
	 1	

Opportunistic Keying as a Countermeasure to Pervasive Monitoring

Stephen Kent
BBN Technologies

Abstract

This document was prepared as part of the IETF response to concerns
about “pervasive monitoring” (PM) [Farrell-pm]. It begins by
exploring terminology that has been used in IETF standards (and in
academic publications) to describe encryption and key management
techniques, with a focus on authentication and anonymity. Based on
this analysis, it propose a new term, “opportunistic keying” to
describe a goal for IETF security protocols, in response to PM.
It reviews key management mechanisms used in IETF security protocol
standards, also with respect to these properties. The document
explores possible impediments to and potential adverse effects
associated with deployment and use of techniques that would increase
the use of encryption, even when keys are distributed in an
unauthenticated manner.

1. What’s in a Name (for Encryption)?

Recent discussions in the IETF about pervasive monitoring (PM) have
suggested a desire to increase use of encryption, even when the
encrypted communication is unauthenticated. The term “opportunistic
encryption” has been suggested as a term to describe key management
techniques in which authenticated encryption is the preferred outcome,
unauthenticated encryption is an acceptable fallback, and plaintext
(unencrypted) communication is an undesirable (but perhaps necessary)
result. This mode of operation differs from the options commonly
offered by many IETF security protocols, in which authenticated,
encrypted communication is the desired outcome, but plaintext
communication is the fallback.

The term opportunistic encryption (OE) was coined by Michael
Richardson in “Opportunistic Encryption using the Internet Key
Exchange (IKE)” an Informational RFC [RFC4322]. In this RFC the term
is defined as:

… the process of encrypting a session with authenticated
knowledge of who the other party is without prearrangement.

This definition above is a bit opaque. The introduction to RFC 4322
provides a clearer description of the term, by stating the goal of
OE:

The objective of opportunistic encryption is to allow encryption
without any pre-arrangement specific to the pair of systems
involved.

	 2	

Later the RFC notes:

Opportunistic encryption creates tunnels between nodes that are
essentially strangers. This is done without any prior bilateral
arrangement.

The reference to “prior bilateral arrangement” is relevant to IPsec
but not to most other IETF security protocols. If every pair of
communicating entities were required to make prior bilateral
arrangements to enable encryption between them, a substantial
impediment would exist to widespread use of encryption. However,
other IETF security protocols define ways to enable encryption that
do not require prior bilateral arrangements. Some of these protocols
require that the target of a communication make available a public
key, for use by any initiator of a communication, but that is not a
prior bilateral arrangement.

The definition provided in [RFC4322] is specific to the IPsec
[RFC4301] context and ought not be used to describe the goal noted
above, as a countermeasure to PM. IPsec implements access controls
and thus requires explicit specification of how to process all
traffic that crosses an “IPsec boundary” (inbound and outbound).
Traffic is either discarded, permitted to pass w/o IPsec protection,
or protected using IPsec. The goal of OE is to enable IPsec protected
communication without a priori configuration of access control
database entries at each end (hence, bilateral). Opportunistic
encryption calls for each party to identify the other, using IKE
[RFC2409] authentication mechanisms, so it is not an unauthenticated
key management approach. Also note that RFC 4322 describes OE
relative to IKE, as it should; IPsec implements encryption using ESP
[RFC4303]. ESP usually provides data integrity and authentication, as
well as confidentiality, thus the phrase opportunistic encryption is
unduly narrow relative to the anti-PM goal. OE for IPsec is described
in more detail in Section 3.

RFC 4322 also defines anonymous encryption:

Anonymous encryption: the process of encrypting a session
without any knowledge of who the other parties are. No
authentication of identities is done.

Thus, in RFC 4322, the term anonymous encryption refers to encrypted
communication where neither party is authenticated to the other. Also
note that the definition above refers to “the process of encrypting a
session …” In fact, it the key management process that causes an
encryption session to be authenticated, or not. Thus it is more
accurate to refer to “anonymous keying”, rather than anonymous
encryption. This document adopts this convention, although most IETF
security standards refer to encryption, per se, as being
authenticated of not.

	 3	

It is useful to distinguish two classes of anonymous keying, based on
whether one party or both are not authenticated. For example, TLS
([RFC2246], [RFC4356], and [RFCC5246]) typically is used in a fashion
that provides server, but not client, authenticated communication.
However, TLS also supports two-way authenticated sessions and “pure”
unauthenticated sessions, in which neither party asserts an identity
during the handshake protocol. Thus TLS offers (pure) anonymous
keying and client-anonymous keying. (The same analysis applies to
DTLS [RFC6347].)

[insert brief HTTPS [RFC2818] discussion here]

Some security experts distinguish between anonymity and pseudonymity.
Pseudonymity [cite] implies use of a identifier, but one that
represents a “false name” for an entity. Use of pseudonyms is common
in some Internet communication contexts. Many Gmail, Yahoo, and
Hotmail mail addresses likely are pseudonyms. From a technical
perspective, a pseudonym is an attractive way to provide
“unauthenticated” communication. A pseudonym typically makes use of
the same syntax as a authentic identity, and thus protocols designed
to make use of authenticated identities are compatible with use of
pseudonyms, to first order.

“Traceable Anonymous Certificate”, is an Experimental RFC [RFC5636]
that describes a specific mechanism for a Certification Authority
(CA) [RFC5280] to issue an X.509 certificate with a pseudonym. The
goal of the mechanisms described in that RFC is to conceal a user’s
identity in PKI-based application contexts (for privacy), but to
permit authorities to reveal the true identity (under controlled
circumstances). This appears to be the only RFC that explicitly
addresses pseudonymous keying; although it uses the term “pseudonym”
extensively, it also uses the term “anonymous” more often, treating
the two as synonyms.

Self-signed certificates [RFC6818] are often used with TLS in both
browser and non-browser contexts. In the HTTPS (browser) context, a
self-signed certificate typically is accepted after a warning has
been displayed to a user; the HTTPS [RFC2818] requirement to match a
server DNS name against a certificate Subject name does not apply in
non-browser contexts. The Subject name in a self-signed certificate
is completely under the control of the entity that issued it, thus
this is a trivial way to generate a pseudonymous certificate, without
using the mechanisms specified in [RFC5636]. Thus support for
pseudonymous keying is supported in web browsing, as a side effect of
this deviation from [RFC2818]. (There is speculation that most self-
signed certificates contain accurate user or device IDs; the
certificates are used to avoid the costs associated with issuance of
certificates by WebPKI CAs.)

	 4	

Based on the examples above, one could define an additional term:
“pseudonymous keying”. Pseudonymous keying refers to techniques used
to distribute keys when an authentication exchange is based on a
pseudonym, e.g., a self-signed certificate containing a pseudonym. As
with anonymous keying, pseudonymous keying may apply to one or both
parties in an encrypted communication. One also can imagine mixed
mode communications, e.g., in which anonymous keying is employed by
one party and pseudonymous keying is employed by the other.

An examination of about 70 papers published in ACM, IEEE, and other
security conference proceedings identified numerous uses of the terms
opportunistic and anonymous encryption. Most, though not all, of the
papers used opportunistic encryption and anonymous encryption as
defined in [RFC4322], but in some papers the terminology was unclear
or inconsistent with the [RFC4322] definition.

Another popular source (Wikipedia) uses a somewhat different
definition for opportunistic encryption. Wikipedia
(http://en.wikipedia.org) provides the following definition:

Opportunistic encryption refers to any system that, when
connecting to another system, attempts to encrypt the
communications channel otherwise falling back to unencrypted
communications. This method requires no pre-arrangement between
the two systems.

This definition shares some aspects of the RFC 4322 definition, but
it is not exactly equivalent; it makes no mention of authentication
or access control, two essential aspects of opportunistic encryption
as per [RFC4322].

The Wikipedia article goes on to state that opportunistic encryption
can be employed with other protocols. The article describes the
potential for opportunistic encryption based on the use of self-
signed certificates with TLS, instead of certificates issued by a
“certificate [sic] authority.” This use of the term is at odds with
[RFC4322] and with TLS RFCs, which define anonymous encryption
differently.

The Wikipedia article further notes that use of self-signed
certificates with HTTP [sic] (really HTTPS), will result in warning
to users, unless browser extensions are employed, which makes user
acceptance of such problematic. It cites use of the STARTTLS
extension for SMTP [RFC3207], and use of TLS with IMAP, POP3, and
ACAP [RFC2595], as ways of achieving opportunistic encryption for
these protocols, when self-signed certificates are employed. Use of a
self-signed certificate that does not attest to an authentic identity
is an example of pseudonymous keying.

ZRTP [RFC6189] is cited in the Wikipedia article as an example of
opportunistic encryption for VoIP. ZRTP uses ephemeral Diffie-Hellman

	 5	

key management, and thus is more accurately described as offering
two-way anonymous encryption. ZRTP also offers an optional mode of
operation in which X.509 certificates or OpenPGP-formatted keys are
employed to counter MITM attacks. An X.509 certificate used with ZRTP
might be self-signed, which could enable pseudonymous keying, or it
might be issued in PKI context, which would support authenticated
encryption. An OpenPGP-formatted key could offer the same services.
In any case, opportunistic encryption is not the most appropriate
term to describe ZRTP, based on the description in the RFC cited
above.

Anonymous keying is the most accurate term to use when discussing key
management capabilities of protocols such as TLS and S/MIME. Access
control is not part of these security protocols and there are
explicit anonymous key management mechanisms that support 1-way or 2-
way anonymity (for TLS). Pseudonymous keying is the most accurate
term to describe key management performed using identifiers that are
pseudonyms. Most RFCs use the term “anonymous” even when the term
“pseudonymous” is more accurate, as noted in the discussion of RFC
5636. This document uses these three terms in a more precise fashion,
to avoid confusion and to highlight the security-relevant differences
associated with each.

This document proposes using the term “opportunistic keying” (OK)
to refer to key management mechanisms consistent with the goals
described for countering pervasive monitoring. Since those goals have
yet to be formally articulated and agreed upon, this document uses
the definition offered earlier, i.e., key management that yields
authenticated, encrypted communicated as the preferred outcome, but
which degrades (automatically) to encrypted but unauthenticated
communications. Also, if this latter state cannot be achieved, e.g.,
as a side effect of backwards compatibility, plaintext communications
results. Authentication of encrypted communication is a function of a
key management activity, not the encryption process per se. Thus is
makes sense to use the term “keying” (or “key management”) instead of
“encryption” when defining the desired mechanism. In the same sense,
this document uses the terms anonymous keying and pseudonymous keying.

Most security experts view (two-way) authenticated encryption as the
most desirable state for secured communications. Authenticated
encryption allows each communicant to detect (and reject) man-in-the-
middle attacks. It also seems a good match to what a user expects to
be true of a communication, in the absence of attacks. Most IETF
security protocols have been designed to achieve this state.

This suggests that OK should attempt to establish an encrypted
session (or message transfer) based on authenticated keying, with
fallback to unauthenticated (or pseudonymous) keying. Like
opportunistic encryption, OK should impose no requirement for a
priori, bilateral, arrangements (for realtime communication). If the
target of a communication (e.g., a server) makes authenticated key

	 6	

material available, that material will be used to establish one or
more traffic keys that are authenticated. (These keys may offer 1-way
or 2-way authentication, depending on details of the protocol context
in which OK is employed.) If the key material provided by the target
is pseudonymous, the traffic keys may be pseudonymous, or may offer
1-way (client or initiator) authenticated keying. If no key material
for a target is available to the initiator of a communication, a
traffic key may be created in realtime, e.g., using Diffie-Hellman
(or ECDH) key agreement. That key will not authenticate the target of
the communication, but it may authenticate the client/initiator,
depending on details of the OK mechanism.

For staged delivery (store-and-forward) communication, OK should
yield a recipient-authenticated content encryption key (CEK), if key
material provided by the recipient is authenticated. If the key
material provided by the recipient is pseudonymous, the resulting CEK
will be recipient-pseudonymous. In either of these cases, the sender
may be anonymous, pseudonymous, or may be authenticated, depending on
details of the OK mechanism (under the control of the sender). (In
both cases, message integrity is provided, thus tampering with a
message en route is detectable.) This document does not address
scenarios in which an intended recipient of a message has not made
key material available to potential senders a priori. There also is
no explicit support for leap-of-faith keying in S/MIME (as offered in
SSH, see below) but such support could be added.

If OK can yield either authenticated or unauthenticated encryption,
there is an obvious concern that an attacker can try to force the
latter outcome, even when the former might have been achieved. Also,
if we attempt to “upgrade” existing commutation models that, by
default, yield unencrypted communications, there is the potential
that an attacker could try to manipulate any negotiation to yield a
less secure outcome. It is not apparent that this attack can be
avoided entirely, but one can imagine various ways to make it more
difficult, and to alert a user to such attacks. For example, in the
web context, port 443 vs. port 80 is an explicit request for a secure
session. That same strategy could be used with OK, designating new
ports for unauthenticated, but encrypted sessions, distinct from
plaintext sessions. To avoid imposing unacceptable delays on users,
variants of the “happy eyeballs” strategy [RFC6555] might be employed,
i.e., attempting to establish authenticated and unauthenticated
sessions in parallel. In the IPsec context, mechanisms already exists
to accommodate OK, based on configuration parameters, as discussed in
Section 3. Extending these sorts of capabilities to store-and-forward
communication may be more difficult.

Pseudonymous, encrypted communication is another potential outcome of
a key management exchange, as noted above. There is an obvious
downside to use of pseudonymous credentials for key management as an
alternative to anonymous key management. Pseudonymous credentials
often employ the same syntax for identifiers as real credentials, and

	 7	

thus users may be confused by the subtle distinction. Thus it is
preferable to employ anonymous keying when authenticated keying is
not possible, of not desired.

2. Additional Terminology

The following definitions are derived from the Internet Security
Glossary [RFC4949], where applicable.

Anonymous keying – A key management technique that enables
unauthenticated, communication between parties. The communication may
be 1-way or 2-way anonymous. If 1-way, the initiator (client) or the
target (server) may be anonymous.

Asymmetric cryptography – A type of cryptography in which the
algorithms use a pair of keys (a public key and a private key) and
use a different component of the pair for each of two counterpart
cryptographic operations e.g., encryption and decryption. Some forms
of asymmetric cryptography support key agreement for encryption (see
below), others support key transport for encryption (see below) and
some support only digital signatures, not encryption.

Authentication – The process of verifying a claim that a system or
entity has a certain attribute value. In the IETF context,
authentication typically refers to verification of an identity claim.

Client-anonymous keying - A key management technique for
client/server communication in which the server is authenticated by
the client, but the client does not assert its identity and thus is
not authenticated by the server. This is an example of 1-way
authentication.

(Data) Confidentiality - The security service that prevents
information becoming available to unauthorized entities. Encryption
is the security mechanism typically used to implement confidentiality.

Content encryption key (CEK) – A symmetric cryptographic key used to
encrypt/decrypt the content of an S/MIME message. (Sometimes referred
to as a message encryption key.)

(Data) Integrity - The security service that enables a recipient of a
message or a packet to determine if the data has been modified or
destroyed in an unauthorized manner.

Key agreement algorithm - A key establishment method based on
asymmetric cryptography, in which a pair of entities engage in a
public exchange of data (public keys and associated data), to
generate the same shared secret value. (Thus both entities contribute
secret values to the resulting key.) This value is later used to

	 8	

create symmetric keys used for encryption and/or integrity checking.

Key transport –A key establishment method by which a secret
(symmetric) key is generated by one entity and securely sent to
another entity. (Thus only one entity contributes secret values to
the resulting key.) Key transport may make use of either symmetric or
asymmetric cryptographic algorithms.

Leap of Faith (LoF) – In a protocol, a leap of faith typically
consists of accepting a claimed peer identity, without authenticating
that claim, and caching a key or credential associated with the claim.
Subsequent communication using the cached key/credential is secure
against a MITM attack, if such an attack did not succeed during the
vulnerable initial communication and if the MITM is not present for
all subsequent communications.

Man-in-the-Middle attack (MITM) – A form of active wiretapping attack
in which the attacker intercepts and selectively modifies
communicated data to masquerade as one or more of the entities
involved in a communication association. Masquerading enables the
MITM to violate the confidentiality and/or the integrity of
communicated data passing through it.

Opportunistic Encryption – A key management technique that enables
authenticated, communication between parties, and that does not
require a priori, bilateral arrangements. This term is defined only
for IPsec.

Opportunistic Keying (OK) - A key management technique that
attempts to establish an encrypted session (or message transfer)
based on (1-way or 2-way) authenticated keying, with automated
fallback to (1-way or 2-way) unauthenticated keying. If OK is unable
to create an encrypted communication, e.g., because the other
communicant does not support OK, unencrypted (plaintext)
communication results. (See Section 1 for a more detailed
discussion.)

Perfect Forward Secrecy (PFS) – For a key management protocol, the
property that compromise of long-term keying material does not
compromise session/traffic keys that were previously derived from or
distributed using the long-term material.

Private key – The secret component of a pair of cryptographic keys
used for asymmetric cryptography.

Public key – The publicly disclosed component of a pair of
cryptographic keys used for asymmetric cryptography. The phrase
“public key data” includes a public key and any additional parameters
required to perform computation using the public key.

Pseudonymous keying – A key management technique that enables

	 9	

pseudonymous communication between parties, e.g., based on use of a
self-signed certificate. Pseudonymous keying may be one-way or two-
way, depending on details of the key management mechanism employed.

Session - A realtime communication between entities.

Shared secret – A value derived from a key agreement algorithm and
used as an input to generate a CEK or traffic encryption key.

Symmetric cryptography – A type of cryptography in which the
algorithms employ the same key for encryption and decryption, and the
key is not publically disclosed.

Traffic (encryption) key (TEK) – A symmetric key used to
encrypt/decrypt traffic carried via an association.
	
3. IPsec

As noted in Section 1, the term opportunistic encryption was defined
in RFC 4322, for the IPsec context. IPsec provides access control for
all traffic entering or exiting a system across a nominal boundary
established by an IPsec implementation. As a result, one cannot
enable secure communications between a pair of IPsec-enabled system
without creating appropriate database (SPD and PAD) entries in each
system, a priori. Thus the term “opportunistic encryption” in the
IPsec context suggests an ability to provide confidentiality for
traffic without such a priori IPsec database configuration. OE IPsec
preserves the ability of IPsec to implement access control for
selected peers, and to employ the authentication methods already
defined by IKE [RFC2409]. It offers an additional class of security
service for IPsec-enabled peers, one in which traffic can be
protected, by default, if both peers have published public keys (in
the DNS) in advance.

The specific method for supporting opportunistic encryption proposed
in RFC 4322 calls for each system that wishes to enable opportunistic
encryption to publish a DNS record containing a public key for that
system. (RFC 4322 called for using a TXT record to hold the public
key, but later revisions to the implementation of the proposal [cite]
call for use of the IPSEECKEY record, defined in [RFC4025]). If two
systems publish such records, and they later attempt to communicate,
then an ESP [RFC4303] security association (SA) can be established
between them, despite the absence of specific SAD/PAD entries for the
pair.

RFC 4322 essentially describes an extension to the IPsec SPD model,
adding a new class of source/destination access control based on IP
address, longest prefix match: “opportunistic tunnel.” Because the
extension is expressed only in terms of IP addresses, RFC 4322 calls
for storing public keys in inverse DNS trees ([RFC2371], [RFC3596]).
A more recent proposal for opportunistic encryption IPsec [Wouters-

	 10	

pending] calls for using the forward DNS tree (preferably with
DNSSEC) for key storage. This proposal, which applies only to end
system IPsec implementations, also triggers fetching an OE key based
on an application’s DNS access, prior to the start of a traffic flow.
(RFC 4322 focused on OE in the context of security gateways [RFC4301].
A security gateway would not necessarily see a DNS access and thus
could not rely on such an event to trigger a key fetch.) The revised
OE proposal, based on (forward) DNS fetches, and implemented on end
systems, vs. gateways, can reduce latency and thus make OE IPsec less
burdensome to users.

If the public key fetched from the DNS is protected via DNSSEC
[RFC4033], the quality of the authentication provided is analogous to
that offered by IPsec using other methods, e.g., DANE [RFC6698]. RFC
4322 also allowed use of public keys acquired from the DNS without
DNSSEC protection, as a matter of local policy (possibly a per-
destination local policy).

RFC 5386 [RFC5386], “Better-Than-Nothing Security: An Unauthenticated
Mode of IPsec” (BTNS) described how to provide PAE in the IPsec
context. Like OE IPsec, BTNS preserves the ability of IPsec to
implement access control for selected peers, and to employ the
authentication methods already defined by IKEv1 [RFC2409] and IKEv2
[RFC5996]. It offers an additional class of security service for
IPsec-enabled peers, by adding extensions to the SPD and PAD. In this
sense, BTNS defines a two-way anonymous keying service for IPsec,
complementing the opportunistic encryption service defined by RFC
4322.

RFC 5386 observed that use of anonymous keying makes communication
potentially vulnerable to main-in-the-middle (MITM) attacks, as noted
earlier in RFC 4322. The BTNS RFC suggests using higher layer
mechanisms to detect such attacks, e.g., connection latching via GSS-
API [RFC2743] and channel binding as per [RFC5386]. RFC 5386 noted
that the BTNS working group was planning to define a “leap of faith”
mechanism (ala SSH [RFC4251]) to reduce the window of vulnerability
associated with MITM attacks. However the WG did not produce an RFC
addressing this topic. BTNS seems very close to the OK goals
described in Section 2, but there is no evidence that BTNS has been
implemented, much less deployed.

RECOMMENDATION: BTNS is a very close match to the OK definition
provided in Section 1. If the IETF agrees with that definition,
BTNS should be revisited and revised, if necessary, with the
goal of encouraging widespread implementation and use.

4. TLS & DTLS

Anonymous key exchange (hence anonymous keying) for TLS was described
in [RFC2246], [RFC4346], and [RFC5246]. These documents provide a
very accurate characterization of the security mechanism, i.e., key

	 11	

agreement can be performed without authentication of either client or
server. (Authenticated key agreement also is supported in TLS.) This
terminology may have been adopted because TLS typically is used to
authenticate the server, and rarely is used to authenticate the
client (e.g., based on use of public key certificates and RSA).
In practice, the common (essentially default) use of TLS supports 1-
way anonymous keying. A user typically authenticates to a server
based on an application mechanism, e.g., passwords. By adopting an
explicit mechanism for anonymous keying, TLS avoids confusion between
authenticated and unauthenticated sessions.

None of the TLS RFCs explicitly allows use of a self-signed
certificate for client authentication. These RFCs also do not
describe use of self-signed certificates for server authentication,
except for so-called “root certificates” (more formally, “trust
anchors” [RFC5280]). There is one obscure comment buried in Appendix
A of [RFC5246] that might be interpreted to refer to use of self-
signed certificates:

Note that using non-anonymous key exchange without actually
verifying the key exchange is essentially equivalent to
anonymous key exchange, and the same precautions apply.

This comment appears in an appendix describing cipher suites,
immediately after an enumeration of anonymous cipher suites. The
phrase “without verifying the key exchange” is ambiguous. If it
refers to not performing certificate validation (terminating with a
trust anchor as per [RFC5280]) then it might be an allusion to use of
self-signed certificates for anonymous keying. Using the terminology
established in this document, this would be considered pseudonymous
keying.

Irrespective of the lack of explicit support for self-signed
certificates in TLS, of such certificates to represent a server is
common, especially when TLS is used with protocols other than HTTPS.
Such use is consistent with [RFC6818].

Anonymous keying for TLS is defined explicitly as being based on
Diffie-Hellman (or, as per [RFC4492] ECDH) key agreement. (Appendix F
of [RFC5246] describes how anonymous RSA key transport could be
implemented, using ephemeral RSA keys, but no cipher suites for that
mode of operation are defined.) A client can indicate that it wants
to create an anonymous session, by specifying only cipher suites of
that type (e.g., TLS_DH_anon_WITH_AES_128_CBC_SHA256) in the Client
Hello message. If acceptable to the server, the server replies with a
Server Key Exchange message (as opposed to a Server Certificate
message) that specifies the Diffie-Hellman (ECDH) parameters to be
employed. This use of Diffie-Hellman (or ECDH) provides perfect
forward secrecy. (If self-signed certificates were used to offer an
alternative form of anonymous keying, PFS might not result.)

	 12	

None of the TLS RFCs mandate support anonymous cipher suites, so
compliant servers and clients need not support these capabilities.
Nonetheless, support for several of these cipher suites appears to be
common.

This approach to specifying Diffie-Hellman parameters differs from
IKE. IKE uses IANA-registered sets of such parameters, rather than
passing them in a protocol negotiation. For Diffie-Hellman the use of
server-specific parameters does not seem to pose problems in terms of
interoperability; software and hardware that supports Diffie-Hellman
is able to deal with a broad range of groups. It might be preferable,
from a security perspective, to use named groups, as IKE does, since
such groups can be vetted by the community before publication. For
Elliptic Curve cryptography, hardware and software support for
arbitrary curves may not be common. TLS added two extensions for
elliptic curve cryptography: Supported Elliptic Curves and Supported
Point Formats. These two extensions enable a client to specify the
curves and point format that it supports. A server replying to a
Client Hello message containing these extensions can select a curve
and point format that it too supports, to ensure interoperability.
The named curves and point formats are IANA-registered values. A
client also can declare an ability to support arbitrary curves. In
this case, the server selects the curve (and point format) and
conveys its choice “verbosely”.

DANE [RFC6698] provides a mechanism for TLS entities to acquire a
certificate (or a “raw” public key) based on a domain name. Use of
key material acquired via DANE is thus fundamentally not anonymous --
the entity being authenticated must at least be identified by domain
name. DANE can provide two types of information about certificates
used with TLS: (1) Additional checks to be applied in certificate
verification, and (2) additional trust anchors that should be used by
the relying party. Information on additional checks simply provides
greater assurance to the normal TLS authentication process.

DANE information that provides additional trust anchors can provide
some additional means for keying that may be pseudonymous. The
certificates that are asserted as trust anchors through DANE can have
any content the domain holder wishes. Thus, certificate fields that
are normally used for identification (Subject or Subject Alternative
Name) need not be checked against the DNS name for the DANE
record. The only authentication provided by DANE-asserted
certificates is the binding provided by DANE itself, to the domain
name under which the DANE records are located. Thus a DANE-supplied
trust anchor could contain a pseudonym that could be used as an ID
for keying, directly or indirectly.

RECOMMENDATION: TLS/DTLS already support anonymous encryption,
but the cipher suites for this capability are not mandatory to
implement. The relevant RFCs should be revised to mandate
support for these cipher suites, including both Diffie-Hellman

	 13	

and ECDH variants. The HTTPS RFC should be updated to reflect OK
goals. Use of a different port for OK support should be
considered.

5. S/MIME
	
S/MIME [RFC5751] makes no mention of anonymous keying, opportunistic
encryption, or pseudonymous keying. There is no explicit access
control context enforced by S/MIME, unlike IPsec, so the term
opportunistic encryption is not directly applicable. However, S/MIME
makes use of CMS [RFC5652] for message encryption, and CMS explicitly
notes support for anonymous keying, in Section 6.2.2:

“The originatorKey alternative includes the algorithm identifier
and sender's key agreement public key. This alternative permits
originator anonymity since the public key is not certified.”

Thus S/MIME supports anonymous keying, with respect to a sender’s
identity, in the context of key management. There also is no
requirement that an S/MIME message be digitally signed; one may send
an “Enveloped-Only” message (Section 3.3 of [RFC5751]). (This is
reiterated in Section 2.4.2, which notes that a sender is not
required to digitally sign a message.) Thus, unauthenticated,
encrypted message transmission is inherently supported by S/MIME.

S/MIME also defines “triple-wrapped” messages [RFC2634]. If a sender
employs triple wrapping, the outer layers of the message could
conceal the sender’s identity, even from intermediate mail relays,
but provide 1-way authentication for the ultimate recipient. (The
triple wrapping facility also enables access controls to be imposed
by the innermost S/MIME headers.)

The e-mail address of the sender of a message is part of the RFC 822
format [RFC822], so anonymous keying for the sender requires use of a
mailbox identifier that is not (obviously) linked to the “real world”
persona of the sender. This requirement that is trivial to achieve
given the large number of mailbox providers that allow users to
select arbitrary names. Use of a pseudonymous mailbox ID does not
make S/MIME an example of pseudonymous keying, since the key
management yields anonymous keying. (RFC 5750 does not require that
the sender’s e-mail address appear in the certificate, but many
S/MIME implementations require its presence to facilitate locating
the sender’s certificate. Thus a sender might have to resort to
pseudonymous keying to achieve interoperability with such clients.)

A sender in S/MIME could choose to employ a self-signed certificate.
This would support message signing, distinct from the envelope-only
S/MIME option described above, and could be viewed as consistent with
a LoF key management model. If the identity asserted in the
certificate is a pseudonym, this would be considered pseudonymous
encryption for S/MIME. The certificate handling specification for

	 14	

S/MIME [RFC5750] does not preclude acceptance of self-signed
certificates, but it does restrict their use to representing CAs, and
it warns of the dangers of accepting such certificates. Thus, strict
compliance with [RFC5750] (and [RFC5280]) would require a sender to
generate a self-signed CA certificate and issue an end-entity
certificate under that CA certificate, for use with S/MIME. This does
not represent a significant technical hurdle, but we suspect that
most S/MIME implementations will accept self-signed EE certificates,
which is consistent with [RFC6818].

For a recipient, achieving anonymous keying is slightly different.
S/MIME operates in a staged delivery context, thus each recipient of
an encrypted message must make available public key data for a sender
to use for key transport or key agreement (see Section X.X below). In
the nominal case a recipient would publish its public key data in a
directory (e.g., LDAP [RFC4511]), and a sender would retrieve this
data to enable encryption of a message key. (The message, or content,
encryption, key, is used to encrypt the message content.) The public
key of the target (recipient) need not be certified. However, this
form of key distribution is rarely used for S/MIME in the public
Internet (vs. enterprise) context. Publishing e-mail addresses in a
generally-accessible directory is perceived as facilitating spam, and
thus this public key distribution approach is discouraged. It would
be possible to post a pseudonymous certificate in a repository, but
it’s not clear that this would be useful for most senders. There is
also the possibility that an adversary could monitor repository
accesses in an effort to identify potential recipients (and senders).

An alternative key distribution option is for a sender to receive
public key data for a recipient as a result of a signed, but not
encrypted, message from the recipient. S/MIME calls for
implementations to cache capabilities information about senders
(Section 2.7.2 of [RFC5751]), to facilitate this form of inband
cryptographic data transfer. This represents an alternative way for a
prospective recipient to convey public key info. However, this
procedure is at odds with the notion of opportunistic encryption and
opportunistic keying, as it calls for a priori, per-peer
configuration of data to enable later encrypted communication. If the
public key data were conveyed in a fashion that does not authenticate
the sender, then this would enable later, anonymous keying. However,
CMS and S/MIME, make no special provisions for such public key data
transfers. A prospective recipient could employ a self-signed
certificate to sign a message, and thus convey key material in a way
that supports pseudonymous keying. However, this creates an obvious
vulnerability that might be worse than retrieving a public key from
an untrusted repository.
	

RECOMMENDATION: OK support in S/MIME represents a significant
challenge. Distribution of recipient key material via a
directory systems seems unlikely to be viable, because of
concerns about SPAM. It is not clear that most users would want

	 15	

to receive encrypted e-mail that does not (securely) identify
the sender, although the “triple-wrapping” facility of S/MIME
could mitigate this concern. Enterprise environments rely on
content filtering to reject SPAM and malicious attachments, so
true end-to-end encryption is likely to not be acceptable in
those contexts. Also, use of “web mail” interfaces precludes use
of S/MIME on an end-to-end basis, raising a different set of
concerns.

	

6. SSH

SSH, as described in [RFC4251], is “a protocol for secure remote
login and other secure network services over an insecure network.”
The SSH transport protocol [RFC4253] typically operates over TCP,
providing a tunnel that offers confidentiality and connection-
oriented integrity; it also may preform compression.

SSH makes use of asymmetric cryptography to distribute symmetric keys
for the encrypted (and integrity-protected) tunnel between a client
and a server. The tunnel protocol mandates server authentication, but
does not provide client authentication. Thus the tunnel protocol
provides client-anonymous keying.

The SSH architecture [RFC4251] specifies an authentication protocol
[RFC4252] that operates within the tunnel protocol, providing client
authentication. The authentication protocol mandates support for
public-key based client authentication, however, the specification
states that “All implementations MUST support this method; however,
not all users need to have public keys, and most local policies are
not likely to require public key authentication for all users in the
near future.” In practice, several authentication methods appear to
be commonly employed, e.g., passwords, public keys, and SecurID
[SecurID cite]. (Public keys seem to be very commonly used in
internal, enterprise environments [draft-ylonen-sshkeybcp-01.txt].

The SSH tunnel protocol, like TLS and IKE, employs an algorithm
negotiation handshake, initiated by the client, using IANA-registered
identifiers. (A client or server also MAY “guess” which algorithm is
supported by a the other side, and use that algorithm to initiate a
key exchange.) The handshake determines which key management, session
encryption, integrity, and compression algorithms will be employed.

SSH implementations usually rely on a leap of faith mechanism to
initially convey a server’s public key to a client, but also can make
use of certified keys for servers [RFC4521]. Because SSH is most
often deployed in an enterprise context, not in the public Internet,
the use of an LoF mechanism is a reasonable option. (There is a
provision for binding a user-supplied name for a server with the
public key accepted during the LoF initialization procedure. This
mechanism alerts a user when the public key changes, a good security

	 16	

practice.) If a server has a certified public key the CA would
typically be locally managed, not a public, trusted third party CA as
usually employed in browsers. An alternative to using a local CA to
issue certificates, is to publish a “key fingerprint” in the DNS,
protected with DNSSEC [RFC4255].

Both Diffie-Hellman key agreement and RSA-based key transport
mechanism are defined for the tunnel protocol, with the former
REQUIRED and the latter RECOMMENDED. Diffie-Hellman groups are
specified by reference to IANA-registered identifiers [RFC4250],
analogous to the way IKE defines such groups. ECDH key agreement also
may be employed, as specified in [RFC5656]. The curves are specified
by reference to IANA-registered identifiers.

RECOMMENDATION: SSH appears to be used primarily in enterprise
environments, and for net management by ISPs. To that extent it
is not clear that support for OK is perceived as critical by the
administrators for these environments.

7. VoIP
	
Encryption in the VoIP environment is complex, because different
protocols are employed for signaling and for media, and different
security mechanisms have been defined for each.

Signaling for VoIP, using the “trapezoid” model, is performed using
SIP [RFC3261]. That RFC defines several approaches to providing
confidentiality, integrity, and authenticity for SIP signaling. The
links between a SPI entity and a SIP proxy, or between a pair of SIP
proxies, can be secured using IPsec or TLS (Section 26.2.1 of
[RFC3261]). The SIP specification mandates support for TLS-based
encryption (with one-way or two-way authentication), by SIP proxies,
registration servers and redirect servers. Support of this mechanism
is RECOMMENDED for SIP UAs. Support for IPsec is optional. Previous
discussions of the anonymity and authentication options for the key
management mechanisms employed by TLS and IPsec are applicable here.
However, it appears that neither TLS nor IPsec is commonly used to
protect SIP links.

The SIPS URI scheme (Section 26.2.2 of [RFC3261]) represents an
explicit request by a callee to the caller and to each SIP proxy to
use TLS to protect each SIP hop. SIPS mandates use of mutual
authentication via TLS, using client and server certificates. Support
for SIPS also mandated in [RFC3261]. However, there no evidence to
indicate that SIPS is widely used (or supported) by the SIP entities
that also are required to support TLS.

The SIP specification also describes how to use S/MIME to encrypt
some VoIP signaling data on an end-to-end (UA to UA) basis (Section
26.2.4) This mechanism does not offer protection for most of the

	 17	

signaling data, because that data must be visible to SIP proxies, so
this option is not especially relevant to encryption of such data,
and attendant user (UA) anonymity. Support for S/MIME use is optional
for UAs, but here too, there is no evidence to suggest that this
security mechanism is widely deployed.

The encryption mechanisms mandated for VoIP signaling do not tend to
offer anonymity, but they also appear to not be used in many (most?)
deployments. So the lack of anonymity for these mechanisms is largely
irrelevant to the current discussion.

VoIP media is secured using SRTP [RFC3711]. SRTP offers
confidentiality and data integrity for VoIP media and media control
protocols (RTP and RTCP [RFC3350]), with an optional anti-replay
feature. SRTP relies on other protocols to perform key management.
RFC 3711 identified three candidate key management techniques, none
of which was available as an RFC at the time SRTP was published.
Subsequently the three mechanisms were defined: KINK [RFC4430], MIKEY
[RFC3830], and mechanisms described in [RFC3711]. Each of these is
discussed below.

There also is an ability to transport, via SDP [RFC4566] a symmetric
key for use with SRTP, using the “k=” field (Section 5.12). If this
method of key management for SRTP is employed it exposes the key to
every SIP proxy en route (unless the S/MIME mechanism noted above is
employed). It also exposes the key to any passive wiretapper along
the route, unless TLS or IPsec is employed to protect the links
between SIP entities. It appears that this mechanism, which is
vulnerable to MITM attacks at MTAs, is not widely used.

The SDP specification was updated to include additional mechanisms to
support key management for media streams (e.g., SRTP) in [RFC4568].
This RFC defined the “crypto” attribute, to signal parameters for
media streams security, e.g., symmetric encryption algorithms,
integrity algorithms, and key data. The key data represents an
encryption key and associated data in plaintext form, analogous to
the “k=” field noted above. [RFC4568] includes session parameters
labeled “UNAUTHENTICATED_SRTP” and “UNAUTHENTICATED_SRTCP” (Section
6.3.3), but these do not refer to key management for these media
stream protocols.

KINK was one of the candidates cited in the SRTP specification,
although it was not specifically focused on VoIP. Because KINK is
based on Kerberos, it is not appropriate for the scale of the public
Internet, and there is no indication that it has been used with SRTP.

MIKEY was developed as a generic key management protocol, for unicast
and multicast contexts (including one-to-many and many-to-many).
While not specific to the VoIP environment, the MIKEY specification
includes several references to how it can be used with SDP and many

	 18	

references to SRTP. In the VoIP context, MIKEY messages would be
transported using SIP.

MIKEY incorporated key agreement (based on Diffie-Hellman), key
transport (based on RSA) and “pre-shared” key (based on use of cached,
symmetric key material) modes of operation. Support for mutual
authentication via pre-shared keys and public key transport is
mandatory (Sections 3.1 and 3.2). Support for Diffie-Hellman key
agreement is optional (Section 3.3), but that mode of operation
assumes use of certificates for authentication. There is one
reference to the use of self-signed certificates (page 11), but only
in the context of pre-shared keys. The MIKEY specification explicitly
notes that protection of the identity of communicating parties was
“not a main design goal.” RFC 5410 describes how to carry MIKEY is
messages in the 3GPP context, in support of broadcast/multicast
messaging. This use if codified in a 3GPP security specification
[TS33.2436]. Nonetheless, it is not apparent that MIKEY is widely
used in the VoIP context.

The third key management method cited in [RFC3711] was later
published as “Key Management Extensions for Session Description
Protocol (SDP) and Real Time Streaming Protocol (RTSP)” [RFC4567].
This specification focused on key management for SRTP, trying to
improve on the vulnerable mechanisms defined in [RFC4568]. It too
defines extensions to SDP to carry key management data for protecting
a media stream; it is not a specification of a key management
protocol per se. (For example, it provides an example of how it could
be used to transport MIKEY key management data.) The SDP extensions
defined here enable negotiation of a key management protocol,
analogous to the negotiation of other media stream features, e.g.,
codecs, as well as a means to transport key management data. Because
this specification does not define a specific key management scheme,
it is not directly relevant to supporting OK, anonymous keying or
pseudonymous keying.

The current, suggested method to provide keys for SRTP sessions is to
use DTLS [RFC5763] in combination with SRTP. This combination is
commonly referred to as DTLS-SRTP [RFC6347]. DTLS-SRTP uses a DTLS
handshake in the media plane to establish keys which are then used
with SRTP. The DTLS endpoints are mutually authenticated via
certificates but these certificates may be self-signed (Section 1).
Authentication is primarily provided by exchanging digests of the
certificates in the SDP, thus tying the media layer authentication to
the identity asserted in the signaling layer. Thus pseudonymous
keying or one-way anonymous keying is supported as well as mutually-
authentication encryption (Section 8.7), depending on which
identities are provided via SDP. Ephemeral, self-signed certificates
can be used to enable anonymous calls (Section 6.1). DTLS supports
perfect forward secrecy using Diffie-Hellman and ECDH.

	 19	

RECOMMENDATION: OK use needs to be reconciled with the goals of
the STIR effort in the IETF. The VoIP encryption landscape is
complex, with many options, few of which appear to be widely
deployed. A new RFC (or set of RFCs) dealing with security for
VoiP probably will be needed if OK is to be successful in this
context.

8. IMAP(v4), POP3 and ACAP
	
The security considerations section (Section 11) of [RFC3501], IMAP
(v4 rev 1) mandates support for TLS (1.0) via use of the STARTTLS
command [RFC2595], thus an encryption capability is present in
implementations that comply with that IMAP RFC. RFC 2595 specifies
how to use TLS to protect sessions created for IMAP, POP3 and ACAP.
It mandates use of TLS (1.0) with server-based authentication, based
on use of a server certificate. It provides clear rules for how to
authenticate the server’s identity; specifically it requires an
authentication check based on the server identity (as used by the
client when establishing a connection to the server). The identity
represented in the server certificate, presented in the server
Certificate message (from the TLS handshake), must match the
anticipated server identity. Rules for comparing the server identity
to a certificate Subject or Subject Alternative name, including
support for “wildcard” names, are provided.

The principal goal of these security mechanisms is to prevent
disclosure of a password used by a client to authenticate to a mail
server. Server authentication is a central feature of the protocols,
and so two-way anonymous keying is not supported by IMAP (or POP3 or
ACAP.) However, the use of TLS here does not provide client
authentication, so these specifications do provide client-anonymous
keying. (Anonymous access by clients is supported, optionally, via
the ANONYMOUS SASL [RFC2245] command, but this typically limits the
set of mailboxes accessible by a user, and so it does not seem
generally applicable.) Pseudonymous keying for a server is not
supported, based on normal certificate validation processes.

RECOMMENDATION: Server authentication is a requirement for these
protocols, and client authentication is typically effected via
passwords, bit via client certificates used with TLS. Thus this
set of protocols do not appear to be good candidates for OK, in
the general sense. Also, TLS protection of IMAP and POP3 appears
to be common, so this may not be a significant vulnerability.
Finally, many users access mailboxes via “web mail” interfaces,
and in that context encrypted communication is just another
HTTP/HTTPS example, as discussed in Section 4.

	 20	

9. Acknowledgements

[TBS]

10. Security Considerations
[TBS]

	 21	

11. References

[RFC822] e-mail message format

[RFC2245] Anonymous SASL

[RFC2246] TLS 1.0

[RFC2371] inverse DNS

[RFC2409] IKEv1

[RFC2595] using TLS with IMAP, POP3 and ACAP

[RFC2634] Enhanced Secruiity Services for S/MIME

[RFC2743] GSSAPI

[RFC2818] HTTPS

[RFC2821] SMTP

[RFC3207] STARTTLS for SMTP

[RFC3261] SIP

[RFC3501] IMAP

[RFC3550] RTP & RTCP

[RFC3596] DNS for IPv6

[RFC3830] MIKEY

[RFC4025] DNSSEC

[RFC4033] IPsec key record

[RFC4251] SSH architecture

[RFC4252] SSH authentication protocol

[RFC4253] SSH transport protocol

[RFC4255] SSH key fingerprints in DNS

[RFC4301] IPsec

[RFC4303] ESP

	 22	

[RFC4322] OE IPsec

[RFC4364] TLS 1.1

[RFC4430] KINK

[RFC4492] ECDH for TLS

[RFC4566] SDP

[RFC4567] Key management for SDP & RTSP

[RFC4568] SDP SDES

[RFC4949] Internet Security Glossary

[RFC4511] LDAP

[RFC5056] channel binding

[RFC5246] TLS 1.2

[RFC5280] PKIX cert format

[RFC5387] BTNS

[RFC5410] MIKEY & 3GPP

[RFC5636] Traceable Anonymous Certificate

[RFC5656] Elliptic Curve crypto for SSH

[RFC5750] S/MIME certificate handling

[RFC5751] S/MIME

[RFC5652] CMS

[RFC5763] DTLS/SRTP

[RFC5996] BTNS

[RFC6189] ZRTP

[RFC6347] DTLS-SRTP

[RFC6555] Happy Eyeballs

[RFC6668] SSH

