS, INSA Lyon, LIRIS, UMR5205

69622, Villeurbanne, France

mohammed.haddad@univ-lyon1.fr

Hamida Seba

Universite Claude Bernard Lyon 1,

CNRS, INSA Lyon, LIRIS, UMR5205

69622, Villeurbanne, France

hamida.seba@univ-lyon1.fr

Angela Bonifati

Universite Claude Bernard Lyon 1,

CNRS Liris, IUF

69622, Villeurbanne, France

angela.bonifati@univ-lyon1.fr

ABSTRACT
We introduce a new graph sparsification method that targets the

neighborhood information available for each node. Our approach

is motivated by the fact that neighborhood information is used by

several mining and learning tasks on graphs as well as reachability

queries. The result of our sparsification technique is a sparsified

graph that can be used instead of the original graph in the above

tasks while still ensuring fairly good approximations for the results.

Moreover, our sparsification method allows users to control the

size of the resulting sparsified graph by adjusting the amount of

information loss tolerated by the targeted applications. Our exten-

sive experiments conducted on various real and synthetic graphs

show that our sparsification considerably reduces the size of the

graphs by achieving 40% sparsification rate on average on several

input graphs. Furthermore, in the experimental study we show the

utility and efficiency of our sparsification algorithm for notable

data-driven tasks, such as node classification, graph classification

and shortest path approximations.

PVLDB Reference Format:
Abd Errahmane Kiouche, Julien Baste, Mohammed Haddad, Hamida Seba,

and Angela Bonifati. Neighborhood-Preserving Graph Sparsification.

PVLDB, 17(13): 4853 - 4866, 2024.

doi:10.14778/3704965.3704988

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://gitlab.liris.cnrs.fr/coregraphie/ptspar.

1 INTRODUCTION
Graphs are data modeling abstractions consisting of a set of ver-

tices, also called nodes, and a set of edges connecting the vertices.

Vertices represent objects, while edges represent relationships be-

tween them. Graphs are widely used in data modeling because of

their ability to represent, in a simple and intuitive way, complex

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 13 ISSN 2150-8097.

doi:10.14778/3704965.3704988

processes in both nature and technology, such as social interac-

tions, protein-protein interactions, chemical molecules, transport

networks and fraud detection networks, to name a few [38]. How-

ever, most of these graphs are very large or grow exponentially as

new data arrives. This makes graph querying and analysis a very

challenging task.

To tackle scalability and performance issues when dealing with

large graph data, plenty of algorithms are devised to simplify graphs

in several domains and applications related to graph analysis [30].

The aim is to construct simpler or smaller representations for large

graphs mainly to save storage space but also to use the obtained rep-

resentations, instead of the original graphs, in applications where

using the entire large original graphs is not possible or is time

consuming [27]. Sparsification is one of these approaches aiming

to construct a subgraph of the original graph by removing insignif-

icant edges. The resulting graph is called a skeleton or a backbone.

Sparsification is generally application-dependent because the sig-

nificance of an edge may vary from one application to another.

The main idea is obtaining a smaller graph while preserving some

properties, even approximately, of the original graph such as the

results of distance, and reachability queries [16, 29]. We note that

graph sparsification is a lossy graph simplification technique that

differs from lossless approaches such as graph compression [5] or

graph summarisation and contraction methods [7, 8, 13, 15, 25, 27],

where the output structure is not always a graph. These methods

also require partial or total decompression to query the output

summary. Several sparsification methods are proposed in the litera-

ture [31] but there is no generic approach that can target several

applications at once. An attempt to build a fairly general approach

is provided in [44], relying on reinforcement learning. However,

this method does not exempt us from computing the application

task on the original graph; on the contrary, this step is mandatory

during the training process that needs to be achieved on each graph

to be sparsified. This makes it less useful for real-world applications

and hard to use for graphs that the algorithm has not used during

training.

In this paper, we fill the gap by proposing a general sparsification

method, called (𝑝, 𝑡)−Sparsification, that focuses on preserving the

neighborhood information available around each vertex. This kind

of local information is a key property for many graph algorithms

but it has never been exploited for the graph sparsification problem.

4853

https://doi.org/10.14778/3704965.3704988
https://gitlab.liris.cnrs.fr/coregraphie/ptspar
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3704965.3704988
https://www.acm.org/publications/policies/artifact-review-and-badging-current

(a) Input Graph (b) 𝑝 (1) = 50% 𝑡 = 2 (c) 𝑝 (1) = 50% 𝑡 = 3

Figure 1: (𝑝, 𝑡)−sparsification andneighborhood information.

For instance, in graph learning tasks such as node classification,

knowing a node’s immediate connections is crucial for accurately

categorizing it based on the characteristics of its neighbors. Simi-

larly, for reachability queries, where the goal is to findwhether there

is a path between two nodes, neighborhood information speeds

up the process and makes it more efficient. Computing shortest

paths in a graph also needs the information about each node’s local

surroundings to identify the most efficient and least costly paths.

Each node in a graph may have several connections, and han-

dling all of them is time and space consuming. Hence, our approach

allows us to finely control how much locality we keep in the ob-

tained sparsified graph. The key idea is to remove some edges while

ensuring that, for each node 𝑢, a certain amount of its neighbors,

determined by a function 𝑝 (), is kept within at most 𝑡-hops from

𝑢 in the resulting sparsified graph, with 𝑡 ≥ 1 and 𝑝 () being the

input parameters.

Figure 1 shows how the neighborhood information is preserved

with (𝑝, 𝑡)-sparsification. In the original graph (cf. Figure 1 (a)), node
𝑢1 has 6 direct neighbors (highlighted in blue): nodes 𝑢2, 𝑢3, 𝑢6, 𝑢8,

𝑢9 and 𝑢10. Figure 1 (b) shows a (𝑝, 𝑡)−sparsification of 𝐺 where

𝑝 (1) = 50% of the neighbors of node 𝑢1 remain reachable at 𝑡 = 2

hops. We can observe that node 𝑢2 is no longer directly connected

to node 𝑢1 in the sparsified graph but remains reachable within 2

hops from it. Figure 1 (c) shows another sparsification of𝐺 this time

with 𝑝 (3) = 100% of the neighbors of node 𝑢1 remaining reachable

within 𝑡 = 3 hops.We can also see that nodes𝑢2 and𝑢9 are no longer

directly connected to node 𝑢1 in the sparsified graph but remain

reachable within 3 hops from it. By varying the (𝑝, 𝑡) parameters,

specified as input, one can see that the obtained sparsification can

be accordingly tuned, thus explaining its generalizability to any

input graph.

Figure 1 also provides an intuition of how the preserved neigh-

borhood information in the sparsified graph can be used when

computing shortest paths. If we consider the case where for each

vertex 𝑣 , all the neighborhood of 𝑣 can be found within 𝑡-hops of 𝑣

in the sparsified graph, one can easily check that for each path of

size 𝑘 in the original graph, there is a corresponding path of size at

most 𝑘 · 𝑡 in the sparsified graph. For instance, in Figure 1(a) the

shortest path 𝑢1𝑢2𝑢5 from 𝑢1 to 𝑢5 is of size 2 thus, we know that

in Figure 1(b), the shortest path from 𝑢1 to 𝑢5 is of size at most

2 · 2, which is 𝑢1𝑢10𝑢7𝑢5 of size 3. The example of Figure 1 also

shows that parameters 𝑝 and 𝑡 allow to have a generic approach

that can produce various sparsifications by using different values

for 𝑝 and 𝑡 and therefore adapt to multiple applications and needs.

To show this, we use our resulting sparsified graphs in four main

tasks: reachability queries, shortest paths computation, node classi-

fication and graph classification. The results we obtained on these

four different tasks have proven to be effective approximations of

the exact results of these tasks obtained on the full original graphs.

This validates our method as producing useful sparsified graphs

reducing the size of the input graph, and allowing to leverage the

sparsified graphs, instead of the original ones, without sacrificing

the accuracy of the outcomes. This efficient approximation is cru-

cial in computational environments where resource savings are

imperative, yet the integrity of the results must be maintained. It is

also interesting in several applications where a quickly delivered

approximate result is more useful than an accurate result that takes

a long time to obtain.

Summarizing, the main contributions of this paper are as follows:

• We introduce a new general graph sparsification method that tar-

gets the preservation of the neighborhood information available

for each node in the graph. The key idea is to create a graph skele-

ton that can replace the original graph in various applications and

for arbitrary graph datasets.

• Our method allows the fine-tuning of the size of the resulting spar-

sified graph by adjusting the amount of preserved neighborhood

information.

• Our method allows efficient graph algorithm approximations. Our

approach improves the efficiency of various graph algorithms,

particularly those that depend on node neighborhood information,

such as node/graph classification and shortest path computation.

This results in faster and more robust approximations for larger

graphs.

• Our techniques allow us to strike a user-driven balance between

sparsification ratio and information loss through its parameters 𝑝

and 𝑡 . The user-driven customization makes our technique versa-

tile for different applications with varying needs.

• We conduct extensive experiments using real-world datasets in

different application domains to assess the effectiveness and ef-

ficiency of the proposed method. The source code and the data

used in our paper are publicly available at https://gitlab.liris.cnrs.

fr/coregraphie/ptspar.

The remainder of this paper is organized as follows: Section

2 defines the basic concepts and notation used in the paper and

reviews related work on graph sparsification methods. Section 3

formally defines the problem of neighborhood-preserving graph

sparsification and studies its complexity. Then, Section 4 provides a

description of the algorithms that we propose to compute this spar-

sification and analyses their time complexity. Section 5 presents the

results obtained through the extensive experiments we undertook

to evaluate our sparsification approach, as well as the usefulness

of the obtained sparsified graphs. Finally, Section 6 concludes the

paper and points out some research perspectives.

2 PRELIMINARIES AND RELATEDWORK
2.1 Preliminary
A graph𝐺 = (𝑉 , 𝐸) is a 2-component structure comprising a set𝑉 of

vertices and a set 𝐸 ⊆ 𝑉 ×𝑉 of edges connecting the vertices. Edges

can be directed, and both vertices and edges can have attributes

or weights. In this paper, we consider unweighted and undirected

4854

https://gitlab.liris.cnrs.fr/coregraphie/ptspar
https://gitlab.liris.cnrs.fr/coregraphie/ptspar

Table 1: Notation.

Symbol Description

𝐺 (𝑉 , 𝐸) an undirected unweighted graph with𝑉

the set of vertices and 𝐸 the set of edges.

𝑁ℎ
𝐺
(𝑣) the set of all 𝑞-hop neighbors, 𝑞 ∈ {1, . . . , ℎ}, of vertex 𝑣 in𝐺

𝑁 (𝑣) the set of direct neighbors of 𝑣, i.e., 𝑁 1

𝐺
(𝑣)

𝑑𝑒𝑔 (𝑣) number of direct neighbors of 𝑣

𝑑 average node degree of𝐺

𝐺𝑠 = (𝑉𝑠 , 𝐸𝑠) a sparsified graph of𝐺

𝜋 an ordering function defined on 𝐸

𝐸𝜋 the edges of𝐺 in the order defined by 𝜋

W the set of all paths in𝐺

W𝑢𝑣 the set of all paths inW from 𝑢 to 𝑣

W𝑖
𝑢𝑣 the set of all paths ofW𝑢𝑣 of length at most 𝑖

that pass through the edge 𝑒

Sr the sparsification ratio given by
|𝐸 |−|𝐸𝑠 |
|𝐸 |

graphs. Thus, an edge connecting vertices𝑢 and 𝑣 is interchangeably

denoted by 𝑢𝑣 or 𝑣𝑢.

Two vertices connected by an edge are said to be adjacent. A

vertex adjacent to 𝑣 is called a direct neighbor of 𝑣 or a 1-hop

neighbor of 𝑣 . The set of all the direct neighbors of a vertex 𝑣 in 𝐺

is denoted as 𝑁 1

𝐺
(𝑣) or simply 𝑁 (𝑣) when there is no ambiguity.

The degree of a vertex 𝑣 , denoted 𝑑𝑒𝑔(𝑣), is the number of its 1-hop

neighbors, i.e., 𝑑𝑒𝑔(𝑣) = |𝑁 (𝑣) |.
A path in a graph is a sequence of edges which joins a sequence

of vertices which are all distinct. A vertex 𝑣 is reachable from a

vertex 𝑢 if there exists a path from 𝑢 to 𝑣 . A 𝑞-hop neighbor of a
vertex 𝑣 is a vertex that can be reached from 𝑣 with a path of exactly

𝑞 edges. We will denote by 𝑁ℎ
𝐺
(𝑣) the set of all 𝑞-hop neighbors,

𝑞 ∈ {1, . . . , ℎ}, of vertex 𝑣 in 𝐺 .
The distance between two vertices 𝑢 and 𝑣 is the length, i.e.,

number of edges, of the shortest path connecting them. We will

denote byW the set of all paths in 𝐺 , byW𝑢𝑣 the set of all paths

from node 𝑢 to node 𝑣 , and byW𝑢𝑣𝑖 , the set of paths from node 𝑢

to node 𝑣 of length at most 𝑖 .

Graph sparsification stands for the methods that compute a

sparse subgraph of the input graph. Given a graph 𝐺 = (𝑉 , 𝐸), a
sparsified graph of 𝐺 is a graph 𝐺𝑠 = (𝑉𝑠 , 𝐸𝑠) defined generally on

the same set of vertices as 𝐺 but with less edges, i.e., 𝑉𝑠 = 𝑉 and

𝐸𝑠 ⊂ 𝐸. In practice, wewant the sparsified graph𝐺𝑠 to retain certain

properties of 𝐺 such as the distance between vertices, reachability

queries, etc.

When sparsifying a graph, the order in which the edges are

processed is generally important. We will denote this order with

a bijective function, i.e., permutation, 𝜋 : 𝐸 → {1, . . . , |𝐸 |} that
associates to each edge 𝑒 ∈ 𝐸 its processing rank 𝜋 (𝑒). We will

denote by 𝐸𝜋 the edges of 𝐺 in the order defined by 𝜋 .

Let 𝐺 (𝑉 , 𝐸) be the input graph and𝐺𝑠 (𝑉𝑠 , 𝐸𝑠) be the sparsified
graph, the sparsification ratio measures how well 𝐺𝑠 reduces the

graph 𝐺 and is given by the ratio of the number of deleted edges

over the total number of edges:

𝑆𝑟 =
|𝐸 | − |𝐸𝑠 |
|𝐸 | (1)

Note that the higher is the sparsification ratio the better is the

storage space gain ensured by the sparsification.

Table 1 summarizes these notations.

2.2 Related Work
Graph sparsification is a lossy graph simplification technique that

allows to compute a subgraph of the original graph preserving some

of its properties. As such, it differs from lossless approaches such as

graph contraction methods [7, 8, 13, 15, 25, 27]. The latter methods

allow exact computations on the output structure but require partial

or total decompression to achieve these computations. Therefore,

the two approaches are inherently different. In the remainder of this

section, we focus on discussing graph sparsification approaches.

Graph sparsification methods can be classified into two main cate-

gories: statistical methods and structural methods.

Statistical methods:Thesemethods extract the backbone of graphs

by removing edges based on various properties of graph vertices

and edges such as degree distribution or betweenness centrality

distribution [23, 48]. They rely mainly on edge weights to sparsify

the graph. Hence, they perform poorly on unweighted graphs. As

an example, we can cite methods that apply a filter on the edges

such as the Noise Corrected filter [11] that keeps only the edges

with weight greater than a given threshold. High salience backbone

filter [16] extracts the graph backbone based on the link (i.e., edge)

salience property. The salience of an edge 𝑒 is a score 𝑠 (𝑒) that
represents a consensus estimate from all nodes of the importance

of the edge 𝑒 . An edge 𝑒 having a salience score equal to 1.0 is an

essential edge for all nodes. If 𝑠 (𝑒) = 0, the edge 𝑒 has no role and if,

𝑠 (𝑒) = 0.5 then it is important for only half of the nodes [16]. The

salient backbone extracts the skeleton by keeping only the edges

that have a salience score greater than a certain threshold.

Structural methods: These methods differ based on the structural

properties of the input graph they aim to preserve in the constructed

backbone. In [36], a backbone, called a spanner, preserves distances

between vertices, within a multiplicative or an additive factor. The

method in [3] sparsify graphs to preserve cuts, which are parti-

tions of the vertices of a graph into two disjoint subsets. Given

any weighted undirected graph 𝐺 = (𝑉 , 𝐸), the authors show that

one could construct a new graph 𝐺𝜀 = (𝑉 , 𝐸𝜀 ⊆ 𝐸), 0 < 𝜀 < 1,

with |𝐸𝜀 | = 𝑂 (𝑛 log𝑛/𝜀2) edges such that the value of every cut

in 𝐺 is within a multiplicative factor of 1 ± 𝜀 of its value in 𝐺𝜀 .

Similarly, we can find sparsification algorithms that preserve graph

Laplacian [41], determinant of matrices [14], etc.

In [33] and [6], the authors tackle the problem of sparsifying a graph,

while maintaining the connectivity recorded in a given set of ob-

served activity traces represented by a set of trees with specified

roots. In [44], the authors attempt to address several sparsification

objectives. They propose SparRL, a graph sparsification approach

based on graph neural networks (GNNs) and reinforcement learn-

ing. However, SparRL requires executing the downstream task algo-

rithm on the original graph to calculate rewards for the reinforce-

ment learning part. This raises questions about the practical utility

of this sparsification method and limits its generalization to unseen

graphs. Also, the method applies a task-specific optimization which

is difficult to apply to some tasks such as learning and classification.

By targeting neighborhood information and allowing to control

the amount of information loss in the computed sparsified graph,

we aim to be able to use our skeletons in a variety of graph applica-

tions. In fact, several graph algorithms, such as node embedding,

4855

node classification, shortest paths, etc. are based on the availability

of node neighborhood information. In the remainder of the paper,

we show that controlling the amount of this information in the com-

puted skeleton allows a good trade-off between algorithm speed-up

and precision loss when using the skeleton as input instead of the

original graph in the targeted applications.

3 A NEIGHBORHOOD-PRESERVING GRAPH
SPARSIFICATION

In this section, we introduce a new graph sparsification method that

targets the amount of neighborhood information available for each

node in the graph. The main idea is to sparsify the input graph by

removing edges, while ensuring that, for all 1 ≤ 𝑖 ≤ 𝑡 , a proportion

𝑝 (𝑖) of the neighbors of each node 𝑣 is included in the set of the

𝑖-hops neighbors of 𝑣 in the resulting sparsified graph, where 𝑡 ≥ 1.

We denote such sparsification by (𝑝, 𝑡)-sparsification where:

• 𝑝 : N∗ → [0, 1] is a monotonically increasing function, which

represents the proportion of each node’s input neighbors that

must be available in its 𝑖-hops neighborhood in the sparsified

output graph.

• 𝑡 : is the minimum integer value for which 𝑝 reaches its maximal

value i.e., 𝑝 (𝑖) = 𝑝 (𝑡),∀𝑖 ≥ 𝑡 .

More formally, given an undirected graph 𝐺 = (𝑉 , 𝐸), a (𝑝, 𝑡)-
sparsification of 𝐺 is defined as follows:

Definition 1. Given a positive integer 𝑡 and a monotonically
increasing function 𝑝 : N∗ → [0, 1] satisfying 𝑝 (𝑖) = 𝑝 (𝑡) for all
𝑖 > 𝑡 , a (𝑝, 𝑡)-sparsification of a graph 𝐺 = (𝑉 , 𝐸) involves finding a
subgraph 𝐺𝑠 = (𝑉𝑠 , 𝐸𝑠) of 𝐺 . 𝐺𝑠 must have the same set of vertices
𝑉𝑠 = 𝑉 , a subset of edges 𝐸𝑠 ⊆ 𝐸, and must satisfy the condition that
for each integer 0 < 𝑖 ≤ 𝑡 and each vertex 𝑣 ∈ 𝑉 , the set 𝑁 𝑖

𝐺𝑠
(𝑣)

includes at least a proportion 𝑝 (𝑖) of the set 𝑁 1

𝐺
(𝑣) of immediate

neighbors of 𝑣 in 𝐺 .

The definition implies that the subgraph 𝐺𝑠 retains fewer edges

than the original graph 𝐺 , but still captures a specified proportion

of the original neighborhood structure.

With (𝑝, 𝑡)-sparsification, the function 𝑝 aims to control the loss

of neighborhood information at varying depths. Naturally, a smaller

value of 𝑝 results in a higher sparsification ratio and vice versa.

Lemma 1. For any (𝑝, 𝑡)-sparsification, the number of edges |𝐸𝑠 |
of the sparsified graph satisfies the inequality |𝐸 |𝑝 (1) ≤ |𝐸𝑠 |.

Proof. The proof is straightforward and follows from the hand-

shaking lemma [19] which states that in any graph, the sum of the

degrees of all the vertices is twice the number of edges. □

Theorem 2. Finding an optimal (smallest) graph satisfying the
(𝑝, 𝑡)-sparsification constraints for 𝑡 ≥ 2 is an NP-Hard problem.

Proof Sketch.
1

The proof of the theorem follows directly from the hardness of

finding 𝑘-spanners which is known to be NP-complete [37]. □

1
The detailed proofs are provided in the supplementary material [24].

4 COMPUTING (𝑝, 𝑡)-SPARSIFIERS
In this section, we present two main algorithms for finding (𝑝, 𝑡)-
sparsifiers of an input graph𝐺 . The first algorithm is an exact algo-

rithm based on an integer linear programming (ILP) formulation

of (𝑝, 𝑡)-sparsification. The second algorithm is an approximation

whose result depends on the order onwhich the edges are processed,

thus we provide several solutions to this ordering problem.

4.1 Exact Algorithm
Our exact algorithm is obtained by solving an Integer Linear Pro-

gramming (ILP) formulation of (𝑝, 𝑡)-sparsification. This formu-

lation is aimed at finding an optimal (smallest) sparsified graph

that meets the (𝑝, 𝑡)-sparsification definition. It consists of a set of

linear inequalities that constrains the minimization of an objective

function. In our case, the objective function counts the number of

edges of the sparsified graph (cf. Equation 2) and the constraints

are expressed by Inequalities 3 to 5 and domain definition of our

variables (cf. Equation 6).

Given a graph 𝐺 = (𝐸,𝑉) and a (𝑝, 𝑡)-sparsification, the following
ILP formulation computes a smallest sparsified graph as follows:

minimize

∑︁
𝑒∈𝐸

𝑥𝑒 (2)

subject to ∑︁
𝑣∈𝑁 (𝑢)

∑︁
𝑤∈W𝑖

𝑢𝑣

𝑥𝑤 ≥ 𝑝 (𝑖) · |𝑁 (𝑢) | ∀𝑢 ∈ 𝑉 , 𝑖 ≤ 𝑡 (3)∑︁
𝑤∈W𝑢𝑣

𝑥𝑤 ≤ 1 ∀𝑢𝑣 ∈ 𝐸 (4)

𝑥𝑤 ≤ 𝑥𝑒 ∀𝑤 ∈ W, 𝑒 ∈ 𝑤
(5)

𝑥𝑒 , 𝑥𝑤 ∈ {0, 1} 𝑒 ∈ 𝐸,𝑤 ∈ W (6)

where a binary variable 𝑥𝑒 is defined for every edge 𝑒 ∈ 𝐸 such

that 𝑥𝑒 = 1 if and only if the edge 𝑒 is selected to be part of the

sparsified graph, otherwise 𝑥𝑒 = 0. Thus, the objective function∑
𝑒∈𝐸 𝑥𝑒 aims at minimizing the number of selected edges in the

final solution. The first constraint (cf. Equation 3) ensures that for

every vertex 𝑢 of the graph, the property of (𝑝, 𝑡)-sparsification is

satisfied i.e., for every distance 𝑖 ≤ 𝑡 , the number of neighbors still

connected to 𝑢 via a path of length at most 𝑖 is at least 𝑝 (𝑖) · |𝑁 (𝑢) |.
This is enforced by the binary variables 𝑥𝑤 such that for every

neighbor 𝑣 of 𝑢, the set of all paths𝑤 between 𝑢 and 𝑣 is denoted

byW𝑢𝑣 and byW𝑖
𝑢𝑣 when considering paths of length 𝑖 , hence∑

𝑣∈𝑁 (𝑢)
∑
𝑤∈W𝑖

𝑢𝑣
𝑥𝑤 ≥ 𝑝 (𝑖) · |𝑁 (𝑢) |∀𝑢 ∈ 𝑉 , 𝑖 ≤ 𝑡 . The second

constraint (cf. Equation 4) makes sure that the obtained sparsified

graph has no cycles i.e., there is at most one path between any pair

of vertices. This is enforced by setting the 𝑥𝑤 to 1 to at most one

path𝑤 among all possible pathsW𝑢𝑣 between two adjacent vertices

𝑢 and 𝑣 in 𝐺 . The constraint given by Equation 5 ensures that all

edges belonging to a selected path𝑤 are selected in the sparsified

graph. The last constraint (cf. Equation 6) sets the definition domain

of 𝑥𝑒 , 𝑥𝑤 variables which are defined as binary variables.

4856

Algorithm 1: ptSpar(𝐺 = (𝑉 , 𝐸), 𝑝 , 𝑡 , 𝐸𝜋)
Input :𝐺 = (𝑉 , 𝐸) a simple Graph, 𝑡 an integer, 𝑝 : N→ [0, 1],

𝐸𝜋 an ordering of 𝐸

Output :𝐺𝑠 = (𝑉𝑠 , 𝐸𝑠) a sparsified graph

1 𝐺𝑠 = (𝑉𝑠 , 𝐸𝑠) ← (𝑉 , ∅) ;
2 𝐺 ′ = (𝑉 ′, 𝐸′) ← (𝑉 , ∅) ;
3 for 𝑒 = 𝑢𝑣 ∈ 𝐸𝜋 do
4 𝐸′ ← 𝐸′ ∪ {𝑢𝑣};
5 insert← 𝐹𝑎𝑙𝑠𝑒 ;

6 𝑁 1

𝐺 ′ (𝑢) ← direct neighbors of node 𝑢 in𝐺 ′;

7 𝑁 1

𝐺 ′ (𝑣) ← direct neighbors of node 𝑣 in𝐺 ′;

8 for 𝑖 = 1 to 𝑡 do
9 𝑁 𝑖

𝐺𝑠
(𝑢) ← neighbors of node 𝑢 in𝐺𝑠 within at most

𝑖-hops;

10 𝑁 𝑖
𝐺𝑠
(𝑣) ← neighbors of node 𝑣 in graph𝐺𝑠 within at

most 𝑖-hops;

11 if |𝑁 𝑖
𝐺𝑠
(𝑢) ∩ 𝑁 1

𝐺 ′ (𝑢) | < 𝑝 (𝑖) |𝑁
1

𝐺 ′ (𝑢) | or
|𝑁 𝑖

𝐺𝑠
(𝑣) ∩ 𝑁 1

𝐺 ′ (𝑣) | < 𝑝 (𝑖) |𝑁
1

𝐺 ′ (𝑣) | then
12 insert← 𝑇𝑟𝑢𝑒 ;

13 Break;
14 end
15 end
16 if insert then
17 𝐸𝑠 ← 𝐸𝑠 ∪ {𝑢𝑣};
18 end
19 end

4.2 Approximation Algorithm: ptSpar
We propose ptSpar (see Algorithm 1) an approximation algorithm

that implements (𝑝, 𝑡)-sparsification. It takes as input a graph 𝐺 =

(𝑉 , 𝐸) to sparsify, the sparsification parameters 𝑝 and 𝑡 and an

ordering 𝐸𝜋 for processing the edges of the input graph.

The algorithm starts with an empty sparsified graph𝐺𝑠 (see line

1) and grows it incrementally by going through all the edges of the

input graph𝐺 , in the order 𝐸𝜋 (see the loop on lines 3 to 18).𝐺 ′ is a
working variable initialized to the empty graph and serves to check

that an edge inserted in𝐺𝑠 verifies the neighborhood conditions of

the (𝑝, 𝑡)- sparsification. Each iteration of the loop (lines 3 to 18)

corresponds to the processing of a new edge 𝑒 in the ordering 𝐸𝜋 . A

processed edge 𝑒 , is first inserted into𝐺 ′ (line 4) but its inclusion in

the sparsified graph𝐺𝑠 depends on whether it verifies the condition

of (𝑝, 𝑡)-sparsification. This is done by setting the variable insert to
false (line 5).

To see whether edge 𝑒 = 𝑢𝑣 needs to be included in𝐺𝑠 , we simply

check if 𝐺𝑠 without the edge 𝑒 remains a (𝑝, 𝑡)-sparsification for

𝐺 ′. To do so, we check the neighborhood preservation constraints

for nodes 𝑢 and 𝑣 as they are the only nodes whose neighborhood

set is impacted by the arrival of edge 𝑒 . For such purpose, we need

to compute the set of all neighbors of 𝑢 and 𝑣 located in a radius

<= 𝑖 , i.e., 𝑁 𝑖
𝐺𝑠
(𝑢) and 𝑁 𝑖

𝐺𝑠
(𝑣) (see lines 9-10). To compute 𝑁 𝑖

𝐺𝑠
(𝑢),

respectively 𝑁 𝑖
𝐺𝑠
(𝑣), we traverse the graph within radius 𝑖 starting

from 𝑢, respectively 𝑣 . Then, we check if the non-insertion of 𝑒 in

𝐺𝑠 violates the neighborhood preservation constraints (line 11), if

this is the case 𝑒 must be inserted in 𝐺𝑠 (lines 12-16).

Theorem 3. The subgraph 𝐺𝑠 = (𝑉𝑠 , 𝐸𝑠) output of Algorithm
ptSpar is a (𝑝, 𝑡)-sparsification, of the input graph 𝐺 = (𝑉 , 𝐸).

Proof Sketch. We proceed by induction and show that if𝐺𝑠 (𝑘)
is a (𝑝, 𝑡)-sparsification of 𝐺 ′ (𝑘), then 𝐺𝑠 (𝑘 + 1) must also be a

(𝑝, 𝑡)-sparsification of𝐺 ′ (𝑘 + 1), where 𝑘 denotes the iteration step

in the algorithm, representing the stage at which the edges are

processed. This is demonstrated by showing that an assumption of

the contrary leads to a contradiction with the induction hypothesis,

thereby confirming the theorem’s claim through induction. □

The performance of the ptSpar algorithm is significantly im-

pacted by the order in which edges are processed. Different edge

orderings can lead to varying efficiencies of (𝑝, 𝑡)-sparsification.
Optimizing the (𝑝, 𝑡)-sparsification for a graph 𝐺 fundamentally

involves finding the most effective edge ordering, 𝐸𝜋∗, of the edges
as stated in Theorem 4.

Theorem 4. Let𝐺 = (𝑉 , 𝐸) be a graph. There exists a permutation
function 𝜋∗ of the edge set 𝐸 for which algorithm ptSpar, gives an
optimal (i.e., a minimum size (𝑝, 𝑡)-sparsification) of 𝐺 .

Proof Sketch. The proof begins by asserting that if at any it-

eration 𝑘 , the current output 𝐺𝑠 (𝑘) is a (𝑝, 𝑡)-sparsification of 𝐺 ,

subsequent edges processed will be rejected, maintaining 𝐺𝑠 (𝑘)
unchanged until the final iteration. This is based on the observa-

tion that once a graph meets the (𝑝, 𝑡)-sparsification criteria, all its

vertices have their neighborhood constraints satisfied, making any

additional edge unnecessary. To demonstrate the theorem, we con-

sider 𝐺∗𝑠 , a minimum size (𝑝, 𝑡)-sparsification of 𝐺 , and construct

𝜋∗ such that edges in 𝐸∗𝑠 are processed before those in 𝐸−𝐸∗𝑠 . Under
this ordering, once ptSpar processes all edges in 𝐸∗𝑠 , it will reject
any remaining edges, resulting in 𝐺∗𝑠 as the output, proving the

theorem. □

To improve the sparsification performance of the ptSpar algo-
rithm, we propose three sub-optimal orders in the following sub-

sections. Our aim is to approximate the ideal edge processing order

thereby enhancing the sparsification effectiveness of the ptSpar
algorithm. By exploring various edge ordering strategies, we seek

to balance computational efficiency with the quality of the resultant

sparsified graph. The first sub-optimal order is a random order, the

second one is based on edge centrality and the third one relies on a

meta-heuristic to find the best order.

Random edge order: This algorithm takes a graph as input and

outputs an ordered edge set as illustrated by Algorithm 2. The order

is determined by randomly selecting edges (cf. line 4).

Edge centrality based order: In this ordering, we first process the
edges with a high centrality value. Centrality is a common measure

for the importance of a node or an edge in a graph. The centrality

we consider here is a relaxation of local edge betweenness defined

in [17]. An edge with a high edge betweenness centrality represents

a bridge-like connector between two parts of a graph, the removal

of which may affect the shortest paths between these parts. The

local edge betweenness of an edge 𝑒 is the number of shortest paths

running along 𝑒 , the length of which is less than or equal to some

constant 𝑡 . In our proposed metric, We consider all paths with a

length at most 𝑡 , not just the shortest paths. Furthermore, we focus

only on paths directly associated with an edge in the edge set 𝐸. For

4857

Algorithm 2: Random order

Input :𝐺 = (𝑉 , 𝐸) input Graph
Output :A randomly ordered edge set 𝐸𝑟𝑑

1 𝐸𝑟𝑑 ← ∅ ;
2 𝐸′ ← 𝐸;

3 while 𝐸′ ≠ ∅ do
4 pick randomly an edge 𝑒 from 𝐸′ ;

5 𝐸′ ← 𝐸′ − {𝑒 };
6 𝐸𝑟𝑑 ← 𝐸𝑟𝑑 ∪ {𝑒 };
7 end
8 return 𝐸𝑟𝑑 ;

Algorithm 3: Edge centrality based order

Input :𝐺 = (𝑉 , 𝐸) input Graph
Output :Centrality based edge order 𝐸𝑐

1 for 𝑒 ∈ 𝐸 do
2 compute the score s(e) using Equation 7;

3 end
4 𝐸𝑐 ← sort the edges of𝐺 in descending order according to 𝑠 (𝑒) ;

every edge 𝑒 , we calculate a centrality score 𝑠 (𝑒) using Equation 7.

In this equation, 𝜎𝑡 (𝑢, 𝑣 |𝑒) denotes the number of paths of length

at most 𝑡 that traverse edge 𝑒 , and connect two nodes 𝑢 and 𝑣 that

are directly linked by the edge 𝑢𝑣 . This approach ensures that the

centrality score, we propose, accurately reflects the significance of

each edge in connecting directly adjacent nodes within the network.

Once all scores are computed, we sort the edges in descend-

ing order according to their score 𝑠 (𝑒) to obtain an edge ordering.

Algorithm 3 formalizes the computation of this ordering.

𝑠 (𝑒) =
∑︁
𝑢𝑣∈𝐸

𝜎𝑡 (𝑢, 𝑣 |𝑒) ∀𝑢𝑣 ∈ 𝐸 (7)

Simulated-Annealing based order: We use Simulated Anneal-

ing (SA) [42] as a meta-heuristic to explore the different possible

edge orderings. The SA-based ordering is detailed in Algorithm 4.

Basically, the algorithm tries several edge orderings and keeps the

best one, i.e., the one that produces the smallest sparsified graph.

The simulated annealing process starts with a temperature value

𝑇𝑚𝑎𝑥 (cf. line 1) that will keep decreasing at each iteration. This

temperature is crucial in the SA technique, as it allows the accep-

tance of suboptimal solutions, particularly in the early stages when

the temperature is high, to ensure a comprehensive exploration of

the solution space (cf. lines 17-19). Then, the algorithm begins by a

random order of the edges 𝑂𝑖𝑛𝑖𝑡 of the input graph (line 2). It con-

structs an initial solution, i.e., a temporary sparsified graph 𝐺𝑖𝑛𝑖𝑡
using the ptSpar algorithm (line 3) with this initial order. The num-

ber of edges in this initial solution |𝐸𝑖𝑛𝑖𝑡 | is recorded in 𝐶𝑂𝑆𝑇𝑏𝑒𝑠𝑡
(cf. line 4), tracking the best (i.e., smallest) edge count found in the

sparsified graph so far. In the main iterative loop of the algorithm

(lines 7-23), running for 𝑁 iterations, each iteration modifies the

current solution slightly by creating a new edge order 𝑂𝑛𝑒𝑤 from

𝑂𝑖𝑛𝑖𝑡 by swapping two randomly selected edges (cf. lines 6 and

7). Then, it evaluates this new edge ordering (cf. lines 8 to 16) by

calling the ptSpar algorithm again to decide whether to accept this

new order based on the size of the resulting sparsified graph. If the

Algorithm 4: Computing the best order with simulated

annealing

Input :𝐺 = (𝑉 , 𝐸) a Graph, 𝑡 an integer, 𝑝 : N→ [0, 1], 𝑁 an

integer (Number of iterations),𝑇𝑚𝑎𝑥 a double (Initial

temperature), 𝛼 a double (decreasing factor of the

temperature)

Output :𝑂𝑏𝑒𝑠𝑡 the best edge ordering with 𝑁 iterations

1 𝑇 ← 𝑇𝑚𝑎𝑥 ;

2 𝑂𝑖𝑛𝑖𝑡 ← Random order of 𝐸;

3 𝐺𝑖𝑛𝑖𝑡 (𝑉 , 𝐸𝑖𝑛𝑖𝑡) ← ptSpar(𝐺 ,𝑡 ,𝑝 ,𝑂𝑖𝑛𝑖𝑡);

4 𝐶𝑂𝑆𝑇𝑖𝑛𝑖𝑡 ← |𝐸𝑖𝑛𝑖𝑡 |;
5 𝐶𝑂𝑆𝑇𝑏𝑒𝑠𝑡 ← 𝐶𝑂𝑆𝑇𝑖𝑛𝑖𝑡 ;

6 𝑂𝑏𝑒𝑠𝑡 ← 𝑂𝑖𝑛𝑖𝑡 ;

7 for 𝑖 = 1 to 𝑁 do
8 𝑂𝑛𝑒𝑤 ← Perturbing𝑂𝑖𝑛𝑖𝑡 by swapping the order of two

random edges;

9 𝐺𝑛𝑒𝑤 (𝑉 , 𝐸𝑛𝑒𝑤) ← ptSpar(𝐺 ,𝑡 ,𝑝 ,𝑂𝑛𝑒𝑤);

10 𝐶𝑂𝑆𝑇𝑛𝑒𝑤 ← |𝐸𝑛𝑒𝑤 |;
11 if 𝐶𝑂𝑆𝑇𝑛𝑒𝑤 < 𝐶𝑂𝑆𝑇𝑏𝑒𝑠𝑡 then
12 𝑂𝑏𝑒𝑠𝑡 ← 𝑂𝑛𝑒𝑤 ;

13 𝐶𝑂𝑆𝑇𝑏𝑒𝑠𝑡 ← 𝐶𝑂𝑆𝑇𝑛𝑒𝑤 ;

14 end
15 else
16 𝑟 ← random number between 0 and 1;

17 if exp(𝐶𝑂𝑆𝑇𝑏𝑒𝑠𝑡 −𝐶𝑂𝑆𝑇𝑛𝑒𝑤
𝑇

) > 𝑟 then
18 𝑂𝑏𝑒𝑠𝑡 ← 𝑂𝑛𝑒𝑤 ;

19 𝐶𝑂𝑆𝑇𝑏𝑒𝑠𝑡 ← 𝐶𝑂𝑆𝑇𝑛𝑒𝑤 ;

20 end
21 end
22 𝑇 ← 𝛼 ∗𝑇 ;
23 end
24 return𝑂𝑏𝑒𝑠𝑡 ;

new ordering does not produce a better sparsified graph, it can still

be accepted based on the current temperature (cf. lines 16-19). This

will allow a broad exploration of the search space especially in the

first stages where the value of𝑇 is high. The current temperature𝑇

is decreased at each iteration with a factor 𝛼 , gradually lowering the

likelihood of accepting worse solutions as the algorithm progresses

(cf. line 17). Finally, the algorithm returns𝑂𝑏𝑒𝑠𝑡 , the best edge order

found within the given number of iterations (cf. line 18).

Figure 2 illustrates the results of the (𝑝, 𝑡)-sparsification algo-

rithms on our running example (cf. Figure 2 (a)) with parameters

𝑡 = 2, 𝑝 (1) = 50% and 𝑝 (2) = 100%. For each algorithm, the retained

edges are in blue and the removed ones in dashed grey. The exact

algorithm produces the smallest possible sparsified graph with ex-

actly 13 edges (cf. Figure 2 (b)). The ptSpar algorithm used with the

random edge ordering (cf. Figure 2 (c)) and with the centrality-based

ordering (cf. Figure 2 (d)) produces a near-optimal sparsification

with 14 edges, which is very close to the theoretical optimal of 13

edges. It is important to note that although both orderings yield

sparsifications with the same number of edges, the actual edges

retained in each method are not always the same resulting in dif-

ferent sparsified graphs. Additionally, see that the SA algorithm

succeeds to produce the optimal sparsification with 13 edges (cf.

Figure 2 (e) and Figure 2 (f)) if it is used with a sufficient number of

4858

(a) input graph
(22 edges)

(b) Exact algorithm
(13 edges)

(c) Random order
(14 edges)

(d) Centrality order
(14 edges)

(e) SA 500 iterations
(14 edges)

(f) SA 1000 itera-
tions (13 edges)

Figure 2: Results of the (𝑝, 𝑡)-sparsification algorithms on the
running example.

iterations. Therefore, the SA algorithm is a promising approach for

obtaining high-quality results that are close to the exact solution,

although it does not scale well, as demonstrated in the following

sections.

4.3 Complexity analysis
In this section, we analyze the time complexity of all the algorithms

presented in the previous section. The theorems and their detailed

proofs are provided in the supplementary material [24].

The time complexity of the ptSpar algorithm is 𝑂 (|𝐸 |𝑑𝑡), where 𝑑
represents the average degree in the graph 𝐺 . In scenarios where

every node is connected to every other node, forming a complete

graph, this complexity escalates significantly, reaching 𝑂 (|𝐸 | |𝑉 |𝑡).
The time complexity of the random edge ordering algorithm is

𝑂 (|𝐸 |). This complexity involves parsing the edge set 𝐸.

The average time complexity of the centrality based-ordering is

𝑂 (|𝐸 | (𝑑𝑡 +log(|𝐸 |))). This complexity involves computing the score

𝑠 (𝑒) for each edge 𝑒 and sorting them. The complexity of computing

the edge scores is equal to the complexity of listing all paths of

length ≤ 𝑡 for each pair of connected nodes, i.e., for each edge in 𝐸.

The average number of paths of length ≤ 𝑡 between two connected

nodes 𝑢 and 𝑣 and starting from 𝑢 is of order 𝑂 (𝑑𝑡), where 𝑑 is

the average degree. The number of edges is |𝐸 |. Therefore, the
time complexity of computing all the scores 𝑠 (𝑒) is 𝑂 (|𝐸 |𝑑𝑡). In
addition, the complexity of sorting all the scores costs𝑂 (|𝐸 | log |𝐸 |).
In the worst case (complete graph), the time complexity would be

𝑂 (|𝐸 | (𝑉 𝑡 + log(|𝐸 |))).
The time complexity of the Simulated Annealing (SA)-based order-

ing is influenced by the number of iterations 𝑁 , the initial temper-

ature 𝑇0, and the temperature decreasing factor 𝛼 . Each iteration

involves a perturbation of the edge order and a re-evaluation of the

sparsification, leading to a complexity that is also dependent on the

efficiency of the ptSpar algorithm used within it.

This analysis clearly shows that the random order algorithm is

the fastest. This explains its scalability when compared to the other

edge orderings.

5 EXPERIMENTAL ANALYSIS
In this section, we present an experimental analysis of our sparsifi-

cation approach. First, we evaluate the performance of the ptSpar
algorithm provided to compute the sparsification. Then, we provide

an analysis of the sensitivity of this sparsification to parameters 𝑝

and 𝑡 . Finally, we evaluate its effectiveness on several tasks such as

shortest paths and reachability queries computation, node embed-

ding and whole graph embedding. We also compare our sparsifica-

tion with several baselines and state of the art methods to show its

effectiveness. All experiments are carried out on an AMD 32 cores

CPU with 768GB of memory. The source code of our algorithms is

available at https://gitlab.liris.cnrs.fr/coregraphie/ptspar.

Algorithms.We used the following baselines in our comparative

study. To guarantee a fair comparison with all the baselines, we

have adopted the default configuration for each of them.

• Random Edge (RE): RE randomly eliminates a given percentage

of edges.

• Local Degree (LD) [20]: LD retains the top 𝑑𝑒𝑔(𝑣)𝛼 edges for each

node 𝑣 ∈ 𝑉 , where 𝛼 ∈ [0, 1]
• Edge Forest Fire (EFF) [20]: EFF is based on the Forest Fire node

sampling algorithm [28]. It initiates a fire at a random node and

burns approximately 𝑝/(1− 𝑝) neighbors, where p represents the

probability threshold for burning a neighbor. Burnt neighbors are

enqueued for subsequent fire initiation. EFF prunes edges based

on the frequency of edge visits.

• Algebraic Distance (AD) [10]: AD uses random walk distance to

compute the algebraic distance 𝛼 (𝑢, 𝑣) between two nodes. A low

algebraic distance implies a high likelihood that a random walk

starting from 𝑢 will reach 𝑣 within a small number of steps. It

assigns an edge score of 1−𝛼 (𝑢, 𝑣) to prioritize short-range edges.
• L-Spar (LS) [39]: LS employs the Jaccard similarity function on

the adjacency lists of nodes 𝑢 and 𝑣 to determine the edge score

of (𝑢, 𝑣). It ranks edges locally (with respect to each node) and

prunes them based on their ranks.

• Simmelian Backbone (SB) [34] : SB calculates weights by counting

how many triangles each edge is part of, and then retains only

those edges that form the most triangles, indicating strong and

interconnected relationships in the graph. During sparsification,

SB removes the lower-ranked edges of each node using a specified

edge-prune ratio.

• Quadrilateral Simmelian Backbone (QSB) [35]: QSB measures the

Simmelianness weight of each edge (𝑢, 𝑣) by taking into account

the shared quadrangles of 𝑢 and 𝑣 . It follows the same pruning

strategy as SB.

• Salient backbone (SLB) [16] : SLB sparsifies a graph using the dis-

parity filter which consists in calculating a statistical significance

(𝑝-value) for each edge based on its weight and the total weight of

all edges connected to the same node. Edges with 𝑝-values below

4859

https://gitlab.liris.cnrs.fr/coregraphie/ptspar

Table 2: Characteristics of datasets used in our experiments.

Name #graphs |𝑉 | |𝐸 | Use case

BLOG-CATALOG 1 10.31𝐾 333.98𝐾 MLNC/SP/EO/EL

CA-ASTROPH 1 18.77𝐾 198.11𝐾 SP/EO/EL

CA-HEPTH 1 9.8𝐾 25.9𝐾 SP/EO/EL

CITESEER 1 3.2𝐾 4.5𝐾 NC/SP/EO/EL

COLLAB* 5000 372.5𝐾 49.1𝑀 GC

CORA 1 2.7𝐾 5.4𝐾 NC/SP/EL/EO

ENZYMES* 600 19.5𝐾 74.6𝐾 GC

FLICKR 1 89𝐾 899𝐾 NC/SP/EO

FLICKR-Large 1 80.51𝐾 5.89𝑀 MLNC

FRIENDSTER 1 65.6𝑀 1.8𝐵 AC/SP/EL

GSH-HOST 1 68.6𝑀 1.8𝐵 EO/SP/EL

IMDB-BINARY* 1000 19.77𝐾 96.53𝐾 GC/EL

MSRC-21C* 209 8.4𝐾 20.2𝐾 GC/EL

LIVEJOURNAL 1 3.99𝑀 34.68𝑀 EO/SP/EL

PROTEINS* 1113 43.5𝐾 162.1𝐾 GC/EL

PUBMED 1 19.7𝐾 44.3𝐾 EO/NC/SP/EL

SYNTH1 30 20 60 EO

SYNTH2 30 50 350 EO

SYNTH3 30 100 1.4𝐾 EO

TWITTER 1 41.6M 1.4B EO/SP/EL

MLNC: Multi-label Node Classification, SP: Shortest Paths, NC: Node Classification,

GC: Graph Classification, EO: Edge ordering choice, EL: Entropy loss

*This dataset contains several labeled graphs for graph classification use cases.

a certain threshold are retained, forming the "backbone" of the

graph. The rest, considered less important, are discarded.

• SparRL [44], a deep reinforcement learning-based method, sparsi-

fies a graph by formulating the process as a Partially Observable

Markov Decision Process (POMDP). It starts with a graph and at

each step, chooses an edge to prune based on a policy learned

from a Double DQN network. The policy is trained to maximize a

reward function that encourages the preservation of certain graph

properties.

Datasets. Table 2 summarizes the properties of the various datasets

that we use in our extensive experiments. We use 20 datasets from

various domains. In fact, for each application of our sparsification,

we use the most used datasets for its evaluation. For scalability is-

sues, we used two social networks TWITTER [1] and FRIENDSTER

[46], and a Web graph GSH-HOST[2]. The COLLAB, ENZYMES,

IMDB-BINARY, MSRC-21C, and PROTEINS datasets [22] contain

several graphs and are labeled for graph classification use cases.

The CORA, CITESEER, PUBMED, and FLICKR datasets [4, 47] have

ground truth for node classification use cases. The synthetic graphs

are used mainly to study the different ordering solutions we pro-

vided for the ptSpar algorithm.

Metrics. We use the following metrics:

• Sparsification runtime measured in seconds,

• Sparsification ratio that represents the ratio of the number of

deleted edges over the total number of edges (see Equation 1), and

• Entropy loss to measure the information loss after the sparsifica-

tion. The graph entropy is a measure of the structural information

of a graph and serves as a complexity measure [12]. Given a

graph 𝐺 (𝑉 , 𝐸), the Shanon entropy of 𝐺 (i.e., 𝐼 (𝐺)) is computed

as follows [12]:

𝐼 (𝐺) = −
∑︁
𝑢∈𝑉

𝑑𝑒𝑔(𝑢)∑
𝑢∈𝑉 𝑑𝑒𝑔(𝑢) log

(
𝑑𝑒𝑔(𝑢)∑

𝑢∈𝑉 𝑑𝑒𝑔(𝑢)

)
(8)

The entropy loss is the normalized difference between the entropy

of the original graph and the entropy of the sparsified graph. Let𝐺

be the original graph and𝐺𝑠 be the sparsified graph, we compute

the entropy loss as follows:

𝐸𝑙𝑜𝑠𝑠 =
|𝐼 (𝐺) − 𝐼 (𝐺𝑠) |

𝐼 (𝐺) (9)

Note that the lower is the entropy loss the better is the sparsifica-

tion.

For all the experiments, TO means that the algorithm has been

timed out after a total time spent on the first terminating algorithm

plus 3 hours.

5.1 Evaluating the edge ordering methods
In this subsection, we present a comparative experimental study

of the edge orderings we considered for optimizing the ptSpar al-
gorithm. These orderings are: random ordering, centrality based

ordering and the Simulated-annealing (SA) ordering. The aim of

these experiments is to show that the performance in term of spar-

sification ratio can be improved by considering different edge order-

ings. For this experiment, we use all the datasets except the labeled

ones dedicated to classification only (indicated with a * in Table 2),

and the following sparsification parameters 𝑡 = 2 , 𝑝 (1) = 0.0 and

𝑝 (2) = 0.5. For a reliable and accurate comparison, we carried-out

around thirty tests on each dataset for each edge ordering solution.

The results of the comparison are depicted in Table 3.

Note that the user configuration of the SA is 𝑇0 = 10, 𝑁 = 1000

and 𝛼 = 0.99. We notice that the centrality and the SA orderings

outperform the random ordering of edges in terms of sparsification

performance. The results clearly show that the centrality and the SA

orderings are the best algorithms compared to the exact algorithm,

which only finished to run on the two smallest datasets and timed

out for all the remaining datasets. The centrality ordering seems

really interesting and offers the best trade-off between sparsification

performance and runtime. However, we can see that the ptSpar
algorithm with a random order of edges is much faster than with

the other orderings methods and can also be used on large datasets.

Therefore, we will be using it in the rest of the experiments.

5.2 Evaluating the impact of the sparsification
parameters 𝑝 and 𝑡

In this series of experiments, we study the effect of parameters 𝑝

and 𝑡 on the sparsification performance.

As mentioned before, our sparsification allows users to control

the trade-off between information loss and sparsification ratio (i.e.,

space gain). To do so, the user varies the parameters 𝑝 and 𝑡 accord-

ing to its needs (available memory and the targeted use case) to find

the configuration that suits him. The ideal scenario is to minimize

the information loss (entropy loss) while maximizing the sparsifica-

tion ratio. To this end, we define an utility function, which allows to

compute the above trade-off as follows:𝑇𝑟 = 𝑒
−𝐸𝑙𝑜𝑠𝑠

𝑆𝑟 . This function

allows us to select the best 𝑝 values for a fixed 𝑡 value. Once different

𝑡 values have been computed, the final 𝑡 value is chosen by ranking

based on the utility function. Table 4 gives the sparsification ratio

and entropy loss obtained by our sparsification on the CA-AstroPh

dataset, while varying the neighborhood preservation proportion 𝑝 .

4860

Table 3: Evaluation of the ptSpar algorithm with different edge orderings.

Dataset

Random Edge centrality Simulated annealing Exact

|𝐸𝑠 | Time |𝐸𝑠 | Time |𝐸𝑠 | Time |𝐸𝑠 | Time

SYNTH1 28 0.001s 23.55 0.01s 21.56 0.5s 20.15 2m10s

SYNTH2 121.6 0.008s 105.66 0.02s 105.9 5.2s 100.14 4h41m

SYNTH3 367 0.05s 323.2 0.09s 340.4 40s TO TO

CITESEER 3180 0.014s 3277 0.027s 3070 8.15s TO TO

CORA 3358 0.019s 3441 0.038s 3237 12.86s TO TO

PUBMED 28094 0.283s 28977 0.501s 25167 1m50s TO TO

BLOG 169897 4min8s 171104 5m6s TO TO TO TO

CA-CATALOG 15623 0.124s 15976 0.239s 15416 2m29s TO TO

CA-HEPTH 104249 9.257s 104785 12.46s 104785 2h39m TO TO

LIVE JOURNAL 25.95 M 2h17min 24.64 M 22h10m TO TO TO TO

FRIENDSTER 1.38 B 23h14min TO TO TO TO TO TO

FLICKR 251525 16.14s 255524 35.92s 251003 4h33m TO TO

GSH-HOST 1.17 B 21h9min TO TO TO TO TO TO

TWITTER 816.3M 18h37min TO TO TO TO TO TO

We set 𝑝 (𝑡) = 1 in all experiments, which means that the whole ini-

tial neighborhood of each node can be retrieved in a neighborhood

of radius 𝑟 = 𝑡 at maximum. This ensures that reachability queries

are fully preserved for all vertices. As expected, the sparsification

ratio decreases (and the entropy loss increases) as the preserved

proportion of neighborhood increases and vice-versa. Some of the

values of the sparsification ratio obtained with the various com-

binations of parameters are very satisfactory. The same holds for

the entropy loss (max value < 5%). In addition, we remark that the

sparsification ratio range is wide (from 7% to 75%) which confirms

the possibility of effectively controlling the trade-off information

loss/sparsification ratio using parameters 𝑝 and 𝑡 . The choice of

the best configuration of parameters depends essentially on the

nature of the graph to be sparsified and the user needs. Particu-

larly, for this example, the configurations (𝑡 = 2, 𝑝 = (0.5, 1)) and
(𝑡 = 3, 𝑝 = (0.5, 0.7, 1)) seem interesting and are a good trade-off

between sparsification ratio and entropy loss with a sparsification

ratio > 45% and an entropy loss < 1%.

5.3 Evaluation the distribution of the shortest
path lengths with (𝑝, 𝑡)-Sparsification

In this experiment, we show that (𝑝, 𝑡)-sparsification allows to

approximate distances (shortest path lengths) between nodes. To

do so, we sparsify three unweighted undirected graphs with the

following combination of parameters 𝑡 = 2, 𝑝 (1) = 0.5, and 𝑝 (2) =
1.0. Then, we compute all shortest paths between all nodes.

Figure 3 shows the distribution of the shortest path lengths in

the original and sparsified graphs for the three datasets. We note

that the two curves have almost the same pace. This shows that our

sparsification preserves the distribution of the lengths of the short-

est paths on the 3 datasets. However, the curves of the sparsified

graphs are slightly stretched and shifted from the original curves.

This is due to the stretching of the paths as a result of sparsification.

This stretch is not really considerable because of the preservation

of 50% of the direct neighbors of each vertex in the graph.

It is important to note here that we cannot draw a similar distri-

bution for the shortest paths of other baseline methods, as they

do not preserve the connectivity of the graph. However, we have

evaluated the increase in the length of the shortest paths and the

loss of reachability queries for these methods in Section 5.5.

5.4 Evaluating the information loss
In this series of experiments, we focus on evaluating the quality

of the obtained sparsified graphs by measuring the loss of entropy

for each method. Table 5 gives the information loss rates measured

by the loss in entropy for all the sparsification methods on all

datasets. For a rigorous comparison, we have selected datasets that

have different densities and contain hundreds of graphs. It’s worth

noting that SparRL, which is a deep reinforcement learning-based

method, was not applied in this context due to two main reasons:

(1) It is computationally intensive and requires individual training

for each graph. This is inefficient for datasets containing hundreds

of graphs. (2) It has a reward function with a limited scope that

does not consider entropy – a key factor in this case.

We can observe that none of the baselines excels on all datasets.

However, on average (p,t)-sparsification outperforms all the base-

lines. The reasons for that are due to compressibility properties

of networks [32], such as transitivity and degree heterogeneity,

that are leveraged by our sparsification technique. Graphs with

higher transitivity and degree heterogeneity are generally more

compressible. This explains why the results are favorable for our

sparsification method compared to baselines that do not affect those

properties. The (𝑝, 𝑡)-sparsification method proves to be effective

and high-quality across multiple datasets, including large-scale

ones. Indeed, it shows, on average, the least entropy loss compared

to the baselines. This indicates that the (𝑝, 𝑡)-sparsification method

is capable of preserving most of the graph’s original information,

proving it to be the best choice for various use cases.

5.5 Evaluating the usefulness of the sparsified
graphs

We have applied many graph algorithms on the sparsified graphs.

Our first motivation is to be able to use these algorithms directly

on the sparsified graphs with acceptable performance So, the pur-

pose of the following experiments is to show the effectiveness of

our sparsification in terms of handling large graphs and providing

good approximations of the original results of the considered tasks.

For this, and for all the following experiments, we compute a new

4861

Table 4: Sparsification ratio vs entropy loss with different combinations of parameters 𝑝 and 𝑡 .

CA-ASTROPH PUBMED FLICKER

𝑡 𝑝 (1) 𝑝 (2) 𝑝 (3) Sr 𝐸𝑙𝑜𝑠𝑠 Tr Sr 𝐸𝑙𝑜𝑠𝑠 Tr Sr 𝐸𝑙𝑜𝑠𝑠 Tr

2

0.2 1.0 - 58.13% 1.71% 0.971 11% 0.73% 0.935 5.3% 0.23% 0.958
0.5 1.0 - 45.82% 0.90% 0.980 10.0% 0.70% 0.935 5.2% 0.25% 0.953

0.7 1.0 - 26.39% 0.66% 0.975 8.2% 0.70% 0.918 4.5% 0.23% 0.950

0.9 1.0 - 7.43% 0.31% 0.959 2.2% 0.26% 0.888 1.4% 0.17% 0.885

3

0.0 0.2 1.0 75.00% 4.61% 0.940 29.0% 1.70% 0.943 30.2% 1.64% 0.947
0.2 0.5 1.0 71.50% 2.57% 0.964 27.9% 1.68% 0.941 25.7% 1.44% 0.945

0.5 0.7 1.0 46.73% 0.85% 0.981 19.5% 1.15% 0.942 19.1% 1.05% 0.946

0.7 0.9 1.0 26.43% 0.66% 0.975 9.3% 0.85% 0.913 6.5% 0.47% 0.930

0.0

0.1

0.2

0.3

2.5 10.0 12.55.0 7.5
Shortest path length

F
re

q
u

e
n

c
y

Sparsified Graph Original Graph

(a) CA-ASTROPH dataset

0.0

0.2

0.4

0.6

1 42 3
Shortest path length

F
re

q
u

e
n

c
y

Sparsified Graph Original Graph

(d) BLOG-CATALOG dataset

0.00

0.05

0.10

0.15

0.20

5 10
Shortest path length

F
re

q
u

e
n

c
y

Sparsified Graph Original Graph

(c) CA-HEPTH dataset

Figure 3: Distribution of shortest path lengths of the original and sparsified graphs.

Table 5: Effect of the sparsification on the entropy loss

Dataset ptSpar SLB AD LS QSB SB EFF LD RE

COLLAB 1.00% 20.80% 11.80% 7.70% 2.90% 1.70% 7.40% 21.30% 6.80%

IMDB-BINARY 1.50% 22.70% 3.70% 6.40% 1.20% 1.10% 6.60% 19.40% 5.90%

MSRC_21C 0.60% 4.40% 1.50% 0.60% 1.70% 1.80% 2.90% 6.40% 2.70%

PROTEINS 1.50% 4.10% 4.90% 1.30% 5.30% 4.40% 3.80% 4.80% 2.50%

PUBMED 0.71% 0.29% 0.52% 0.07% 0.60% 0.63% 0.78% 0.57% 0.88%

CITESEER 0.65% 0.77% 0.27% 0.17% 1.00% 1.08% 1.87% 0.56% 1.50%

CA-HEPTH 0.62% 4.28% 1.43% 0.63% 1.75% 1.77% 3.07% 6.57% 2.66%

CORA 0.40% 0.51% 0.14% 0.21% 1.12% 1.18% 1.48% 1.30% 1.58%

FLICKR 0.26% 0.48% 0.07% 0.24% 0.07% 0.07% 0.47% 0.44% 0.72%

LIVE JOURNAL 0.78% OT 2.70% 1.09% 0.31% 0.64% 2.48% 0.46% 1.73%

CA-ASTROPH 0.90% 0.94% 2.89% 1.56% 0.75% 0.98% 3.15% 2.84% 1.85%

BLOG-CATALOG 1.67% TO 0.10% 1.28% 1.60% 4.45% 3.76% 6.74% 7.26%

ENZYMES 1.58% 21.80% 4.00% 6.70% 1.50% 1.45% 8.30% 17.93% 5.87%

FRIENDSTER 0.71% TO 0.62% 0.48% 0.60% 0.63% 0.78% 1.26% 0.68%

GSH-HOST 0.69% TO 0.78% 0.61% 0.84% 0.92% 0.99% 1.13% 0.79%

TWITTER 1.13% TO 0.90% 0.83% 0.87% 1.1% 1.37% 1.85% 1.65%

Average 0.91% - 2.48% 1.95% 1.56% 1.57% 3.11% 5.68% 2.9%

metric in addition to the sparsification ratio namely:

Performance Preservation: This metric measures the degree

to which the performance of the considered task on the sparsi-

fied graph approaches the one obtained on the original graph. In

contexts like classification, it gauges the relative preservation of

accuracy from the original graph to its sparsified counterpart. It

is computed as the ratio between the accuracy on the sparsified

graph and the accuracy on the original graph. A higher value of this

metric signifies that the sparsified graph has effectively retained,

or closely approximated, the properties of the original graph.

For the graph kernel task, we also observed a speed-up of the algo-

rithm.Wemeasure this by the ratio between the algorithm run-time

on the original graph and its run-time on the sparsified graph. The

higher the speed-up factor, the faster the graph kernel algorithm

on the sparsified graph. For the remaining tasks, the speed-up is

always equal to 1.

Shortest Paths and Reachability Queries: To assess the impact

of sparsification on shortest paths, we calculated twometrics: (1) the

average increase in shortest path length between 10,000 randomly

selected node pairs. A lower value indicates that the sparsification

method more effectively preserves the original graph’s shortest

path lengths. (2) the failure rate, which represents the percentage

of node pairs that became disconnected (i.e., unreachable from each

other) in the sparsified graph. This metric reflects the success rate

of reachability queries in the sparsified graph, with lower values

indicating better performance.

The results are presented in Table 6. For each baseline, the first

given value shows the average increase in shortest path lengths,

4862

while the value in parentheses represents the failure rate of reacha-

bility queries. We can clearly observe that the (𝑝, 𝑡)-sparsification
technique demonstrates consistent and effective performance across

all datasets, including large-scale ones. Indeed, it shows, on average,

the best result in terms of preserving the shortest paths between

randomly chosen pairs of nodes, thus maintaining the structural

integrity of the original graphs to a great extent. Furthermore, it

achieves a zero percent failure rate on all datasets, which shows

that the sparsified graphs generated using (𝑝, 𝑡)-sparsification are

highly connected, preserving the reachability between nodes ef-

fectively. The LD method also performs competitively on shortest

path preservation but fails to maintain the connectivity of the

obtained sparsified graphs leading to a high failure rates in reach-

ability queries. The SLB method, which has the lowest increase

on shortest paths for small datasets, does not scale on large ones.

The other baselines exhibit a higher increase in path length and a

higher failure rate across most datasets, implying a greater degree

of distortion in the sparsified graphs.

Graph kernels: Graph kernels predominantly rely on local neigh-

borhood information of nodes. Such methods derive graph repre-

sentations by delving deep into node neighborhoods and extract-

ing pertinent features, encompassing walks, shortest paths, and

other local substructures. Given that our (𝑝, 𝑡)-sparsification metic-

ulously retains the local neighborhood up to a radius 𝑡 , a pertinent

question arises: can graph kernels algorithms accelerate on sparsi-

fied graphs without significant compromise on performance? To

answer this inquiry, we run a graph classification task on graph

classification datasets, namely COLLAB, IMDB-BINARY, MSRC-

21C, and PROTEINS. Here, we set 𝑡 = 3, 𝑝 (1) = 0.0 , 𝑝 (2) = 0.5 and

𝑝 (3) = 1.0. On these sparsified datasets, we executed various graph

embedding algorithms, including the Shortest Path graph kernel

(SP) [9], Weisfeiler-Lehman Optimal Assignment WL-OA graph

kernel [26, 40], The Neighborhood Hash NH graph kernel [21]

and deep Renyi entropy graph kernel (REK) [45]. We gauged the

efficacy of these algorithms on both input graph and sparsified

graphs. We used the SVM algorithm as a classifier, with a 10-fold

cross-validation, serving as our performance metric. For the sake of

fairness, all baseline methods maintained an identical sparsification

ratio. The SparRL method was omitted from this evaluation due to

its innate latency and the requisite training for each graph, proving

inefficient given the multiplicity of graphs in our datasets.

Table 7 shows the performance of graph kernels on the sparsified

graphs. We notice that all kernels run faster on sparsified graphs in

most cases. This Kernel computation speed-up is more noticeable

on denser datasets such as COLLAB. Since the sparsified graphs

produced by all methods are of the same size (same sparsification

ratio for fair comparison), the speed up factors are the same for

all methods. However, the performance preservation of graph ker-

nel methods on sparsified graphs provides pivotal insights into

the robustness and efficacy of different sparsification approaches,

particularly emphasizing our (𝑝, 𝑡)-sparsification method. Across a

diverse range of datasets, our method’s performance, in many in-

stances, either leads the cohort or remains competitively in line with

the best-performing methods. For example, in the COLLAB dataset

with the Shortest Path (SP) graph kernel, our method reaches a

performance preservation of 100%, a performance matched only by

SLB and LD, while outperforming other benchmarks such as SB,

EFF, and LS. This level of consistency in preserving the integrity of

the original graph structure continues across various kernels like

WL, NH, and REK. What is particularly notable is the general out-

performance of our method when contrasted against SB in datasets

like MSRC_21C using the REK kernel, where our method achieves

a perfect score of 100% versus SB’s 20%. Yet, our method proves its

mettle even in situations where it doesn’t lead but exhibits compa-

rable performance, such as in the case of the WL kernel in the same

dataset. While LD achieved the top score of 92%, our method’s 88%

was closely aligned, demonstrating its competitiveness. However,

it’s worth noting that while our method isn’t always the definitive

leader across all datasets and kernels, it consistently ranks among

the top contenders, rarely deviating far from the highest scores.

The associated speed-up rates also underscore the computational

advantages of our sparsification approach. To sum up, the (𝑝, 𝑡)-
sparsification method we propose serves as a powerful tool, often

leading in performance preservation and, when not, still staying

well ranked within the top performing methods across a wide range

of datasets and graph kernels.

Node embedding: In this series of experiments, we use sparsified

graphs to compute node embedding. Then, to see if the obtained

embeddings are as relevant as the ones computed on the full graph,

we evaluate their efficacy in two tasks: node classification andmulti-

label classification. We leveraged two predominant algorithms for

this endeavor: the Graph Attention Network (GAT) [43] for node

classification, and Node2vec [18] for multi-label classification. The

experiments are conducted on graphs with distinct sparsification

ratios: 45% for the multi-label task and 20% for the graph classifica-

tion task. It’s worth noting that, for multi-label classification on the

Flickr-large dataset, we have not included the results of the Salient

Backbone (SLB) method because it failed to sparsify this large graph

within the time limit of 24 hours. Additionally, the SparRL method

is not present in evaluations for both tasks because it is not possible

to express classification within its objective function.

Table 8 presents the outcomes of the different sparsification meth-

ods. Across all datasets, we can see that (𝑝, 𝑡)sparsification consis-

tently excelled. On datasets such as ’PROTEINS’, (𝑝, 𝑡)sparsification
achieves an almost impeccable accuracy preservation rate of 99.68%.

Similarly, in the ’Cora’ and ’Flickr’ datasets, it achieves the impres-

sive rates of 96.97% and 99.16%. These figures attest to the tech-

nique’s proficiency in preserving critical graph structures essential

for GAT. LD and LS also delivered interesting outcomes in cer-

tain datasets but QSB and SB reported suboptimal results, further

underscoring the significance of (𝑝, 𝑡)-sparsification’s results.
Table 9 presents the results of multi-label node classification

using node2vec embedding on the sparsified graphs. We can clearly

see the out-performance of (𝑝, 𝑡)-Sparsification. In the Blog Cata-

log dataset, (𝑝, 𝑡)-Sparsification achieves 93.03% for Micro F1 and

90.75% for Macro F1 metrics. Its excellent performance is further un-

derscored in the Flickr dataset, with a perfect 100% in both metrics.

This clearly shows the robustness of (𝑝, 𝑡)-Sparsification in retain-

ing crucial graph properties vital for node2vec.The other methods

have much less effective results.

4863

Table 6: Performance on shortest paths and reachability queries.

Dataset AD LS QSB SB EFF LD RD ptSpar SLB

CORA 14.1% (55.6%) 46.3% (19.6%) 15.1% (41.4%) 15.9% (41.1%) 8.0% (22.8%) 7.0% (2.7%) 14.1% (18.1%) 2.7% (0.0%) 2.3% (4.1%)

CITESEER 2.4% (92.8%) 44.5% (51.2%) 15.1% (46.9%) 12.4% (46.0%) 1.6% (22.0%) 13.9% (20.0%) 12.0% (28.9%) 1.7% (0.0%) 1.5% (5.9%)

PUBMED 19.6% (61.0%) 23.5% (5.0%) 7.8% (39.6%) 7.3% (39.9%) 5.5% (41.7%) 4.7% (0.4%) 8.3% (25.6%) 2.2% (0.0%) 1.3% (5.2%)

FLICKR 4.7% (36.0%) 6.3% (0.0%) 9.2% (0.3%) 9.0% (0.3%) 19.3% (6.0%) 4.4% (0.0%) 10.7% (0.0%) 2.8% (0.0%) 1.9% (0.5%)

CA-HEPTH 13.8% (51.6%) 44.9% (19.0%) 15.7% (43.1%) 16.0% (42.3%) 8.2% (21.7%) 7.6% (3.1%) 15.6% (29.1%) 2.6% (0.0%) 2.6% (5.0%)

LIVEJOURNAL 46.56% (54.94%) 22.99% (2.56%) 39.77% (52.43%) 41.97% (52.35%) 17.52% (4.69%) 4.94% (4.86%) 10.24% (17.87%) 6.8% (0.0%) TO

CA-ASTROPH 14.67% (69.85%) 46.52% (11.345%) 52.9% (50.68%) 52.7% (52.78%) 20.62% (3.16%) 8.77% (6.1%) 15.25% (13.23%) 15.09% (0.0%) 21% (15.3%)

BLOG-CATALOG 44.52% (11.41%) 25.97% (0.0%) 44.03% (33.25%) 36.31% (60.78%) 27.21% (6.97%) 7.34% (5.4%) 13.30% (8.54%) 11.14% (0.0%) TO

FRIENDSTER 2.2% (0.5%) 1.25% (0.8%) 1.65% (0.83%) 1.74% (1.76%) 1.95% (0.72%) 1.43% (0.63%) 4.6% (0.92%) 1.2% (0.0%) TO

GSH-HOST 1.42% (0.05%) 1.35% (0.25%) 1.67% (0.80%) 1.80% (1.70%) 2.2% (1.65%) 0.90% (0.90%) 1.65% (0.85%) 1.25% (0.0%) TO

TWITTER 3.15%(0.1%) 2.78%(0.48%) 2.95%(2.1%) 2.64%(3.4%) 1.95%(1.2%) 3.2%(0.68%) 4.28%(0.75%) 2.24%(0.0%) TO

Average 15.19% (39.44%) 24.21% (10.02%) 18.72 (28.31%) 17.98% (31.12%) 10.37% (12.05%) 5.83% (4.07%) 10.00%(13.08%) 4.52% (0.00%) -

Table 7: Graph kernel performance on the sparsified graphs.

Dataset

Sr
Kernel Speed up

Performance Preservation

EFF LD LS ptSpar SB SLB

COLLAB

91.4%

SP 2.75 97% 100% 90% 100% 95% 100%
WL 1.23 86% 92% 87% 88% 88% 85%

NH 1.54 83% 88% 84% 87% 84% 83%

REK 1.86 83% 78% 86% 88% 87% 65%

IMDB-

BINARY

72.2%

SP 1.14 96% 100% 81% 100% 93% 99%

WL 1 93% 96% 90% 95% 89% 89%

NH 1.11 91% 92% 83% 94% 89% 87%

REK 1.46 91% 81% 93% 95% 97% 68%

MSRC_21C

46.8%

SP 1.04 97% 97% 89% 100% 89% 99%

WL 1.24 98% 100% 93% 100% 95% 24%

NH 1.34 97% 95% 91% 100% 94% 24%

REK 1.15 95% 96% 99% 100% 99% 20%

PROTEINS

36.1%

SP 1.39 98% 100% 92% 100% 96% 100%
WL 1.2 96% 96% 89% 97% 95% 94%

NH 1.12 98% 99% 94% 99% 98% 95%

REK 1.86 97% 96% 99% 99% 97% 80%

Table 8: Performance of Node classification on sparsified
graphs.

Method CORA CITESEER PUBMED FLICKR

AD 90.47% 87.07% 89.32% 92.15%

EFF 71.17% 55.51% 81.87% 99.01%

LD 96.80% 96.75% 99.65% 99.58%

LS 94.81% 96.26% 97.94% 97.42%

ptSpar 96.97% 94.53% 99.68% 99.16%
QSB 46.66% 36.90% 52.59% 93.08%

RE 90.47% 85.10% 88.31% 94.02%

SB 47.27% 37.34% 53.76% 93.56%

SLB 87.3% 78.40% 88.83% 92.72%

6 CONCLUSION AND FUTUREWORK
In this paper, we presented a graph sparsification approach designed

to produce a graph skeleton that can be used instead of the original

large graph as input in many graph analysis algorithms. To do so,

our sparsification controls the amount of neighborhood information

preserved in the resulting sparsified graph with two parameters: a

function 𝑝 that gives the proportion of each node’s original neigh-

bors to be preserved in its 𝑖-hops neighborhood in the sparsified

graph, and a threshold 𝑡 for which 𝑝 reaches its maximal value. We

also presented several algorithms to compute this sparsification

with the minimum cost, and showed their effectiveness in sparsify-

ing input graphs through an extensive experimental evaluation on

Table 9: Performance of multi-label node classification on
sparsified graphs.

Method

BLOG-CATALOG FLICKR-LARGE

Micro F1 % Macro F1 % Micro F1 % Macro F1 %

AD 35.84 % 15.23 % 43.11 % 28.6 %

EFF 36.48 % 16.61 % 44.01 % 29.6%

LD 37.74 % 14.56 % 44.22 % 28.2%

LS 35.46 % 16.69 % 44.43 % 29.6 %

ptSpar 93.03 % 90.75 % 100% 100%
QSB 36.54 % 14.31 % 45.86 % 31.5 %

RE 35.37 % 13.05% 44.70 % 45%

SB 38.35 % 14.35 % 44.49% 24.9%

multiple real-life as well as synthetic graph datasets. Furthermore,

we showed that the skeletons computed by the proposed approach

can be used without any addition or de-sparsification as input to

multiple graph applications, such as node embedding, graph classi-

fication, and shortest path approximations.As for future work, we

consider a more thorough analysis of (𝑝, 𝑡)-sparsification impact

on walk based graph learning algorithms such as Node2vec and

DeepWalk. In fact, we observed some situations where the learning

accuracy increased when the graph was sparsified. This was a quite

unexpected observation. While we guess that walks are biased in

the right direction by removing edges, characterizing such edges

remains an open question. Another important open question is to

find an efficient method to order graph edges. This would allow us

to significantly improve the time complexity of the approach. In

addition, we aim to design an incremental version of our sparsifica-

tion to deal with dynamic graphs or graph streams.

We note also that our approach can be used on both directed and

undirected graphs. However, our sparsification does not consider

the labels of the edges. To sparsify or compress edge-labeled graphs,

a new model need to be defined so as to take into account these

labels for example when defining the edge ordering.

ACKNOWLEDGMENTS
This work was supported by Agence Nationale de la Rechetche

(ANR) under grant number ANR-20-CE23-0002. The authors thank

Walid Megherbi for his help.

4864

REFERENCES
[1] 2010. Twitter 2010 dataset. https://snap.stanford.edu/data/twitter-2010.html

Accessed: 2024-10-26.

[2] 2015. Gsh host dataset. http://law.di.unimi.it/webdata/gsh-2015-host Accessed:

2024-10-26.

[3] András A. Benczúr and David R. Karger. 1996. Approximating s-t Minimum Cuts

in𝑂 (𝑛2) Time. In Proceedings of the Twenty-Eighth Annual ACM Symposium on
Theory of Computing (Philadelphia, Pennsylvania, USA) (STOC ’96). Association
for Computing Machinery, New York, NY, USA, 47–55. https://doi.org/10.1145/

237814.237827

[4] Aleksandar Bojchevski and Stephan Günnemann. 2017. Deep gaussian embed-

ding of graphs: Unsupervised inductive learning via ranking. arXiv preprint
arXiv:1707.03815 (2017).

[5] P. Boldi and S. Vigna. 2004. The Webgraph Framework I: Compression Tech-

niques. In Proceedings of the 13th International Conference on World Wide Web
(New York, NY, USA) (WWW ’04). Association for Computing Machinery, New

York, NY, USA, 595–602. https://doi.org/10.1145/988672.988752

[6] Francesco Bonchi, Gianmarco De Francisci Morales, Aristides Gionis, and Antti

Ukkonen. 2013. Activity preserving graph simplification. Data Mining and
Knowledge Discovery 27, 3 (Nov. 2013), 321–343. https://doi.org/10.1007/s10618-

013-0328-8

[7] Angela Bonifati, Stefania Dumbrava, and Haridimos Kondylakis. 2020. Graph

Summarization. CoRR abs/2004.14794 (2020). arXiv:2004.14794 https://arxiv.org/

abs/2004.14794

[8] Angela Bonifati, Stefania Dumbrava, Haridimos Kondylakis, Georgia Troullinou,

and Giannis Vassiliou. 2025. Progressive Querying on Knowledge Graphs. In

Proceedings 28th International Conference on Extending Database Technology,
EDBT 2025, Barcelona, Spain, March 25-28, 2025. 106–118.

[9] Karsten M Borgwardt and Hans-Peter Kriegel. 2005. Shortest-path kernels on

graphs. In Fifth IEEE international conference on data mining (ICDM’05) (ICDM
’05). IEEE, 8–pp.

[10] Jie Chen and Ilya Safro. 2011. Algebraic distance on graphs. SIAM Journal on
Scientific Computing 33, 6 (2011), 3468–3490.

[11] Michele Coscia and Frank MH Neffke. 2017. Network backboning with noisy

data. In 2017 IEEE 33rd International Conference on Data Engineering (ICDE). IEEE,
425–436.

[12] Matthias Dehmer and Abbe Mowshowitz. 2011. A history of graph entropy

measures. Information Sciences 181, 1 (2011), 57–78.
[13] Stefania Dumbrava, Angela Bonifati, Amaia Nazabal Ruiz Diaz, and Romain

Vuillemot. 2019. Approximate Querying on Property Graphs. In Scalable Uncer-
tainty Management, Nahla Ben Amor, Benjamin Quost, and Martin Theobald

(Eds.). Springer International Publishing, Cham, 250–265.

[14] David Durfee, John Peebles, Richard Peng, and B.Rao Anup. 2020. Determinant-

Preserving Sparsification of SDDM Matrices. SIAM J. Comput. 49, 4 (2020),

FOCS17–350–FOCS17–408. https://doi.org/10.1137/18M1165979

[15] Wenfei Fan, Yuanhao Li, Muyang Liu, and Can Lu. 2021. Making Graphs Compact

by Lossless Contraction. In Proceedings of the 2021 International Conference
on Management of Data (Virtual Event, China) (SIGMOD ’21). Association for

Computing Machinery, New York, NY, USA, 472–484. https://doi.org/10.1145/

3448016.3452797

[16] Daniel Grady, Christian Thiemann, and Dirk Brockmann. 2012. Robust classifi-

cation of salient links in complex networks. Nature communications 3, 1 (2012),
1–10.

[17] Steve Gregory. 2008. A Fast Algorithm to Find Overlapping Communities in

Networks. In Machine Learning and Knowledge Discovery in Databases, Walter

Daelemans, Bart Goethals, and Katharina Morik (Eds.). Springer Berlin Heidel-

berg, Berlin, Heidelberg, 408–423.

[18] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for

networks. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining (KDD ’16). 855–864.

[19] David S. Gunderson. 2014. Handbook of Mathematical Induction: Theory and
Applications. CRC Press.

[20] Michael Hamann, Gerd Lindner, Henning Meyerhenke, Christian L Staudt, and

Dorothea Wagner. 2016. Structure-preserving sparsification methods for social

networks. Social Network Analysis and Mining 6 (2016), 1–22.

[21] Shohei Hido and Hisashi Kashima. 2009. A linear-time graph kernel. In 2009
Ninth IEEE International Conference on Data Mining (ICDM ’09). IEEE, 179–188.

[22] Kristian Kersting, Nils M. Kriege, Christopher Morris, Petra Mutzel, and Marion

Neumann. 2016. Benchmark Data Sets for Graph Kernels. http://graphkernels.

cs.tu-dortmund.de Accessed: 2024-10-26.

[23] Dong-Hee Kim, Jae Dong Noh, and Hawoong Jeong. 2004. Scale-free trees: The

skeletons of complex networks. Physical Review E 70, 4 (2004), 046126.

[24] Abd Errahmane Kiouche, Julien Baste, Mohammed Haddad, Hamida Seba, and

Angela Bonifati. 2024. http://gitlab.liris.cnrs.fr/coregraphie/ptspar/-/blob/main/

Supplementary_material.pdf. Accessed: 2024-10-26.

[25] Danai Koutra, U Kang, Jilles Vreeken, and Christos Faloutsos. 2015. Summarizing

and understanding large graphs. Statistical Analysis and Data Mining: The ASA

Data Science Journal 8, 3 (2015), 183–202. https://doi.org/10.1002/sam.11267

arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/sam.11267

[26] Nils M Kriege, Pierre-Louis Giscard, and Richard Wilson. 2016. On valid optimal

assignment kernels and applications to graph classification. Advances in neural
information processing systems 29 (2016).

[27] Sofiane Lagraa, Hamida Seba, Riadh Khennoufa, Abir MBaya, and Hamamache

Kheddouci. 2014. A distance measure for large graphs based on prime graphs.

Pattern Recognition 47, 9 (2014), 2993–3005. https://doi.org/10.1016/j.patcog.

2014.03.014

[28] Jure Leskovec and Christos Faloutsos. 2006. Sampling from large graphs. In

Proceedings of the 12th ACM SIGKDD international conference on Knowledge
discovery and data mining (KDD ’06). 631–636.

[29] Yuzhi Liang, Chen chen, Yukun Wang, Kai Lei, Min Yang, and Ziyu Lyu. 2020.

Reachability preserving compression for dynamic graph. Information Sciences
520 (2020), 232–249. https://doi.org/10.1016/j.ins.2020.02.028

[30] Y. Liu, T. Safavi, A. Dighe, and D. Koutra. 2018. Graph Summarization Methods

and Applications: A Survey. ACM Comput. Surv. 51, 3, Article 62 (June 2018),
34 pages. https://doi.org/10.1145/3186727

[31] Yike Liu, Tara Safavi, Abhilash Dighe, and Danai Koutra. 2018. Graph summa-

rization methods and applications: A survey. ACM computing surveys (CSUR) 51,
3 (2018), 1–34.

[32] Christopher W. Lynn and Danielle S. Bassett. 2021. Quantifying the com-

pressibility of complex networks. Proceedings of the National Academy of Sci-
ences 118, 32 (2021), e2023473118. https://doi.org/10.1073/pnas.2023473118

arXiv:https://www.pnas.org/doi/pdf/10.1073/pnas.2023473118

[33] Michael Mathioudakis, Francesco Bonchi, Carlos Castillo, Aristides Gionis, and

Antti Ukkonen. 2011. Sparsification of Influence Networks. In Proceedings of the
17th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (San Diego, California, USA) (KDD ’11). Association for Computing Ma-

chinery, New York, NY, USA, 529–537. https://doi.org/10.1145/2020408.2020492

[34] Bobo Nick, Conrad Lee, Pádraig Cunningham, and Ulrik Brandes. 2013. Sim-

melian backbones: Amplifying hidden homophily in facebook networks. In

Proceedings of the 2013 IEEE/ACM international conference on advances in social
networks analysis and mining. 525–532.

[35] Arlind Nocaj, Mark Ortmann, and Ulrik Brandes. 2014. Untangling hairballs:

From 3 to 14 degrees of separation. In International symposium on graph drawing.
Springer, 101–112.

[36] L. Paul Chew. 1989. There are planar graphs almost as good as the complete

graph. J. Comput. System Sci. 39, 2 (1989), 205–219. https://doi.org/10.1016/0022-

0000(89)90044-5

[37] David Peleg and Alejandro A. Schäffer. 1989. Graph spanners. Journal of
Graph Theory 13, 1 (1989), 99–116. https://doi.org/10.1002/jgt.3190130114

arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/jgt.3190130114

[38] Sherif Sakr, Angela Bonifati, Hannes Voigt, Alexandru Iosup, Khaled Ammar,

Renzo Angles, Walid G. Aref, Marcelo Arenas, Maciej Besta, Peter A. Boncz,

Khuzaima Daudjee, Emanuele Della Valle, Stefania Dumbrava, Olaf Hartig, Bern-

hard Haslhofer, Tim Hegeman, Jan Hidders, Katja Hose, Adriana Iamnitchi,

Vasiliki Kalavri, Hugo Kapp, Wim Martens, M. Tamer Özsu, Eric Peukert, Stefan

Plantikow, Mohamed Ragab, Matei Ripeanu, Semih Salihoglu, Christian Schulz,

Petra Selmer, Juan F. Sequeda, Joshua Shinavier, Gábor Szárnyas, Riccardo Tom-

masini, Antonino Tumeo, Alexandru Uta, Ana Lucia Varbanescu, Hsiang-Yun

Wu, Nikolay Yakovets, Da Yan, and Eiko Yoneki. 2021. The future is big graphs:

a community view on graph processing systems. Commun. ACM 64, 9 (2021),

62–71. https://doi.org/10.1145/3434642

[39] Venu Satuluri, Srinivasan Parthasarathy, and Yiye Ruan. 2011. Local graph

sparsification for scalable clustering. In Proceedings of the 2011 ACM SIGMOD
International Conference on Management of data (KDD ’11). 721–732.

[40] Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn,

and Karsten M Borgwardt. 2011. Weisfeiler-lehman graph kernels. Journal of
Machine Learning Research 12, 9 (2011).

[41] Daniel A. Spielman and Shang-Hua Teng. 2011. Spectral Sparsification of Graphs.

SIAM J. Comput. 40, 4 (2011), 981–1025. https://doi.org/10.1137/08074489X

[42] Peter J. M. van Laarhoven and Emile H. L. Aarts. 1987. Simulated annealing.
Springer Netherlands, Dordrecht, 7–15. https://doi.org/10.1007/978-94-015-

7744-1_2

[43] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Lio, Yoshua Bengio, et al. 2017. Graph attention networks. stat 1050, 20 (2017),
10–48550.

[44] Ryan Wickman, Xiaofei Zhang, and Weizi Li. 2022. A Generic Graph Sparsifi-

cation Framework using Deep Reinforcement Learning. In 2022 IEEE Interna-
tional Conference on Data Mining (ICDM). 1221–1226. https://doi.org/10.1109/

ICDM54844.2022.00158

[45] Lixiang Xu, Lu Bai, Xiaoyi Jiang, Ming Tan, Daoqiang Zhang, and Bin Luo. 2021.

Deep Rényi entropy graph kernel. Pattern Recognition 111 (2021), 107668.

[46] Jaewon Yang and Jure Leskovec. 2015. Defining and evaluating network commu-

nities based on ground-truth. Knowledge and Information Systems 42, 1 (01 Jan
2015), 181–213. https://doi.org/10.1007/s10115-013-0693-z

4865

https://snap.stanford.edu/data/twitter-2010.html
http://law.di.unimi.it/webdata/gsh-2015-host
https://doi.org/10.1145/237814.237827
https://doi.org/10.1145/237814.237827
https://doi.org/10.1145/988672.988752
https://doi.org/10.1007/s10618-013-0328-8
https://doi.org/10.1007/s10618-013-0328-8
https://arxiv.org/abs/2004.14794
https://arxiv.org/abs/2004.14794
https://doi.org/10.1137/18M1165979
https://doi.org/10.1145/3448016.3452797
https://doi.org/10.1145/3448016.3452797
http://graphkernels.cs.tu-dortmund.de
http://graphkernels.cs.tu-dortmund.de
http://gitlab.liris.cnrs.fr/coregraphie/ptspar/-/blob/main/Supplementary_material.pdf
http://gitlab.liris.cnrs.fr/coregraphie/ptspar/-/blob/main/Supplementary_material.pdf
https://doi.org/10.1002/sam.11267
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/sam.11267
https://doi.org/10.1016/j.patcog.2014.03.014
https://doi.org/10.1016/j.patcog.2014.03.014
https://doi.org/10.1016/j.ins.2020.02.028
https://doi.org/10.1145/3186727
https://doi.org/10.1073/pnas.2023473118
https://arxiv.org/abs/https://www.pnas.org/doi/pdf/10.1073/pnas.2023473118
https://doi.org/10.1145/2020408.2020492
https://doi.org/10.1016/0022-0000(89)90044-5
https://doi.org/10.1016/0022-0000(89)90044-5
https://doi.org/10.1002/jgt.3190130114
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/jgt.3190130114
https://doi.org/10.1145/3434642
https://doi.org/10.1137/08074489X
https://doi.org/10.1007/978-94-015-7744-1_2
https://doi.org/10.1007/978-94-015-7744-1_2
https://doi.org/10.1109/ICDM54844.2022.00158
https://doi.org/10.1109/ICDM54844.2022.00158
https://doi.org/10.1007/s10115-013-0693-z

[47] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor

Prasanna. 2019. Graphsaint: Graph sampling based inductive learning method.

arXiv preprint arXiv:1907.04931 (2019).

[48] Ronda J Zhang, H Eugene Stanley, and Fred Y Ye. 2018. Extracting h-backbone

as a core structure in weighted networks. Scientific reports 8, 1 (2018), 1–7.

4866

	Abstract
	1 Introduction
	2 PRELIMINARIES AND RELATED WORK
	2.1 Preliminary
	2.2 Related Work

	3 A Neighborhood-preserving graph sparsification
	4 Computing (p,t)-sparsifiers
	4.1 Exact Algorithm
	4.2 Approximation Algorithm: ptSpar
	4.3 Complexity analysis

	5 Experimental Analysis
	5.1 Evaluating the edge ordering methods
	5.2 Evaluating the impact of the sparsification parameters p and t
	5.3 Evaluation the distribution of the shortest path lengths with (p,t)-Sparsification
	5.4 Evaluating the information loss
	5.5 Evaluating the usefulness of the sparsified graphs

	6 Conclusion and future work
	Acknowledgments
	References

