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Abstract 
 
This document was prepared as part of the IETF response to concerns 
about “pervasive monitoring” (PM) [Farrell-pm]. It begins by 
exploring terminology that has been used in IETF standards (and in 
academic publications) to describe encryption and key management 
techniques, with a focus on authentication and anonymity. Based on 
this analysis, it propose a new term, “opportunistic keying” to 
describe a goal for IETF security protocols, in response to PM.  
It reviews key management mechanisms used in IETF security protocol 
standards, also with respect to these properties. The document 
explores possible impediments to and potential adverse effects 
associated with deployment and use of techniques that would increase 
the use of encryption, even when keys are distributed in an 
unauthenticated manner. 
 
1. What’s in a Name (for Encryption)? 
 
Recent discussions in the IETF about pervasive monitoring (PM) have 
suggested a desire to increase use of encryption, even when the 
encrypted communication is unauthenticated. The term “opportunistic 
encryption” has been suggested as a term to describe key management 
techniques in which authenticated encryption is the preferred outcome, 
unauthenticated encryption is an acceptable fallback, and plaintext 
(unencrypted) communication is an undesirable (but perhaps necessary) 
result. This mode of operation differs from the options commonly 
offered by many IETF security protocols, in which authenticated, 
encrypted communication is the desired outcome, but plaintext 
communication is the fallback. 
 
The term opportunistic encryption (OE) was coined by Michael 
Richardson in “Opportunistic Encryption using the Internet Key 
Exchange (IKE)” an Informational RFC [RFC4322]. In this RFC the term 
is defined as:  
 

… the process of encrypting a session with authenticated 
knowledge of who the other party is without prearrangement. 

 
This definition above is a bit opaque. The introduction to RFC 4322 
provides a clearer description of the term, by stating the goal of 
OE: 
 

The objective of opportunistic encryption is to allow encryption 
without any pre-arrangement specific to the pair of systems 
involved.  
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Later the RFC notes: 
 

Opportunistic encryption creates tunnels between nodes that are 
essentially strangers.  This is done without any prior bilateral 
arrangement. 

 
The reference to “prior bilateral arrangement” is relevant to IPsec 
but not to most other IETF security protocols. If every pair of 
communicating entities were required to make prior bilateral 
arrangements to enable encryption between them, a substantial 
impediment would exist to widespread use of encryption. However, 
other IETF security protocols define ways to enable encryption that 
do not require prior bilateral arrangements. Some of these protocols 
require that the target of a communication make available a public 
key, for use by any initiator of a communication, but that is not a 
prior bilateral arrangement. 
 
The definition provided in [RFC4322] is specific to the IPsec 
[RFC4301] context and ought not be used to describe the goal noted 
above, as a countermeasure to PM. IPsec implements access controls 
and thus requires explicit specification of how to process all 
traffic that crosses an “IPsec boundary” (inbound and outbound). 
Traffic is either discarded, permitted to pass w/o IPsec protection, 
or protected using IPsec. The goal of OE is to enable IPsec protected 
communication without a priori configuration of access control 
database entries at each end (hence, bilateral). Opportunistic 
encryption calls for each party to identify the other, using IKE 
[RFC2409] authentication mechanisms, so it is not an unauthenticated 
key management approach. Also note that RFC 4322 describes OE 
relative to IKE, as it should; IPsec implements encryption using ESP 
[RFC4303]. ESP usually provides data integrity and authentication, as 
well as confidentiality, thus the phrase opportunistic encryption is 
unduly narrow relative to the anti-PM goal. OE for IPsec is described 
in more detail in Section 3.  
 
RFC 4322 also defines anonymous encryption: 
 

Anonymous encryption: the process of encrypting a session 
without any knowledge of who the other parties are.  No 
authentication of identities is done.  

 
Thus, in RFC 4322, the term anonymous encryption refers to encrypted 
communication where neither party is authenticated to the other. Also 
note that the definition above refers to “the process of encrypting a 
session …” In fact, it the key management process that causes an 
encryption session to be authenticated, or not. Thus it is more 
accurate to refer to “anonymous keying”, rather than anonymous 
encryption. This document adopts this convention, although most IETF 
security standards refer to encryption, per se, as being 
authenticated of not. 
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It is useful to distinguish two classes of anonymous keying, based on 
whether one party or both are not authenticated.  For example, TLS 
([RFC2246], [RFC4356], and [RFCC5246]) typically  is used in a fashion 
that provides server, but not client, authenticated communication. 
However, TLS also supports two-way authenticated sessions and “pure” 
unauthenticated sessions, in which neither party asserts an identity 
during the handshake protocol. Thus TLS offers (pure) anonymous 
keying and client-anonymous keying. (The same analysis applies to 
DTLS [RFC6347].) 
 
[insert brief HTTPS [RFC2818] discussion here] 
 
Some security experts distinguish between anonymity and pseudonymity. 
Pseudonymity [cite] implies use of a identifier, but one that 
represents a “false name” for an entity. Use of pseudonyms is common 
in some Internet communication contexts. Many Gmail, Yahoo, and 
Hotmail mail addresses likely are pseudonyms. From a technical 
perspective, a pseudonym is an attractive way to provide 
“unauthenticated” communication. A pseudonym typically makes use of 
the same syntax as a authentic identity, and thus protocols designed 
to make use of authenticated identities are compatible with use of 
pseudonyms, to first order. 
 
“Traceable Anonymous Certificate”, is an Experimental RFC [RFC5636] 
that describes a specific mechanism for a Certification Authority 
(CA) [RFC5280] to issue an X.509 certificate with a pseudonym. The 
goal of the mechanisms described in that RFC is to conceal a user’s 
identity in PKI-based application contexts (for privacy), but to 
permit authorities to reveal the true identity (under controlled 
circumstances). This appears to be the only RFC that explicitly 
addresses pseudonymous keying; although it uses the term “pseudonym” 
extensively, it also uses the term “anonymous” more often, treating 
the two as synonyms.  
 
Self-signed certificates [RFC6818] are often used with TLS in both 
browser and non-browser contexts. In the HTTPS (browser) context, a 
self-signed certificate typically is accepted after a warning has 
been displayed to a user; the HTTPS [RFC2818] requirement to match a 
server DNS name against a certificate Subject name does not apply in 
non-browser contexts. The Subject name in a self-signed certificate 
is completely under the control of the entity that issued it, thus 
this is a trivial way to generate a pseudonymous certificate, without 
using the mechanisms specified in [RFC5636]. Thus support for 
pseudonymous keying is supported in web browsing, as a side effect of 
this deviation from [RFC2818]. (There is speculation that most self-
signed certificates contain accurate user or device IDs; the 
certificates are used to avoid the costs associated with issuance of 
certificates by WebPKI CAs.) 
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Based on the examples above, one could define an additional term: 
“pseudonymous keying”.  Pseudonymous keying refers to techniques used 
to distribute keys when an authentication exchange is based on a 
pseudonym, e.g., a self-signed certificate containing a pseudonym. As 
with anonymous keying, pseudonymous keying may apply to one or both 
parties in an encrypted communication. One also can imagine mixed 
mode communications, e.g., in which anonymous keying is employed by 
one party and pseudonymous keying is employed by the other.  
 
An examination of about 70 papers published in ACM, IEEE, and other 
security conference proceedings identified numerous uses of the terms 
opportunistic and anonymous encryption. Most, though not all, of the 
papers used opportunistic encryption and anonymous encryption as 
defined in [RFC4322], but in some papers the terminology was unclear 
or inconsistent with the [RFC4322] definition.  
 
Another popular source (Wikipedia) uses a somewhat different 
definition for opportunistic encryption. Wikipedia 
(http://en.wikipedia.org) provides the following definition: 
 

Opportunistic encryption refers to any system that, when 
connecting to another system, attempts to encrypt the 
communications channel otherwise falling back to unencrypted 
communications. This method requires no pre-arrangement between 
the two systems. 

 
This definition shares some aspects of the RFC 4322 definition, but 
it is not exactly equivalent; it makes no mention of authentication 
or access control, two essential aspects of opportunistic encryption 
as per [RFC4322]. 
 
The Wikipedia article goes on to state that opportunistic encryption 
can be employed with other protocols. The article describes the 
potential for opportunistic encryption based on the use of self-
signed certificates with TLS, instead of certificates issued by a 
“certificate [sic] authority.”  This use of the term is at odds with 
[RFC4322] and with TLS RFCs, which define anonymous encryption 
differently.  
  
The Wikipedia article further notes that use of self-signed 
certificates with HTTP [sic] (really HTTPS), will result in warning 
to users, unless browser extensions are employed, which makes user 
acceptance of such problematic. It cites use of the STARTTLS 
extension for SMTP [RFC3207], and use of TLS with IMAP, POP3, and 
ACAP [RFC2595], as ways of achieving opportunistic encryption for 
these protocols, when self-signed certificates are employed. Use of a 
self-signed certificate that does not attest to an authentic identity 
is an example of pseudonymous keying. 
 
ZRTP [RFC6189] is cited in the Wikipedia article as an example of 
opportunistic encryption for VoIP. ZRTP uses ephemeral Diffie-Hellman 
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key management, and thus is more accurately described as offering 
two-way anonymous encryption. ZRTP also offers an optional mode of 
operation in which X.509 certificates  or OpenPGP-formatted keys are 
employed to counter MITM attacks. An X.509 certificate used with ZRTP 
might be self-signed, which could enable pseudonymous keying, or it 
might be issued in PKI context, which would support authenticated 
encryption. An OpenPGP-formatted key could offer the same services. 
In any case, opportunistic encryption is not the most appropriate 
term to describe ZRTP, based on the description in the RFC cited 
above. 
 
Anonymous keying is the most accurate term to use when discussing key 
management capabilities of protocols such as TLS and S/MIME. Access 
control is not part of these security protocols and there are 
explicit anonymous key management mechanisms that support 1-way or 2-
way anonymity (for TLS). Pseudonymous keying is the most accurate 
term to describe key management performed using identifiers that are 
pseudonyms. Most RFCs use the term “anonymous” even when the term 
“pseudonymous” is more accurate, as noted in the discussion of RFC 
5636. This document uses these three terms in a more precise fashion, 
to avoid confusion and to highlight the security-relevant differences 
associated with each. 
 
This document proposes using the term “opportunistic keying” (OK)  
to refer to key management mechanisms consistent with the goals 
described for countering pervasive monitoring. Since those goals have 
yet to be formally articulated and agreed upon, this document uses 
the definition offered earlier, i.e., key management that yields 
authenticated, encrypted communicated as the preferred outcome, but 
which degrades (automatically) to encrypted but unauthenticated 
communications. Also, if this latter state cannot be achieved, e.g., 
as a side effect of backwards compatibility, plaintext communications 
results. Authentication of encrypted communication is a function of a 
key management activity, not the encryption process per se. Thus is 
makes sense to use the term “keying” (or “key management”) instead of 
“encryption” when defining the desired mechanism. In the same sense, 
this document uses the terms anonymous keying and pseudonymous keying. 
 
Most security experts view (two-way) authenticated encryption as the 
most desirable state for secured communications. Authenticated 
encryption allows each communicant to detect (and reject) man-in-the-
middle attacks. It also seems a good match to what a user expects to 
be true of a communication, in the absence of attacks. Most IETF 
security protocols have been designed to achieve this state.  
 
This suggests that OK should attempt to establish an encrypted 
session (or message transfer) based on authenticated keying, with 
fallback to unauthenticated (or pseudonymous) keying. Like 
opportunistic encryption, OK should impose no requirement for a 
priori, bilateral, arrangements (for realtime communication). If the 
target of a communication (e.g., a server) makes authenticated key 
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material available, that material will be used to establish one or 
more traffic keys that are authenticated. (These keys may offer 1-way 
or 2-way authentication, depending on details of the protocol context 
in which OK is employed.) If the key material provided by the target 
is pseudonymous, the traffic keys may be pseudonymous, or may offer 
1-way (client or initiator) authenticated keying. If no key material 
for a target is available to the initiator of a communication, a 
traffic key may be created in realtime, e.g., using Diffie-Hellman 
(or ECDH) key agreement. That key will not authenticate the target of 
the communication, but it may authenticate the client/initiator, 
depending on details of the OK mechanism. 
 
For staged delivery (store-and-forward) communication, OK should 
yield a recipient-authenticated content encryption key (CEK), if key 
material provided by the recipient is authenticated. If the key 
material provided by the recipient is pseudonymous, the resulting CEK 
will be recipient-pseudonymous. In either of these cases, the sender 
may be anonymous, pseudonymous, or may be authenticated, depending on 
details of the OK mechanism (under the control of the sender). (In 
both cases, message integrity is provided, thus tampering with a 
message en route is detectable.) This document does not address 
scenarios in which an intended recipient of a message has not made 
key material available to potential senders a priori. There also is 
no explicit support for leap-of-faith keying in S/MIME (as offered in 
SSH, see below) but such support could be added. 
 
If OK can yield either authenticated or unauthenticated encryption, 
there is an obvious concern that an attacker can try to force the 
latter outcome, even when the former might have been achieved. Also, 
if we attempt to “upgrade” existing commutation models that, by 
default, yield unencrypted communications, there is the potential 
that an attacker could try to manipulate any negotiation to yield a 
less secure outcome. It is not apparent that this attack can be 
avoided entirely, but one can imagine various ways to make it more 
difficult, and to alert a user to such attacks. For example, in the 
web context, port 443 vs. port 80 is an explicit request for a secure 
session.  That same strategy could be used with OK, designating new 
ports for unauthenticated, but encrypted sessions, distinct from 
plaintext sessions. To avoid imposing unacceptable delays on users, 
variants of the “happy eyeballs” strategy [RFC6555] might be employed, 
i.e., attempting to establish authenticated and unauthenticated  
sessions in parallel. In the IPsec context, mechanisms already exists 
to accommodate OK, based on configuration parameters, as discussed in 
Section 3. Extending these sorts of capabilities to store-and-forward 
communication may be more difficult.  
 
Pseudonymous, encrypted communication is another potential outcome of 
a key management exchange, as noted above. There is an obvious 
downside to use of pseudonymous credentials for key management as an 
alternative to anonymous key management. Pseudonymous credentials 
often employ the same syntax for identifiers as real credentials, and 
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thus users may be confused by the subtle distinction. Thus it is 
preferable to employ anonymous keying when authenticated keying is 
not possible, of not desired. 
 
 
2. Additional Terminology 
 
The following definitions are derived from the Internet Security 
Glossary [RFC4949], where applicable. 
 
Anonymous keying – A key management technique that enables 
unauthenticated, communication between parties. The communication may 
be 1-way or 2-way anonymous. If 1-way, the initiator (client) or the 
target (server) may be anonymous. 
 
 
Asymmetric cryptography – A type of cryptography in which the 
algorithms use a pair of keys (a public key and a private key) and 
use a different component of the pair for each of two counterpart 
cryptographic operations e.g., encryption and decryption. Some forms 
of asymmetric cryptography support key agreement for encryption (see 
below), others support key transport for encryption (see below) and 
some support only digital signatures, not encryption. 
 
Authentication – The process of verifying a claim that a system or 
entity has a certain attribute value. In the IETF context, 
authentication typically refers to verification of an identity claim. 
 
Client-anonymous keying - A key management technique for 
client/server communication in which the server is authenticated by 
the client, but the client does not assert its identity and thus is 
not authenticated by the server. This is an example of 1-way 
authentication. 
 
(Data) Confidentiality - The security service that prevents 
information becoming available to unauthorized entities. Encryption 
is the security mechanism typically used to implement confidentiality. 
 
Content encryption key (CEK) – A symmetric cryptographic key used to 
encrypt/decrypt the content of an S/MIME message. (Sometimes referred 
to as a message encryption key.)  
 
(Data) Integrity - The security service that enables a recipient of a 
message or a packet to determine if the data has been modified or 
destroyed in an unauthorized manner. 
 
Key agreement algorithm - A key establishment method based on 
asymmetric cryptography, in which a pair of entities engage in a 
public exchange of data (public keys and associated data), to 
generate the same shared secret value. (Thus both entities contribute 
secret values to the resulting key.) This value is later used to 
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create symmetric keys used for encryption and/or integrity checking. 
 
Key transport –A key establishment method by which a secret 
(symmetric) key is generated by one entity and securely sent to 
another entity. (Thus only one entity contributes secret values to 
the resulting key.) Key transport may make use of either symmetric or 
asymmetric cryptographic algorithms. 
 
Leap of Faith (LoF) –  In a protocol, a leap of faith typically 
consists of accepting a claimed peer identity, without authenticating 
that claim, and caching a key or credential associated with the claim. 
Subsequent communication using the cached key/credential is secure 
against a MITM attack, if such an attack did not succeed during the 
vulnerable initial communication and if the MITM is not present for 
all subsequent communications. 
 
Man-in-the-Middle attack (MITM) – A form of active wiretapping attack 
in which the attacker intercepts and selectively modifies 
communicated data to masquerade as one or more of the entities 
involved in a communication association. Masquerading enables the 
MITM to violate the confidentiality and/or the integrity of 
communicated data passing through it. 
 
Opportunistic Encryption – A key management technique that enables 
authenticated, communication between parties, and that does not 
require a priori, bilateral arrangements. This term is defined only 
for IPsec. 
 
Opportunistic Keying (OK) - A key management technique that  
attempts to establish an encrypted session (or message transfer) 
based on (1-way or 2-way) authenticated keying, with automated 
fallback to (1-way or 2-way) unauthenticated keying. If OK is unable 
to create an encrypted communication, e.g., because the other 
communicant does not support OK, unencrypted (plaintext) 
communication results. (See Section 1 for a more detailed 
discussion.)  
 
Perfect Forward Secrecy (PFS) – For a key management protocol, the 
property that compromise of long-term keying material does not 
compromise session/traffic keys that were previously derived from or 
distributed using the long-term material.  
 
Private key – The secret component of a pair of cryptographic keys 
used for asymmetric cryptography. 
 
Public key – The publicly disclosed component of a pair of 
cryptographic keys used for asymmetric cryptography. The phrase 
“public key data” includes a public key and any additional parameters 
required to perform computation using the public key. 
 
Pseudonymous keying – A key management technique that enables 
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pseudonymous communication between parties, e.g., based on use of a 
self-signed certificate. Pseudonymous keying may be one-way or two-
way, depending on details of the key management mechanism employed. 
 
Session - A realtime communication between entities. 
 
Shared secret – A value derived from a key agreement algorithm and 
used as an input to generate a CEK or traffic encryption key. 
 
Symmetric cryptography – A type of cryptography in which the 
algorithms employ the same key for encryption and decryption, and the 
key is not publically disclosed.  
 
Traffic (encryption) key (TEK) – A symmetric key used to 
encrypt/decrypt traffic carried via an association. 
	  
3. IPsec 
 
As noted in Section 1, the  term opportunistic encryption was defined 
in RFC 4322, for the IPsec context. IPsec provides access control for 
all traffic entering or exiting a system across a nominal boundary 
established by an IPsec implementation. As a result, one cannot 
enable secure communications between a pair of IPsec-enabled system 
without creating appropriate database (SPD and PAD) entries in each 
system, a priori. Thus the term “opportunistic encryption” in the 
IPsec context suggests an ability to provide confidentiality for 
traffic without such a priori IPsec database configuration. OE IPsec 
preserves the ability of IPsec to implement access control for 
selected peers, and to employ the authentication methods already 
defined by IKE [RFC2409]. It offers an additional class of security 
service for IPsec-enabled peers, one in which traffic can be 
protected, by default, if both peers have published public keys (in 
the DNS) in advance. 
 
The specific method for supporting opportunistic encryption proposed 
in RFC 4322 calls for each system that wishes to enable opportunistic 
encryption to publish a DNS record containing a public key for that 
system. (RFC 4322 called for using a TXT record to hold the public 
key, but later revisions to the implementation of the proposal [cite] 
call for use of the IPSEECKEY record, defined in [RFC4025]). If two 
systems publish such records, and they later attempt to communicate, 
then an ESP [RFC4303] security association (SA) can be established 
between them, despite the absence of specific SAD/PAD entries for the 
pair. 
 
RFC 4322 essentially describes an extension to the IPsec SPD model, 
adding a new class of source/destination access control based on IP 
address, longest prefix match: “opportunistic tunnel.” Because the 
extension is expressed only in terms of IP addresses, RFC 4322 calls 
for storing public keys in inverse DNS trees ([RFC2371], [RFC3596]). 
A more recent proposal for opportunistic encryption IPsec [Wouters-
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pending] calls for using the forward DNS tree (preferably with 
DNSSEC) for key storage. This proposal, which applies only to end 
system IPsec implementations, also triggers fetching an OE key based 
on an application’s DNS access, prior to the start of a traffic flow. 
(RFC 4322 focused on OE in the context of security gateways [RFC4301]. 
A security gateway would not necessarily see a DNS access and thus 
could not rely on such an event to trigger a key fetch.) The revised 
OE proposal, based on (forward) DNS fetches, and implemented on end 
systems, vs. gateways, can reduce latency and thus make OE IPsec less 
burdensome to users. 
 
If the public key fetched from the DNS is protected via DNSSEC 
[RFC4033], the quality of the authentication provided is analogous to 
that offered by IPsec using other methods, e.g., DANE [RFC6698]. RFC 
4322 also allowed use of public keys acquired from the DNS without 
DNSSEC protection, as a matter of local policy (possibly a per-
destination local policy).  
 
RFC 5386 [RFC5386], “Better-Than-Nothing Security: An Unauthenticated 
Mode of IPsec” (BTNS) described how to provide PAE in the IPsec 
context. Like OE IPsec, BTNS preserves the ability of IPsec to 
implement access control for selected peers, and to employ the 
authentication methods already defined by IKEv1 [RFC2409] and IKEv2 
[RFC5996]. It offers an additional class of security service for 
IPsec-enabled peers, by adding extensions to the SPD and PAD. In this 
sense, BTNS defines a two-way anonymous keying service for IPsec, 
complementing the opportunistic encryption service defined by RFC 
4322.  
 
RFC 5386 observed that use of anonymous keying makes communication 
potentially vulnerable to main-in-the-middle (MITM) attacks, as noted 
earlier in RFC 4322. The BTNS RFC suggests using higher layer 
mechanisms to detect such attacks, e.g., connection latching via GSS-
API [RFC2743] and channel binding as per [RFC5386]. RFC 5386 noted 
that the BTNS working group was planning to define a “leap of faith” 
mechanism (ala SSH [RFC4251]) to reduce the window of vulnerability 
associated with MITM attacks. However the WG did not produce an RFC 
addressing this topic. BTNS seems very close to the OK goals 
described in Section 2, but there is no evidence that BTNS has been 
implemented, much less deployed.  
  

RECOMMENDATION: BTNS is a very close match to the OK definition 
provided in Section 1. If the IETF agrees with that definition, 
BTNS should be revisited and revised, if necessary, with the 
goal of encouraging widespread implementation and use. 

 
4. TLS & DTLS 
 
Anonymous key exchange (hence anonymous keying) for TLS was described 
in [RFC2246], [RFC4346], and [RFC5246]. These documents provide a 
very accurate characterization of the security mechanism, i.e., key 
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agreement can be performed without authentication of either client or 
server. (Authenticated key agreement also is supported in TLS.) This 
terminology may have been adopted because TLS typically is used to 
authenticate the server, and rarely is used to authenticate the 
client (e.g., based on use of public key certificates and RSA).  
In practice, the common (essentially default) use of TLS supports 1-
way anonymous keying. A user typically authenticates to a server 
based on an application mechanism, e.g., passwords. By adopting an 
explicit mechanism for anonymous keying, TLS avoids confusion between 
authenticated and unauthenticated sessions. 
 
None of the TLS RFCs explicitly allows use of a self-signed 
certificate for client authentication. These RFCs also do not 
describe use of self-signed certificates for server authentication, 
except for so-called “root certificates” (more formally, “trust 
anchors” [RFC5280]). There is one obscure comment buried in Appendix 
A of [RFC5246] that might be interpreted to refer to use of self-
signed certificates: 
 

Note that using non-anonymous key exchange without actually 
verifying the key exchange is essentially equivalent to 
anonymous key exchange, and the same precautions apply. 

 
This comment appears in an appendix describing cipher suites, 
immediately after an enumeration of anonymous cipher suites. The 
phrase “without verifying the key exchange” is ambiguous. If it 
refers to not performing certificate validation (terminating with a 
trust anchor as per [RFC5280]) then it might be an allusion to use of 
self-signed certificates for anonymous keying. Using the terminology 
established in this document, this would be considered pseudonymous 
keying.  
 
Irrespective of the lack of explicit support for self-signed 
certificates in TLS, of such certificates to represent a server is 
common, especially when TLS is used with protocols other than HTTPS. 
Such use is consistent with [RFC6818]. 
 
Anonymous keying for TLS is defined explicitly as being based on 
Diffie-Hellman (or, as per [RFC4492] ECDH) key agreement. (Appendix F 
of [RFC5246] describes how anonymous RSA key transport could be 
implemented, using ephemeral RSA keys, but no cipher suites for that 
mode of operation are defined.) A client can indicate that it wants 
to create an anonymous session, by specifying only cipher suites of 
that type (e.g., TLS_DH_anon_WITH_AES_128_CBC_SHA256) in the Client 
Hello message. If acceptable to the server, the server replies with a 
Server Key Exchange message (as opposed to a Server Certificate 
message) that specifies the Diffie-Hellman (ECDH) parameters to be 
employed. This use of Diffie-Hellman (or ECDH) provides perfect 
forward secrecy. (If self-signed certificates were used to offer an 
alternative form of anonymous keying, PFS might not result.)  
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None of the TLS RFCs mandate support anonymous cipher suites, so 
compliant servers and clients need not support these capabilities.  
Nonetheless, support for several of these cipher suites appears to be 
common. 
 
This approach to specifying Diffie-Hellman  parameters differs from 
IKE. IKE uses IANA-registered sets of such parameters, rather than 
passing them in a protocol negotiation. For Diffie-Hellman the use of 
server-specific parameters  does not seem to pose problems in terms of 
interoperability; software and hardware that supports Diffie-Hellman 
is able to deal with a broad range of groups. It might be preferable, 
from a security perspective, to use named groups, as IKE does, since 
such groups can be vetted by the community before publication. For 
Elliptic Curve cryptography, hardware and software support for 
arbitrary curves may not be common. TLS added two extensions for 
elliptic curve cryptography: Supported Elliptic Curves and Supported 
Point Formats. These two extensions enable a client to specify the 
curves and point format that it supports. A server replying to a 
Client Hello message containing these extensions can select a curve 
and point format that it too supports, to ensure interoperability. 
The named curves and point formats are IANA-registered values. A 
client also can declare an ability to support arbitrary curves. In 
this case, the server selects the curve (and point format) and 
conveys its choice “verbosely”.  
 
DANE [RFC6698] provides a mechanism for TLS entities to acquire a 
certificate (or a “raw” public key) based on a domain name. Use of 
key material acquired via DANE is thus fundamentally not anonymous -- 
the entity being authenticated must at least be identified by domain 
name. DANE can provide two types of information about certificates 
used with TLS: (1) Additional checks to be applied in certificate 
verification, and (2) additional trust anchors that should be used by 
the relying party.  Information on additional checks simply provides 
greater assurance to the normal TLS authentication process.    
 
DANE information that provides additional trust anchors can provide 
some additional means for keying that may be pseudonymous.  The 
certificates that are asserted as trust anchors through DANE can have 
any content the domain holder wishes.  Thus, certificate fields that 
are normally used for identification (Subject or Subject Alternative 
Name) need not be checked against the DNS name for the DANE 
record. The only authentication provided by DANE-asserted 
certificates is the binding provided by DANE itself, to the domain 
name under which the DANE records are located. Thus a DANE-supplied 
trust anchor could contain a pseudonym that could be used as an ID 
for keying, directly or indirectly. 
 

RECOMMENDATION: TLS/DTLS already support anonymous encryption, 
but the cipher suites for this capability are not mandatory to 
implement. The relevant RFCs should be revised to mandate 
support for these cipher suites, including both Diffie-Hellman 
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and ECDH variants. The HTTPS RFC should be updated to reflect OK 
goals. Use of a different port for OK support should be 
considered. 

 
5. S/MIME 
	  
S/MIME [RFC5751] makes no mention of anonymous keying, opportunistic 
encryption, or pseudonymous keying. There is no explicit access 
control context enforced by S/MIME, unlike IPsec, so the term 
opportunistic encryption is not directly applicable. However, S/MIME 
makes use of CMS [RFC5652] for message encryption, and CMS explicitly 
notes support for anonymous keying, in Section 6.2.2: 
 

“The originatorKey alternative includes the algorithm identifier 
and sender's key agreement public key.  This alternative permits 
originator anonymity since the public key is not certified.” 

 
Thus S/MIME supports anonymous keying, with respect to a sender’s 
identity, in the context of key management. There also is no 
requirement that an S/MIME message be digitally signed; one may send 
an “Enveloped-Only” message (Section 3.3 of [RFC5751]).  (This is 
reiterated in Section 2.4.2, which notes that a sender is not 
required to digitally sign a message.) Thus, unauthenticated, 
encrypted message transmission is inherently supported by S/MIME.  
 
S/MIME also defines “triple-wrapped” messages [RFC2634]. If a sender 
employs triple wrapping, the outer layers of the message could 
conceal the sender’s identity, even from intermediate mail relays, 
but provide 1-way authentication for the ultimate recipient. (The 
triple wrapping facility also enables access controls to be imposed 
by the innermost S/MIME headers.) 
 
The e-mail address of the sender of a message is part of the RFC 822 
format [RFC822], so anonymous keying for the sender requires use of a 
mailbox identifier that is not (obviously) linked to the “real world” 
persona of the sender. This requirement that is trivial to achieve 
given the large number of mailbox providers that allow users to 
select arbitrary names. Use of a pseudonymous mailbox ID does not 
make S/MIME an example of pseudonymous keying, since the key 
management yields anonymous keying. (RFC 5750 does not require that 
the sender’s e-mail address appear in the certificate, but many 
S/MIME implementations require its presence to facilitate locating 
the sender’s certificate. Thus a sender might have to resort to 
pseudonymous keying to achieve interoperability with such clients.) 
 
A sender in S/MIME could choose to employ a self-signed certificate. 
This would support message signing, distinct from the envelope-only 
S/MIME option described above, and could be viewed as consistent with 
a LoF key management model. If the identity asserted in the 
certificate is a pseudonym, this would be considered pseudonymous 
encryption for S/MIME. The certificate handling specification for 
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S/MIME [RFC5750] does not preclude acceptance of self-signed 
certificates, but it does restrict their use to representing CAs, and 
it warns of the dangers of accepting such certificates. Thus, strict 
compliance with [RFC5750] (and [RFC5280]) would require a sender to 
generate a self-signed CA certificate and issue an end-entity 
certificate under that CA certificate, for use with S/MIME. This does 
not represent a significant technical hurdle, but we suspect that 
most S/MIME implementations will accept self-signed EE certificates, 
which is consistent with [RFC6818]. 
 
For a recipient, achieving anonymous keying is slightly different. 
S/MIME operates in a staged delivery context, thus each recipient of 
an encrypted message  must make available public key data for a sender 
to use for key transport or key agreement (see Section X.X below). In 
the nominal case a recipient would publish its public key data in a 
directory (e.g., LDAP [RFC4511]), and a sender would retrieve this 
data to enable encryption of a message key. (The message, or content, 
encryption, key, is used to encrypt the message content.) The public 
key of the target (recipient) need not be certified. However, this 
form of key distribution is rarely used for S/MIME in the public 
Internet (vs. enterprise) context. Publishing e-mail addresses in a 
generally-accessible directory is perceived as facilitating spam, and 
thus this public key distribution approach is discouraged. It would 
be possible to post a pseudonymous certificate in a repository, but 
it’s not clear that this would be useful for most senders. There is 
also the possibility that an adversary could monitor repository 
accesses in an effort to identify potential recipients (and senders). 
 
An alternative key distribution option is for a sender to receive 
public key data for a recipient as a result of a signed, but not 
encrypted, message from the recipient. S/MIME calls for 
implementations to cache capabilities information about senders 
(Section 2.7.2 of [RFC5751]), to facilitate this form of inband 
cryptographic data transfer. This represents an alternative way for a 
prospective recipient to convey public key info. However, this 
procedure is at odds with the notion of opportunistic encryption and 
opportunistic keying, as it calls for a priori, per-peer 
configuration of data to enable later encrypted communication. If the 
public key data were conveyed in a fashion that does not authenticate 
the sender, then this would enable later, anonymous keying. However, 
CMS and S/MIME, make no special provisions for such public key data 
transfers. A prospective recipient could employ a self-signed 
certificate to sign a message, and thus convey key material in a way 
that supports pseudonymous keying. However, this creates an obvious 
vulnerability that might be worse than retrieving a public key from 
an untrusted repository.  
	  

RECOMMENDATION: OK support in S/MIME represents a significant 
challenge. Distribution of recipient key material via a 
directory systems seems unlikely to be viable, because of 
concerns about SPAM. It is not clear that most users would want 
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to receive encrypted e-mail that does not (securely) identify 
the sender, although the “triple-wrapping” facility of S/MIME 
could mitigate this concern. Enterprise environments rely on 
content filtering to reject SPAM and malicious attachments, so 
true end-to-end encryption is likely to not be acceptable in 
those contexts. Also, use of “web mail” interfaces precludes use 
of S/MIME on an end-to-end basis, raising a different set of 
concerns. 

	  
 
6. SSH 
 
SSH, as described in [RFC4251], is “a protocol for secure remote 
login and other secure network services over an insecure network.”  
The SSH transport protocol [RFC4253] typically operates over TCP, 
providing a tunnel that offers confidentiality and connection-
oriented integrity; it also may preform compression.  
 
SSH makes use of asymmetric cryptography to distribute symmetric keys 
for the encrypted (and integrity-protected) tunnel between a client 
and a server. The tunnel protocol mandates server authentication, but 
does not provide client authentication. Thus the tunnel protocol 
provides client-anonymous keying.  
 
The SSH architecture [RFC4251] specifies an authentication protocol 
[RFC4252] that operates within the tunnel protocol, providing client 
authentication. The authentication protocol mandates support for 
public-key based client authentication, however, the specification 
states that “All implementations MUST support this method; however, 
not all users need to have public keys, and most local policies are 
not likely to require public key authentication for all users in the 
near future.” In practice, several authentication methods appear to 
be commonly employed, e.g., passwords, public keys, and SecurID 
[SecurID cite]. (Public keys seem to be very commonly used in 
internal, enterprise environments [draft-ylonen-sshkeybcp-01.txt].  
 
The SSH tunnel protocol, like TLS and IKE, employs an algorithm 
negotiation handshake, initiated by the client, using IANA-registered 
identifiers. (A client or server also MAY “guess” which algorithm is 
supported by a the other side, and use that algorithm to initiate a 
key exchange.)  The handshake determines which key management, session 
encryption, integrity, and compression algorithms will be employed. 
 
SSH implementations usually rely on a leap of faith mechanism to 
initially convey a server’s public key to a client, but also can make 
use of certified keys for servers [RFC4521]. Because SSH is most 
often deployed in an enterprise context, not in the public Internet, 
the use of an LoF mechanism is a reasonable option. (There is a 
provision for binding a user-supplied name for a server with the 
public key accepted during the LoF initialization procedure. This 
mechanism alerts a user when the public key changes, a good security 
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practice.) If a server has a certified public key the CA would 
typically be locally managed, not a public, trusted third party CA as 
usually employed in browsers. An alternative to using a local CA to 
issue certificates, is to publish a “key fingerprint” in the DNS, 
protected with DNSSEC [RFC4255].  
 
Both Diffie-Hellman key agreement and RSA-based key transport 
mechanism are defined for the tunnel protocol, with the former 
REQUIRED and the latter RECOMMENDED. Diffie-Hellman groups are 
specified by reference to IANA-registered identifiers [RFC4250], 
analogous to the way IKE defines such groups. ECDH key agreement also 
may be employed, as specified in [RFC5656]. The curves are specified 
by reference to IANA-registered identifiers. 
 

RECOMMENDATION: SSH appears to be used primarily in enterprise 
environments, and for net management by ISPs. To that extent it 
is not clear that support for OK is perceived as critical by the 
administrators for these environments. 

 
 
7. VoIP 
	  
Encryption in the VoIP environment is complex, because different 
protocols are employed for signaling and for media, and different 
security mechanisms have been defined for each. 
 
Signaling for VoIP, using the “trapezoid” model, is performed using 
SIP [RFC3261]. That RFC defines several approaches to providing 
confidentiality, integrity, and authenticity for SIP signaling. The 
links between a SPI entity and a SIP proxy, or between a pair of SIP 
proxies, can be secured using IPsec or TLS (Section 26.2.1 of 
[RFC3261]). The SIP specification mandates support for TLS-based 
encryption (with one-way or two-way authentication), by SIP proxies, 
registration servers and redirect servers. Support of this mechanism 
is RECOMMENDED for SIP UAs. Support for IPsec is optional. Previous 
discussions of the anonymity and authentication options for the key 
management mechanisms employed by TLS and IPsec are applicable here. 
However, it appears that neither TLS nor IPsec is commonly used to 
protect SIP links.  
 
The SIPS URI scheme (Section 26.2.2 of [RFC3261]) represents an 
explicit request by a callee to the caller and to each SIP proxy to 
use TLS to protect each SIP hop. SIPS mandates use of mutual 
authentication via TLS, using client and server certificates. Support 
for SIPS also mandated in [RFC3261]. However, there no evidence to 
indicate that SIPS is widely used (or supported) by the SIP entities 
that also are required to support TLS. 
 
The SIP  specification also describes how to use S/MIME to encrypt 
some VoIP signaling data on an end-to-end (UA to UA) basis (Section 
26.2.4) This mechanism does not offer protection for most of the 
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signaling data, because that data must be visible to SIP proxies, so 
this option is not especially relevant to encryption of such data, 
and attendant user (UA) anonymity. Support for S/MIME use is optional 
for UAs, but here too, there is no evidence to suggest that this 
security mechanism is widely deployed. 
 
The encryption mechanisms mandated for VoIP signaling do not tend to 
offer anonymity, but they also appear to not be used in many (most?) 
deployments. So the lack of anonymity for these mechanisms is largely 
irrelevant to the current discussion. 
 
VoIP media is secured using SRTP [RFC3711]. SRTP offers 
confidentiality and data integrity for VoIP media and media control 
protocols (RTP and RTCP [RFC3350]), with an optional anti-replay 
feature. SRTP relies on other protocols to perform key management. 
RFC 3711 identified three candidate key management techniques, none 
of which was available as an RFC at the time SRTP was published. 
Subsequently the three mechanisms were defined: KINK [RFC4430], MIKEY 
[RFC3830], and mechanisms described in [RFC3711]. Each of these is 
discussed below. 
 
There also is an ability to transport, via SDP [RFC4566] a symmetric 
key for use with SRTP, using the “k=” field (Section 5.12). If this 
method of key management for SRTP is employed it exposes the key to 
every SIP proxy en route (unless the S/MIME mechanism noted above is 
employed). It also exposes the key to any passive wiretapper along 
the route, unless TLS or IPsec is employed to protect the links 
between SIP entities. It appears that this mechanism, which is 
vulnerable to MITM attacks at MTAs, is not widely used. 
 
The SDP specification was updated to include additional mechanisms to 
support key management for media streams (e.g., SRTP) in [RFC4568]. 
This RFC defined the “crypto” attribute, to signal parameters for 
media streams security, e.g., symmetric encryption algorithms, 
integrity algorithms, and key data. The key data represents an 
encryption key and associated data in plaintext form, analogous to 
the “k=” field noted above. [RFC4568] includes session parameters 
labeled “UNAUTHENTICATED_SRTP” and “UNAUTHENTICATED_SRTCP” (Section 
6.3.3), but these do not refer to key management for these media 
stream protocols. 
 
KINK was one of the candidates cited in the SRTP  specification, 
although it was not specifically focused on VoIP. Because KINK is 
based on Kerberos, it is not appropriate for the scale of the public 
Internet, and there is no indication that it has been used with SRTP.  
 
MIKEY was developed as a generic key management protocol, for unicast 
and multicast contexts (including one-to-many and many-to-many). 
While not specific to the VoIP environment, the MIKEY specification 
includes several references to how it can be used with SDP and many 
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references to SRTP. In the VoIP context, MIKEY messages would be 
transported using SIP. 
 
MIKEY incorporated key agreement (based on Diffie-Hellman), key 
transport (based on RSA) and “pre-shared” key (based on use of cached, 
symmetric key material) modes of operation. Support for mutual 
authentication via pre-shared keys and public key transport is 
mandatory (Sections 3.1 and 3.2). Support for Diffie-Hellman key 
agreement is optional (Section 3.3), but that mode of operation 
assumes use of certificates for authentication. There is one 
reference to the use of self-signed certificates (page 11), but only 
in the context of pre-shared keys. The MIKEY specification explicitly 
notes that protection of the identity of communicating parties was 
“not a main design goal.” RFC 5410 describes how to carry MIKEY is  
messages in the 3GPP context, in support of broadcast/multicast 
messaging. This use if codified in a 3GPP security specification 
[TS33.2436]. Nonetheless, it is not apparent that MIKEY is widely 
used in the VoIP context.  
 
The third key management method cited in [RFC3711] was later 
published as “Key Management Extensions for Session Description 
Protocol (SDP) and Real Time Streaming Protocol (RTSP)” [RFC4567]. 
This specification focused on key management for SRTP, trying to 
improve on the vulnerable mechanisms defined in [RFC4568]. It too 
defines extensions to SDP to carry key management data for protecting 
a media stream; it is not a specification of a key management 
protocol per se. (For example, it provides an example of how it could 
be used to transport MIKEY key management data.) The SDP extensions 
defined here enable negotiation of a key management protocol, 
analogous to the negotiation of other media stream features, e.g., 
codecs, as well as a means to transport key management data. Because 
this specification does not define a specific key management scheme, 
it is not directly relevant to supporting OK, anonymous keying or 
pseudonymous keying. 
 
The current, suggested method to provide keys for SRTP sessions is to 
use DTLS [RFC5763] in combination with SRTP. This combination is 
commonly referred to as DTLS-SRTP [RFC6347]. DTLS-SRTP uses a DTLS 
handshake in the media  plane to establish keys which are then used 
with SRTP.  The DTLS  endpoints are mutually authenticated via 
certificates but these  certificates may be self-signed (Section 1). 
Authentication is  primarily provided by exchanging digests of the 
certificates in the  SDP, thus tying the media layer authentication to 
the identity asserted in the signaling layer. Thus pseudonymous 
keying or one-way anonymous keying  is supported as well as mutually-
authentication encryption (Section 8.7), depending on which 
identities are provided via SDP. Ephemeral, self-signed certificates 
can be used to enable anonymous calls (Section 6.1). DTLS supports 
perfect forward secrecy using Diffie-Hellman and ECDH. 
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RECOMMENDATION: OK use needs to be reconciled with the goals of 
the STIR effort in the IETF. The VoIP encryption landscape is 
complex, with many options, few of which appear to be widely 
deployed. A new RFC (or set of RFCs) dealing with security for 
VoiP probably will be needed if OK is to be successful in this 
context. 

 
 
8. IMAP(v4), POP3 and ACAP 
	  
The security considerations section (Section 11) of [RFC3501], IMAP 
(v4 rev 1) mandates support for TLS (1.0) via use of the STARTTLS 
command [RFC2595], thus an encryption capability is present in 
implementations that comply with that IMAP RFC. RFC 2595 specifies 
how to use TLS to protect sessions created for IMAP, POP3 and ACAP. 
It mandates use of TLS (1.0) with server-based authentication, based 
on use of a server certificate. It provides clear rules for how to 
authenticate the server’s identity; specifically it requires an 
authentication check based on the server identity (as used by the 
client when establishing a connection to the server). The identity 
represented in the server certificate, presented in the server 
Certificate message (from the TLS handshake), must match the 
anticipated server identity. Rules for comparing the server identity 
to a certificate Subject or Subject Alternative name, including 
support for “wildcard” names, are provided.  
 
The principal goal of these security mechanisms is to prevent 
disclosure of a password used by a client to authenticate to a mail 
server.  Server authentication is a central feature of the protocols, 
and so two-way anonymous keying is not supported by IMAP (or POP3 or 
ACAP.) However, the use of TLS here does not provide client 
authentication, so these specifications do provide client-anonymous 
keying. (Anonymous access by clients is supported, optionally, via 
the ANONYMOUS SASL [RFC2245] command, but this typically limits the 
set of mailboxes accessible by a user, and so it does not seem 
generally applicable.) Pseudonymous keying for a server is not 
supported, based on normal certificate validation processes.  
 

RECOMMENDATION: Server authentication is a requirement for these 
protocols, and client authentication is typically effected via 
passwords, bit via client certificates used with TLS. Thus this 
set of protocols do not appear to be good candidates for OK, in 
the general sense. Also, TLS protection of IMAP and POP3 appears 
to be common, so this may not be a significant vulnerability. 
Finally, many users access mailboxes via “web mail” interfaces, 
and in that context encrypted communication is just another 
HTTP/HTTPS example, as discussed in Section 4. 
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