Media Synchronization on the Web

Ingar M. Arntzen, Njal T. Borch and Frangois Daoust

Abstract The Web is a natural platform for multimedia, with universal reach, pow-
erful backend services and a rich selection of components for capture, interactivity
and presentation. In addition, with a strong commitment to modularity, composi-
tion and interoperability, the Web should allow advanced media experiences to be
constructed by harnessing the combined power of simpler components. Unfortu-
nately, with timed media this may be complicated, as media components require
synchronization to provide a consistent experience. This is particularly the case for
distributed media experiences. In this chapter we focus on temporal interoperability
on the Web, how to allow heterogeneous media components to operate consistently
together, synchronized to a common timeline and subject to shared media control. A
programming model based on external timing is presented, enabling modularity, in-
teroperability and precise timing among media components, in single-device as well
as multi-device media experiences. The model has been proposed within the W3C
Multi-device Timing Community Group as a new standard, and this could establish
temporal interoperability as one of the foundations of the Web platform.

Key words: media synchronization, media orchestration, motion model, timing ob-
ject, multi-device

Ingar M. Arntzen
Norut Northern Research Institute, Tromsg, Norway e-mail: ingar.arntzen @norut.no

Njal T. Borch
Norut Northern Research Institute, Tromsg, Norway e-mail: njaal.borch@norut.no

Frangois Daoust
World Wide Web Consortium (W3C), Paris, France e-mail: f{d@w?3.org

2 Ingar M. Arntzen, Njal T. Borch and Frangois Daoust

1 Introduction

The Web is all about modularity, composition and interoperability, and this applies
across the board, from layout and styling defined in Hypertext Markup Language
(HTML) to JavaScript-based tools and frameworks. Unfortunately, there is a notable
exception to this rule. Composing presentations from multiple, timed media compo-
nents is far from easy. For example, consider a Web page covering motor sport, us-
ing Web Audio [42] for sound effects and visuals made from HTMLS5 [19] videos, a
map with timed GPS-data, WebGL [45] for timed infographics, a timed Twitter [39]
widget for social integration, and finally an ad-banner for paid advertisements timed
to the race.

In this chapter we focus on media synchronization challenges of this kind, mak-
ing multiple, heterogeneous media components operate consistently with reference
to a common timeline, as well as common media control. We call this temporal in-
teroperability. Lack of support for temporal interoperability represents a significant
deviation from the core principles of the Web. Harnessing the combined powers of
timed media components constitutes a tremendous potential for Web-based media
experiences, both in single-device and multi-device scenarios.

The key to temporal interoperability is finding the right approach to media syn-
chronization. There are two basic approaches: internal timing or external timing.
Internal timing is the familiar approach, where media components are coordinated
by manipulating their control primitives. External timing is the opposite approach,
where media components are explicitly designed to be parts of a bigger experience,
by accepting direction from an external timing source.

Though internal timing is currently the predominant approach in Web-based me-
dia, external timing is the key to temporal interoperability. If multiple media com-
ponents are connected to the same source of external timing, synchronized behav-
ior across media components follows by implication. This simplifies media syn-
chronization for application developers. Furthermore, by allowing external timing
sources to be synchronized and shared across a network, external timing is also a
gateway to precise, distributed multimedia playback and orchestration on the Web
platform.

This chapter provides an introduction to external timing as well as the flexible
media model and programming model that follow from this approach. The program-
ming model is proposed for standardization within the W3C Multi-device Timing
Community Group (MTCG) [32] to encourage temporal interoperability on the Web
platform. The timing object is the central concept in this initiative, defining a com-
mon interface to external timing and control for the Web. The MTCG has published
a draft specification for the timing object [7] and also maintains Timingsrc [3], an
open source JavaScript implementation of the timing object programming model.
The chapter also describes the motion model, which provides online synchroniza-
tion of timing objects.

The chapter is structured as follows: Section 3 defines media synchronization
as a term and briefly presents common challenges for synchronization on the Web.
The motion model is presented in Section 4 followed by an introduction to tempo-

Media Synchronization on the Web 3

ral interoperability and external timing in Section 5. Section 6 surveys the abilities
and limitations of Web technologies with respect to media synchronization. Sec-
tion 7 gives a more detailed presentation of the motion model, including online
motion synchronization, synchronization of AV media and timed data. Evaluation
is presented in Section 9. Section 10 briefly references the standardization initiative
before conclusions are given in Section 11.

2 Central Terms

This section lists central terms used in this chapter.

Timeline: logical axis for media presentation. Values on the timeline are usually
associated with a unit, e.g. seconds, milliseconds, frame count or slide number.
Timelines may be infinite, or bounded by a range (i.e minimum and maximum val-
ues).

Clock: a point moving predictably along a timeline, at a fixed, positive rate. Hard-
ware clocks ultimately depend on a crystal oscillator. System clocks typically count
seconds or milliseconds from epoch (i.e. 1. Jan 1970 UTC), and may be corrected
by clock synchronization protocols (e.g. NTP [27], PTP [14]). From the perspective
of application developers, the value of a clock may be read, but not altered.

Motion: a unifying concept for media playback and media control. Motion repre-
sents a point moving predictably along a timeline, with added support for flexibility
in movement and interactive control. Motions support discrete jumps on the time-
line, as well as a variety of continuous movements expressed through velocity and
acceleration. Not moving (i.e. paused) is considered a special case of movement.
Motion is a generalization over classical concepts in multimedia, such as clocks,
media clocks, timers, playback controls, progress, etc. Motions are implemented by
an internal clock and a vector describing current movement (position, velocity, ac-
celeration), timestamped relative to the internal clock. Application developers may
update the movement vector of a motion at any time.

Timed data: data whose temporal validity is defined in reference to a timeline. For
instance, the temporal validity of subtitles are typically expressed in terms of points
or intervals on a media timeline. Similarly, the temporal validity of video frames
essentially maps to frame-length intervals. Timed scripts are a special case of timed
data where data represents functions, operations or commands to be executed.

Continuous media: Typically audio or video data. More formally, a subset of
timed data where media objects cover the timeline without gaps.

Media component: essentially a player for some kind of timed data. Media com-
ponents are based on two basic types of resources: timed data and motion. The
timeline of timed data must be mapped to the timeline of motion. This way, motion
defines the temporal validity of timed data. At all times, the media component works

4 Ingar M. Arntzen, Njal T. Borch and Frangois Daoust

to produce correct media output in the U, given the current state of timed data and
motion. A media component may be anything from a simple text animation in the
Document Object Model (DOM), to a highly sophisticated media framework.

User agent: any software that retrieves, renders and facilitates end user interaction
with Web content, or whose user interface is implemented using Web technologies.

Browsing context: JavaScript runtime associated with Web document. Browser
windows, tabs or iframes each have their own browsing context.

Iframe: Web document nested within a Web document, with its own browsing
context.

3 Media Synchronization

Dictionary definitions of media synchronization typically refer to presentation of
multiple instances of media at the same moment in time. Related terms are media
orchestration and media timing, possibly emphasizing more the importance of me-
dia control and timed scheduling of capture and playback. In this chapter we use the
term media synchronization in a broad sense, as a synonym to media orchestration
and media timing. We also limit the definition in a few regards:

e Media synchronization on the Web is client-side and clock-based. The latencies
and heterogeneity of the Web environment requires a clock-based approach for
acceptable synchronization.

e Media synchronization involves a media component and a clock. The term rela-
tive synchronization is reserved for comparisons between two or more synchro-
nized media components.

3.1 Challenges

Media synchronization has a wide range of use-cases on the Web, as illustrated by
Table 1. Well known use-cases for synchronization within a single Web page include
multi-angle video, accessibility features for video, ad-insertion, as well as media ex-
periences spanning different media types, media frameworks, or iframe boundaries.
Synchronization across Web pages allow Web pages to present alternative views
into a single experience, dividing or duplicating media experiences across devices.
Popular use-cases in the home environment involve collaborative viewing, multi-
speaker audio, or big screen video synchronized with related content on handheld
devices. The last use-cases on the list target global scenarios, such as distributed
capture and synchronized Web visualizations for a global audience.

Media Synchronization on the Web 5

Table 1 Common challenges for media synchronization on the Web.

Synchronization challenges Use-cases
across media sources multi-angle video, ad-insertion
across media types video, WebAudio, animated map
across iframes video, timed ad-banner
across tabs, browsers, devices split content, interaction
across platforms ‘Web, native, broadcast
across people and groups collaboration, social
across Internet global media experiences

3.2 Approach

The challenges posed by all these use-cases may be very different in terms of com-
plexity, requirements for precision, scale, infrastructure and more. Still, we argue
that a single, common solution would be beneficial. Implementing specific solutions
for specific use-cases is very expensive and time-consuming, and lays heavy re-
strictions on reusability. Even worse, circumstances regarding synchronization may
change dynamically during a media session. For instance, a smartphone involved in
synchronization over the local network will have to change its approach to media
synchronization once the user leaves the house, or switches from WiFi to the mo-
bile network. Crucially though, by solving media synchronization across Internet,
all challenges listed above are solved by implication. For instance, if video synchro-
nization is possible across Web pages on the Internet, then synchronizing two videos
within the same Web page is just a special case. It follows that the general solution
to media synchronization on the Web is distributed and global in nature. Locality
may be exploited for synchronization, yet only as optimization.

4 The Motion Model

The primary objectives of the motion model are global synchronization, Web avail-
ability and simplicity for Web developers. Global synchronization implies media
synchronization across the Internet. Web availability means that no additional as-
sumptions can be introduced for media synchronization. If a Web browser is able to
load an online Web page, it should also be able to synchronize correctly. The model
proposed for this can be outlined in three simple steps:

e Media clock and media controls are encapsulated in one concept, and represented
as a stateful resource. This chapter uses the term motion' for this concept.

1 motion as in motion pictures. Moving through media still remains a good way to conceptualize

media experiences, not least as media experiences become virtual and immersive.

6 Ingar M. Arntzen, Njal T. Borch and Frangois Daoust

e A motion is an online resource, implying that it is hosted by a server and identi-
fiable by a Universal Resource Locator (URL).
e Media components® synchronize themselves relative to online motions.

According to the model, media synchronization should be a consequence of con-
necting multiple media components to the same online motion. This way, rich syn-
chronized multi-device presentation may be crafted by connecting relevant media
components to the same online motion, as illustrated in Fig. 1.

A B C
AY 1 r
A\ !
N3/
®
Online
Motion

Fig. 1 Media components on three different devices (A,B,C), all connected to an online motion
(red circle). Media control requests (e.g. pause/resume) target the online motion and are transmitted
across the Internet (light blue cloud). The corresponding state change is communicated back to all
connected media components. Each media component adjusts its behaviour independently.

Importantly, the practicality of the motion model depends on Web developers be-
ing shielded from the complexities of distributed synchronization. This is achieved
by having a timing object locally in the Web browser. The timing object acts as
an intermediary between media components and online motions, as illustrated by
Fig. 2. This way, the challenge of media synchronization is divided in two parts.

e motion synchronization: timing object precisely synchronized with online motion
(Internet problem).

e component synchronization: media component precisely synchronized with tim-
ing object (local problem).

Motion synchronization ensures that timing objects connected to the same online
motion are kept precisely synchronized. The logic required for motion synchroniza-
tion could be supported by Web browsers natively (if standardized), or imported into
Web pages as a third party JavaScript library. Motion synchronization is outlined in
Section 7.3.

2 media component: anything from a simple DOM element with text, to a highly sophisticated
media player or multimedia framework.

Media Synchronization on the Web 7

1 2 1

Y

\

AllAl]B c1|

Online
Motion

Fig. 2 Timing objects (red unfilled circles) mediate access to online motion. Timing objects may
be shared by independent media components within the same browing context.

Component synchronization implies that a media component continuously strives
to synchronize its activity relative to a timing object. As such, component synchro-
nization is a local problem. Media components always interface with timing objects
through a well defined Application Programmer Interface (API) (see Section 7.1).
Examples of component synchronization are provided in Section 7.4 and Section
7.5.

5 Temporal Interoperability

Temporal interoperability implies that multiple, possibly heterogeneous media com-
ponents may easily be combined into a single, consistently timed media experi-
ence [5]. We argue that temporal interoperability must be promoted as a principal
feature of the Web, and finding the right approach to media synchronization is key to
achieving this. In this section we distinguish two basic approaches, internal timing
and external timing, and explain why external timing is better suited as a basis for
temporal interoperability. Note that extenal timing is provided by motions® accord-
ing to the motion model.

5.1 Internal timing

Internal timing (Fig. 3 - left) is the most familiar approach, where media compo-
nents are typically media players or frameworks internalizing aspects of timing and

3 mediated by timing objects

8 Ingar M. Arntzen, Njal T. Borch and Frangois Daoust

Motion Motion

® ® . Sync . Sync
‘_—I_| —_—r
Sync Motion

Fig. 3 Blue rectangles represent media components, red symbols represent motion, and green
symbols represent the process of media synchronization. To the left: internal timing and external
media synchronization. To the right: external timing and internal media synchronization.

control. Synchronizing such media components is an external process, utilizing the
control primitives provided by each component.

Internal timing means that media components implement timed operations in-
ternally, based on the system clock or some other (hardware) timer and state rep-
resenting motion. Timed operations may also be affected by other internal factors,
such as the buffering of timed data, time consumption in processing, or delays in Ul
pipelines. The outside world is typically given access to the internal motion of the
media component via interactive elements in the User Interface (Ul), or program-
matically through control primitives defined in the component API. For example,
the HTMLS media element allows media playback to be requested by clicking the
play button or invoking the play method. The media element then organizes media
playback in its own time, subject to delays in initialisation procedures, buffering,
decoding and AV-subsystems.

5.2 External timing

External timing (Fig. 3 - right) is the opposite approach, where media components
consider themselves parts of a bigger experience. Such media components are ex-
plicitly designed to take direction from an external motion, and always do their best
to synchronize their own behavior accordingly. If multiple media components are
connected to the same external motion, synchronized behavior across media com-
ponents follows by implication. In this approach, media synchronization is redefined
as an internal challenge, to be addressed by each media component independently.

Media control: The external timing approach implies that control over the media
component is exercised indirectly, by manipulating the external motion instead of
the media component. For instance, if the external motion is paused or time-shifted,
the media component must react accordingly. Appropriate controls for the media
component may still be exposed through the UI or API of the component. However,
such control requests must be routed to the external motion. This ensures that control
applies to all media components connected to the same external motion. It also
ensures that media components may process control requests without regard to the
origin of the request. Media components directed by external motions may still make

Media Synchronization on the Web 9

use of an internal clock. Importantly though, the external motion takes precedence,
so deviations must be compensated for by adjusting the internal clock.

Precision: Precision is a key ambition in media synchronization. With internal tim-
ing, synchronization with other media is performed using the control primitives that
each media component defines. In the Web environment, such control primitives
have typically not been designed with precise timing in mind (see Section 6.1).
This makes high quality synchronization hard to achieve. In this model media syn-
chronization generally gets more difficult as the number of components increases.
Heterogeneity in media types and control interfaces complicate matters further. For
precise synchronization, external timing appears to be a better approach. Media syn-
chronization is solved internally in media components, where it can be implemented
with unrestricted access to the internal state and capabilities of the component. Fur-
thermore, the synchronization task is shifted from external application developers to
the author of the media component. This makes sense, as the author likely has better
understanding of how the media component works. It also ensures that the problem
may be solved once, instead of repeatedly by different application developers.

Buffering: Another distinctive feature of the external motion approach is that mo-
tion is not sensitive to the internal state (e.g. data availability) of any media compo-
nent. For instance, external motion might describe playback while a particular media
component still lacks data. In the external motion approach, media components must
always align themselves with the external motion, to the best of their abilities. For
example, media components may adapt by buffering data further ahead, changing
to a different data source (e.g. lower bitrate) or even changing to a different pre-
sentation mode (e.g audio only). This way, playback may continue undisturbed and
media components join in as soon as they are able to. This is particularly impor-
tant in multi-device scenarios, where a single device with limited bandwidth might
otherwise hold back the entire presentation. On the other hand, if the readiness of a
particular media component is indeed essential to the experience, this may be solved
in application code, by pausing and resuming the external motion.

Master-Slave: Asymmetric master slave synchronization is a common pattern in
media synchronization. The pattern implies that internal motion of a master media
component is used as external motion for slave media components. However, with
multiple media components all but one must be a slave. In the external timing ap-
proach all media components are slaves, and the external motion itself is the master.
This avoids added complexities of the master-slave pattern, and provides a symmet-
ric model where each media component may request control via the external motion.
On the other hand, if asymmetry is indeed appropriate for a given application, this
may easily be emulated. For instance, applications may ensure that only one specific
media component may issue control requests to the external motion.

Live and on-demand: Solutions for live media often target minimized transport
latency for real-time presentation. In other words, the internal motion of live media
components is tied to data arrival. This may be problematic in some applications,
as differences in transport latency imply that media components will be out of sync.

10 Ingar M. Arntzen, Njal T. Borch and Frangois Daoust

For example, live Web-based streaming solutions may be seconds apart, even on
the same network. Timing issues with live media are even more evident in rich me-
dia productions involving multiple live feeds with very different production chains
and transport mechanisms. The external timing approach provides the control and
flexibility needed for applications to deal with these realities in appropriate ways.
With an external motion representing the official live motion, multiple live media
sources may be presented in a time-consistent way across components and screens.
Such a live motion could be selected to cover at least a majority of viewers. Fur-
thermore, inability to follow the official live motion would be detected by media
components internally, potentially triggering application specific reactions. For in-
stance, the viewer could be prompted to switch to a private, slightly time-shifted
motion suitable for his or her specific environment.

6 State of the Web

With temporal interoperability established as a goal for the Web, this section surveys
current abilities and limitations of the Web with respect to media synchronization.
The Web platform* is composed of a series of technologies centered around the Hy-
pertext Markup Language (HTML). These technologies have been developed over
the years and have grown steadily since the advent of HTML5 [19], allowing Web
applications to access an ever-increasing pool of features such as local storage, geo-
location, peer-to-peer communications, notifications, background execution, media
capture, and more. This section focuses on Web technologies that produce or con-
sume timed data, and highlights issues that arise when these technologies are used
or combined with others for synchronization purposes. These issues are classified
and summarized at the end of the section. Please note that this section is written
early 2017, and references technologies that are still under development.

6.1 HTML

First versions of the HTML specification (including HTML3.2 [18]) were target-
ing static documents and did not have any particular support for timed playback.
HTMLS introduced the Audio and Video media elements to add support for audio
and video data playback. Web applications may control the playback of media
elements using commands such as play or pause as well as properties such as
currentTime (the current media offset) and playbackRate (the playback speed). In
theory, this should be enough to harness media element playback to any synchro-
nization logic that authors may be willing to implement. However, there are practical
issues:

In this chapter, the Web is seen through the eyes of an end user browsing the Web with his/her
favorite user agent in 2017.

Media Synchronization on the Web 11

1. The playback offset of the media element is measured against a media clock,
which the specification defines as: user-agent defined, and may be media resource-
dependent, but [which] should approximate the user’s wall clock. In other words,
HTMLS does not impose any particular clock for media playback. One second
on the wall clock may not correspond to one second of playback, and the re-
lationship between the two may not be linear. Two media elements playing at
once on the same page may also follow different clocks, and thus media offset of
these two media elements may diverge over time even if playback was initiated
at precisely the same time.

2. HTMLS gives no guarantee about the latency that the software and the hardware
may introduce when the play button is pressed, and no compensation is done to
resorb that time afterwards.

3. The media clock in HTMLS5 automatically pauses when the user agent needs to
fetch more data before it may resume playback. This behavior matches the ex-
pectations of authors for most simple media use cases. However, more advanced
scenarios where media playback is just a part of a larger and potentially cross-
device orchestration would likely require that the media clock keeps ticking no
matter what.

4. The playbackRate property was motivated by the fast forward and rewind fea-
tures of Digital Video Disc (DVD) players and previously Videocassette Recorders
(VCR). It was not meant for precise control of playback velocity on the media
timeline.

To address use cases that would require synchronized playback of media ele-
ments within a single page, for instance to play a sign language track as an overlay
video on top of the video it describes, HTMLS5 introduced the concept of a media
controller [23]. Each media element can be associated with a media controller and
all the media elements that share the same media controller use the same media
clock, allowing synchronized playback. In practice though, browser vendors did not
implement media controllers and the feature was dropped in HTMLS5.1 [21]. It is
also worth noting that this mechanism was restricted to media elements and could
not be used to orchestrate scenarios that involved other types of timed data.

While sometimes incorrectly viewed as a property of the JavaScript language, the
setTimeout, setinterval and other related timer functions, which allow apps to sched-
ule timeouts, are actually methods of the window interface, defined in HTMLS.
These methods take a timeout counter in milliseconds, but the specification only
mandates that Web browsers wait until at least this number of milliseconds have
passed (and only provided the Web page has had the focus during that time). In
particular, Web browsers may choose to wait a further arbitrary length of time. This
allows browsers to optimise power consumption on devices that are in low-power
mode. Even if browsers do not wait any further, the event loop may introduce further
delays (see Section 6.4). Surprisingly, browsers also fire timers too early on occa-
sion. All in all, the precision of timeouts is not guaranteed on the Web, although
experience shows that timeouts are relatively reliable in practice.

12 Ingar M. Arntzen, Njal T. Borch and Frangois Daoust

6.2 SMIL and Animations

Interestingly, one of the first specifications to have been published as a Web stan-
dard after HTML3.2 [18], and as early as 1998, was the Synchronized Multimedia
Integration Language (SMIL) 1.0 specification [35]. SMIL allowed integrating a
set of independent multimedia objects into a synchronized multimedia presentation.
SMIL 1.0 was the first Web standard to embed a notion of timeline (although it was
only implicitly defined). The specification did not mandate precise synchroniza-
tion requirements: the accuracy of synchronization between the children in a paral-
lel group is implementation-dependent. Support for precise timing has improved in
subsequent revisions of SMIL, now in version 3.0 [36].

No matter how close to HTML it may be, SMIL appears to Web application
developers as a format on its own. It cannot simply be added to an existing Web
application to synchronize some of its components. SMIL has also never been prop-
erly supported by browsers, requiring plugins such as RealPlayer [33]. With the
disappearance of plugins in Web browsers, authors are left without any simple way
to unleash the power of SMIL in their Web applications.

That said, SMIL 1.0 sparked the SMIL Animation specification [37] in 2001,
which builds on the SMIL 1.0 timing model to describe an animation framework
suitable for integration with Extensible Markup Language (XML) documents. SMIL
Animation has notably been incorporated in the Scalable Vector Graphics (SVG)
1.0 specification [34], published as a Web standard immediately afterwards. It took
many years for SVG to take over Flash [1] and become supported across browsers,
with the notable exception of SMIL animations, which Microsoft [26] never imple-
mented, and which Google [15] now intends to drop in favor of CSS Animations and
of the Web Animations specification.

While still a draft when this book is written, Web Animations [41] appears as a
good candidate specification to unite all Web animation frameworks into one, with
solid support from Mozilla [29], Google and now Microsoft. It introduces the notion
of a global clock:

a source of monotonically increasing time values unaffected by adjustments to the system
clock. The time values produced by the global clock represent wall-clock milliseconds from
an unspecified historical moment.

The specification also defines the notion of a document timeline that provides time
values tied to the global clock for a particular document. It is easy to relate the global
clock of Web Animations with other clocks available to a Web application (e.g. the
High Resolution Time clock mentioned in Section 6.5). However, the specification
acknowledges that the setup of some animations may incur some setup overhead,
for instance when the user agent delegates the animation to specialized graphics
hardware. In other words, the exact start time of an animation cannot be known a
priori.

Media Synchronization on the Web 13

6.3 DOM Events

The ability to use scripting to dynamically access and update the content, structure
and style of documents, was developed in parallel to HTML, with ECMAScript
(commonly known as JavaScript), and the publication of the Document Object
Model (DOM) Level 1 standard in 1998 [11]. This first level did not define any
event model for HTML documents, but was quickly followed by DOM Level 2 [12]
and in particular the DOM Level 2 Events standard [13] in 2000. This specifica-
tion defines: a platform- and language-neutral interface that gives to programs and
scripts a generic event system.

DOM events feature a timeStamp property used to specify the time relative to
the epoch at which the event was created. DOM Level 2 Events did not mandate
that property on all events. Nowadays, DOM Events, now defined in the DOM4
standard [40], all have a timestamp value, evaluated against the system clock.

The precision of the timestamp value is currently limited to milliseconds, but
Google has now switched to using higher resolution timestamps associated with the
high resolution clock (see Section 6.5). On top of improving the precision down to a
few microseconds, this change also means that the monotonicity of timestamp values
can now be guaranteed. Monotonicity means that clock values are never decreasing.
This change will hopefully be included in a future revision of the DOM standard
and implemented across browsers.

6.4 The Event Loop

On the Web, all activities (including events, user interactions, scripts, rendering,
networking) are coordinated through the use of an event loop®, composed of a queue
of tasks that are run in sequence. For instance, when the user clicks a button, the user
agent queues a task on the event loop to dispatch the click event onto the document.
The user agent cannot interrupt a running task in particular, meaning that, on the
Web, all scripts run to completion before further tasks may be processed.

The event loop may explain why a task scheduled to run in 2 seconds from now
through a call to the setTimeout function may actually run in 2.5 seconds from now,
depending on the number of tasks that need to run to completion before this last task
may run. In practice, HTMLS has been carefully designed to optimize and prioritize
the tasks added to the event loop, and the scheduled task is unlikely to be delayed
by much, unless the Web application contains a script that needs to run for a long
period of time, which would effectively freeze the event loop.

Starting in 2009, the Web Workers specification [44] was developed to allow
Web authors to run scripts in the background, in parallel with the scripts attached

5 There may be more than one event loop, more than one queue of tasks per event loop, and
event loops also have a micro-task queue that helps prioritizing some of the tasks added by HTML
algorithms, but this does not change the gist of the comments contained in this section.

14 Ingar M. Arntzen, Njal T. Borch and Frangois Daoust

to the main document page, and thus without blocking the user interface and the
main event loop. Coordination between the main page and its workers uses message
passing, which triggers a message event on the event loop.

Any synchronization scenario that involves timed data exposed by some script
or event logic will de facto be constrained by the event loop. In turn, this probably
restricts the maximum level of precision that may be achieved for such scenarios.
Roughly speaking, it does not seem possible to achieve less than one millisecond
precision on the Web today if the event loop is involved.

6.5 High Resolution Time

In JavaScript, the Date class exposes the system clock to Web applications. An in-
stance of this class represents a number of milliseconds since January 1., 1970 UTC.
In many cases, this clock is a good enough reference. It has a couple of drawbacks
though:

1. The system clock is not monotonic and it is subject to adjustments. There is no
guarantee that a further reading of the system clock will yield a greater result than
a previous one. Most synchronization scenarios need to rely on the monotonicity
of the clock.

2. Sub-millisecond resolution may be needed in some cases, €.g. to compute the
frame rate of a script based animation, or to precisely schedule audio cues at the
right point in an animation.

As focus on the Web platform shifted away from documents to applications and
as the need to improve and measure performance arose, a need for a better clock for
the Web that would not have these restrictions emerged. The High Resolution Time
specification [16] defines a new clock, Performance.now(), that is both guaranteed to
be monotonic and accurate to 5 microseconds, unless the user agent cannot achieve
that accuracy due to software or hardware constraints. The specification defines the
time origin of the clock, which is basically the time when the browsing context (i.e.
browser Window, tab or iFrame) is first created. The very recent High Resolution
Time Level 2 specification [17] aims to expose a similar clock to background work-
ers, and provide a mechanism to relate times between the browsing context and
workers.

It seems useful to point out that the 5 microseconds accuracy was not chosen
because of hardware limitations. It was rather triggered by privacy concerns as a
way to mitigate so called cache attacks, whereby a malicious Web site uses high
resolution timing data to fingerprint a particular user. In particular, this sets a hard
limit to precision on the Web, that will likely remain stable over time.

Media Synchronization on the Web 15

6.6 Web Audio API

At about the same time that people started to work on the High Resolution Time
specification, Mozilla and Google pushed for the development of an API for pro-
cessing and synthesizing audio in Web applications. The Web Audio API draft spec-
ification [42] is already available across browsers. It builds upon an audio routing
graph paradigm where audio nodes are connected to define the audio rendering.

Sample frames exposed by the Web Audio API have a currentTime property that
represents the position on the Audio timeline, according to the hardware clock of
the underlying sound card. As alluded to in the specification, this clock may not be
synchronized with other clocks in the system. In particular, there is little chance that
this clock be synchronized with the High Resolution Time clock, the global clock
of Web Animations, or the media clock of a media element.

The group that develops the Web Audio API at W3C investigated technical solu-
tions to overcome these limitations. The API now exposes the relationship between
the audio clock and the high resolution clock, coupled with the latency introduced
by the software and hardware, so that Web applications may compute the exact times
at which a sound will be heard. This is particularly valuable for cross-device audio
scenarios, but also allows audio to be output on multiple sound cards at once on a
single device.

6.7 Media Capture

W3C started to work on the Media Capture and Streams specification [22] in 2011.
This specification defines the notions of MediaStreamTrack, which represents media
of a single type that originates from one media source (typically video produced by
a local camera) and of MediaStream, which is a group of loosely synchronized Me-
diaStreamTracks. The specification also describes an API to generate MediaStreams
and make them available for rendering in a media element in HTMLS.

The production of a MediaStreamTrack depends on the underlying hardware and
software, which may introduce some latency between the time when the data is de-
tected to the time when it is made available to the Web application. The specification
requires user agents to expose the target latency for each track.

The playback of a MediaStream is subject to the same considerations as those
raised above when discussing media support in HTML5. The media clock is
implementation-dependent in particular. Moreover, a MediaStream is a live element
and is not seekable. The currentTime and playbackRate properties of the media el-
ement that renders a MediaStream are read-only (i.e. media controls do not apply),
and thus cannot be adjusted for synchronization®.

6 In the future, it may be possible to re-create a seekable stream out of a MediaStream, thanks
to the MediaRecorder interface defined in the MediaStream Recording specification [25]. This
specification is not yet stable when this book is written.

16 Ingar M. Arntzen, Njal T. Borch and Frangois Daoust

6.8 WebRTC

Work on Web Real-Time Communication (WebRTC) and its first specification, the
WebRTC 1.0: Real-time Communication Between Browsers specification [46],
started at the same time as the work on media capture, in 2011. As the name sug-
gests, the specification allows media and data to be sent to and received from another
browser. There is no fixed timing defined, and the goal is to minimize latency. How
this is achieved in practice is up to the underlying protocols, which have been de-
signed to reduce latency and allow peer-to-peer communications between devices.

The WebRTC API builds on top of the Media Capture and Streams specification
and allows the exchange of MediaStreams. On top of the synchronization restric-
tions noted above, a remote peer does not have any way to relate the media timeline
of the MediaStream it receives with the clock of the local peer that sent it. The
WebRTC API does not expose synchronization primitives. This is up to Web appli-
cations, which may for instance exchange synchronization parameters over a peer-
to-peer data channel. Also, the MediaStreamTracks that compose a MediaStream
are essentially treated independently and re-aligned for rendering on the remote
peer, when possible. In case of transmission errors or delays, loss of synchroniza-
tion, e.g. between audio and video tracks, is often preferred in WebRTC scenarios
to avoid accumulation of delays and glitches.

6.9 Summary

While the High Resolution Time clock is a step in the right direction, the adoption
is still incomplete. As of early 2017, given an arbitrary set of timed data composed
of audio/video content, animations, synthesized audio, events, and more there are
several issues Web developers need to face to synchronize the presentation:

1. Clocks used by media components or media subsystems may be different and
may not follow the system clock. This is typically the case for media elements in
HTMLS and for the Web Audio APL

2. The clock used by a media component or a media subsystem may not be mono-
tonic or sufficiently precise.

3. Additionally, specifications may leave some leeway to implementers on the ac-
curacy of timed operations, leading to notable differences in behavior across
browsers.

4. Operations may introduce latencies that cannot easily be accounted for. This in-
cludes running Web Animations, playing/resuming/capturing media, or schedul-
ing events on the event loop.

5. Standards may require browsers to pause for buffering, as typically happens for
media playback in HTMLS5. This behavior does not play well with the orchestra-
tion of video with other types of timed data that do not pause for buffering.

Media Synchronization on the Web 17

6. The ability to relate clocks is often lost during the transmission of timestamps
from one place to another, either because different time origins are used, as hap-
pens between an application and its workers, or because the latency of the trans-
mission is not accounted for, e.g. between WebRTC peers. At best, applications
developers need to use an out-of-band mechanism to convert timestamps and
account for the transport latency.

7. When they exist, controls exposed to harness media components may not be suf-
ficiently fine-grained. For example, the playbackRate property of media elements
in HTMLS5 was not designed for precise adjustments, and setting the start time of
a Web animation to a specific time value may result in a significant jump between
the first and second frames of the animation.

Small improvements to Web technologies should resolve some of these issues,
and discussions are underway in relevant standardization groups at W3C when this
book is written. For example, timestamps in DOM Events may switch to using the
same Performance.now() clock. This is all good news for media synchronization,
although it may still take time before the situation improves.

We believe that a shift of paradigm is also needed. The Web is all about modu-
larity, composition and interoperability. Temporal aspects have remained an internal
issue specific to each technology until now. In the rest of this chapter, a program-
ming model is presented to work around the restrictions mentioned above, allowing
media to be precisely orchestrated on the Web, even across devices.

7 Motion

Motion is a simple concept representing playback state (media clock), as well as
functions for accessing and manipulating this state (media controls). As such, simi-
lar constructs are found in most multimedia frameworks.

-~ Motion Axis
1 1 1 I T I T W | bl 1 1 1 1 1 ——
1 1 1 1 1 LI 7 I I I I I I 1 I I

N -

Fig. 4 Motion: point moving along an axis. The current position is marked with a red circle
(dashed), and forward velocity of 3 units per second is indicated by the red arrow (dashed).

As illustrated in Fig. 4, motion represents movement (in real-time) of a point,
along an axis (timeline). At any moment the point has well defined position, ve-
locity and acceleration’. Velocity and acceleration describe continuous movements.
Velocity is defined as position-change per second, whereas acceleration is defined

7 Some animation frameworks support acceleration. Acceleration broadens the utility of motions,
yet will likely be ignored in common use cases in classical media (see Section 7.2).

18 Ingar M. Arntzen, Njal T. Borch and Frangois Daoust

as position- change per second squared. Discrete jumps on the timeline are also
supported, simply by modifying the position of the motion. A discrete jump from
position A to C implies that the transition took no time, and that no position B (be-
tween A and C) was visited. Not moving (i.e. zero velocity and acceleration) is a
special case of movement.

Internal State. Motion is defined by an internal clock and a vector (position, ve-
locity, acceleration, timestamp). The vector describes the initial state of the current
movement, timestamped relative to the internal clock. This way, future states of the
motion may be calculated precisely from the initial vector and elapsed time. Fur-
thermore, application programmers may control the motion simply by supplying a
new initial vector. The motion concept was first published under the name Media
State Vector (MSV) [6].

7.1 Timing object API

Timing objects provide access to motions. Timing objects may be constructed with
a URL to an online motion. If the URL is omitted, it will represent a local motion
instead.

var URL = "...";

var timingObject = new TimingObject (URL) ;

Listing 1 Constructing a timing object.

The Timing object API defines two operations, query and update, and emits a
change event as well as a periodic timeupdate event.

query(): The query operation returns a vector representing the current state of the
motion. This vector includes position, velocity and acceleration, as well as a times-
tamp. For instance, if a query returns position 4.0 and velocity 1.0 and no accelera-
tion, a new query one second later will return position 5.0.

var v = timingObject.query();

console.log("pos:" + v.position);

console.log("vel:" + v.velocity);
console.log("acc:" + v.acceleration);

Listing 2 Querying the timing object to get a snapshot vector.

update(vector): The update operation accepts a vector parameter specifying new
values for position, velocity and acceleration. This initiates a new movement for
the motion. For instance, omitting position implies that the current position will be
used. So, an update with velocity O pauses the motion at the current position.

// play, resume

timingObject.update ({ velocity: 1.0 });
// pause

timingObject.update ({ velocity: 0.0 });

Media Synchronization on the Web 19

// Jjump and play from 10

timingObject.update ({ position: 10.0, wvelocity: 1.0});
// jump to position 10, keeping the current velocity
timingObject.update ({ position: 10.0 });

Listing 3 Updating the timing object.

timeupdate event: For compatibility with existing HTMLS5 media elements and an
easy way to update graphical elements, a timeupdate evens is emitted periodically.

change event: Whenever a motion is updated, event listeners on the timing object
(i.e. media components) will immediately be invoked. Note that the change event
is not emitted periodically like the timeupdate event of HTMLS media elements.
The change event signifies the start of a new movement, not the continuation of a
movement.

timingObject.on ("change", function (e) {
var v = motion.query();

if (v.velocity === 0.0 && v.acceleration === 0.0) {
console.log("I’'m not moving!");

} else {
console.log("I’'m moving!");

}
1)

Listing 4 Monitoring changes to the motion through the change event.

7.2 Programming with motions

Using motions: Motions are resources used by Web applications, and the devel-
oper may define as many as required. What purposes they serve in the application is
up to the programmer. If the motion should represent media offset in milliseconds,
just set the velocity to 1000 (advances the position of the motion by 1000 millisec-
onds per second). Or, for certain musical applications it may be practical to let the
motion represent beats per second.

Timing converters: A common challenge in media synchronization is that differ-
ent sources of media content may reference different timelines. For instance, one
media stream may have a logical timeline starting with 0, whereas another is times-
tamped with epoch values. If the relation between these timelines is known (i.e.
relative skew), it may be practical to create a skewed timing object for one of the
media components, connected to the motion. This is supported by timing convert-
ers. Multiple timing converters may be connected to a motion, each implementing
different transformations such as scaling and looping. Timing converters may also
be chained. Timing converters implement the timing object API, so media compo-
nents can not distinguish between a timing object and a timing converter. A number
of timing converters are implemented in the Timingsrc programming model [3].

20 Ingar M. Arntzen, Njal T. Borch and Frangois Daoust

Flexibility: The mathematical nature of the motion concept makes it flexible, yet
for a particular media component some of this flexibility may be unnecessary, or
even unwanted. For instance, the HTMLS5 media player will typically not be able
to operate well with negative velocities, very high velocities, or with acceleration.
Fortunately, it does not have to. Instead, the media player may define alternative
modes of operation as long as the motion is in an unsupported state. It could show a
still image every second for high velocity, or simply stop operation altogether (e.g.
black screen with relevant message). Later, when motion re-enters a supported state,
normal operation may be resumed for the media player.

7.3 Online Motion

The timing object API is particularly designed to mediate access to online motions,
as illustrated by Fig. 5. Update operations are forwarded to the online motion, and
will not take effect until notification is received from the online motion. After this,
a change event will be emitted by the timing object. In contrast, query is a local
(and cheap) operation. This ensures that media components may sample the mo-
tion frequently if needed. So, through the Timing Object API, online motions are
made available to Web developers as local objects. Only the latency of the update
operation should be evidence of a distributed nature.

ol
Q O [J
\,

Online
Motion

Fig. 5 (Fig. 2 repeated for convenience.) Timing objects (red unfilled circles) mediate access to
online motion. Timing objects may be shared by independent media components within the same
browsing context.

To support this abstraction, precise, distributed motion synchronization is re-
quired. In particular, the internal clock of the motion must be precisely synchro-
nized with the clock at the online motion server. Synchronized system clocks (e.g.
Network Time Protocol (NTP) [27] or Precision Time Protocol (PTP) [14]) is gen-
erally not a valid assumption in the Web domain. As a consequence, an alternative
method of estimating a shared clock needs to be used, for example by sampling
an online clock directly. In addition, low latency is important for user experiences.

Media Synchronization on the Web 21

Web agents should be able to join synchronization quickly on page load or after
page reload. To achieve this, joining agents must quickly obtain the current vector
and the synchronized clock. For some applications the user experience might also
benefit from motion updates being disseminated quickly to all agents. Web agents
should also be able to join and leave synchronization at any time, or fail, without
affecting the synchronization of other agents. Motion synchronization is discussed
in more detail in [6].

InMotion is a hosting service for online motions, built by the Motion Corpo-
ration [28]. A dedicated online service supporting online motions is likely key to
achieving non-functional goals, such as high availability, reliability and scalability.
Evaluation of motion synchronization is presented in Section 9.

Finally, the timing object API emphasizes an attractive programming model for
multi-device media applications. In particular, by making online motions available
under the same API as local motions (see Section 7.1), media components may be
used in single-page as well as multi-device media experiences, without modifica-
tion. Also, by hiding the complexity of distributed motion synchronization, appli-
cation developers may focus on building great media components using the timing
object API. As such, the timing object API provides much needed separation of
concern in multi-device media.

7.4 Synchronizing Audio and Video

On the Web, playback of audio and video is supported by HTMLS5 media ele-
ments [20]. Synchronizing media elements relative to a timing object means that
the currentTime property (i.e. media offset) must be kept equal to the position of
the timing object at all times, at least to a good approximation. The basic approach
is to monitor the media element continuously, and try to rectify whenever the syn-
chronization error grows beyond a certain threshold. For larger errors seekTo is used.
This is typically the case on page load, or after timing object change events. Smaller
errors are rectified gradually by manipulating playbackrate. SeekTo is quite disrup-
tive to the user experience, so support for variable playbackrate is currently required
for high quality synchronization.

MediaSync is a JavaScript library allowing HTMLS media elements to be syn-
chronized by timing objects. The MediaSync library targets usage across the most
common Web browsers, so it is not optimized for any particular scenario. Though
synchronization of HTMLS media is simple in theory, it involves a few practical
challenges, as indicated in Section 6.1. First, currentTime is only a coarse repre-
sentation of the media offset, and it fluctuates considerably when compared to the
system clock. The MediaSync library solves this by collecting a backlog of sam-
ples, from which a value of currentTime can be estimated. Building up this backlog
requires some samples, so it may take more than a second for estimates to stabilize.
Another issue relates to unpredictable time-consumption in media control opera-
tions. In particular, seekTo(X) will change currentTime to X, but it will require a

22 Ingar M. Arntzen, Njal T. Borch and Frangois Daoust

non-negligible amount of time to do so. In the context of synchronization, it aims
for a fixed target when it should be aiming for a moving target. The MediaSync
library compensates for this by overshooting the target. Furthermore, in order to
overshoot by the correct amount, the algorithm collects statistics from every seekTo
operation. Surprisingly perhaps, this strategy works reasonably well. Evaluation for
the MediaSync library is presented in Section 9.

7.5 Synchronizing timed data

Synchronization of timed data using timing objects is an important challenge. Timed
data such as subtitles, tracks, scripts, logs or time series typically include items tied
to points or intervals on the timeline. Synchronization then involves activating and
deactivating such items at the correct time, in reference to a timing object. To sim-
plify programming of media components based on timed data, a generic Sequencer
is defined (Fig. 6). The sequencer is similar to the HTMLS5 track element [38], but
is directed by the timing object instead of a HTMLS5 media element [20]. Web de-
velopers register cues associated with intervals on the timeline, and receive event
upcalls whenever a cue is activated or deactivated. The sequencer fully supports the
timing object, including skipping, reverse playback and acceleration. It may be used
for any data type and supports dynamic changes to cues during playback.

T e e _— — __ _ Comments
Video Clips
— e — Images
—_ — - = - —— Subtitles
: Motion
o> Time-Axis

Fig. 6 Sequencing five data sources of timed data, with items tied to intervals on the timeline.
Motion along the same timeline defines which items are active (vertical dotted line), and precisely
when items will be activated or deactivated.

The sequencer is implemented as a JavaScript library and made available as part
of the open-source Timingsrc [3] programming model (see Section 10). In the inter-
est of precisely synchronized activation and deactivation and low CPU consumption,
the sequencer implementation is not based on frequent polling. Instead, the deter-
ministic nature of the timing object allows events to be calculated and scheduled
using setTimeout, the timeout mechanism available in Web browsers. Though this

Media Synchronization on the Web 23

mechanism is not optimized for precision, Web browsers may be precise down to a
few milliseconds. The sequencer is presented in further detail in [4].

8 Flexibility and Extensibility

Modern multimedia increasingly demands high flexibility and extensibility. This is
driven by a number of strong trends: device proliferation, new sensors, new data
types (e.g. sensor data, 3D, 360 degree video), multiple data sources, live data, per-
sonalization, interactivity, responsiveness and multi-device support. On top of all
this there are also rising expectations to Ul design, integration with social networks,
and more.

In an attempt to meet such demands, new features have been added to media
frameworks allowing programmers to customize the media player to a larger ex-
tent. For example, the Flash [1] framework has grown increasingly feature-rich over
time, even having partially overlapping features with the Web platform itself. Media
Source Extensions (MSE) [24] in HTMLS5 provide a way to manipulate the video
stream client-side. It is also common for media players to expose events and timed
cues, allowing custom functionality to be implemented in application code. The
text track system of HTMLS is an example of this. MPEG-4 [30] adds support for
synchronization and composition of multiple media streams, including timed data
such as graphical objects (2D and 3D). In particular, the MPEG-4 Systems part [31]
defines an architecture for media clients (terminals) integrating a variety of media
formats, delivery methods, interactivity and rendering.

In short, the need for extensibility has driven a development towards standard-
ization of new data formats and features, leading media players to become increas-
ingly sophisticated, yet also more complicated and heavyweight. We call this the
big player approach to flexibility and extensibility in multimedia.

8.1 Multiple small players

The motion model presents an attractive alternative to the big player approach. The
key idea is that a big player may be replaced by multiple smaller players, with pre-
cisely synchronized playback. As illustrated in Fig. 7, the flexibility of the motion
model allows a variety of specialized media components to be coupled together,
forming custom and complex media experiences from simpler parts. We use the
term Composite Media [2] for media experiences built in this way.

24 Ingar M. Arntzen, Njal T. Borch and Frangois Daoust

1
: . | e , o)

|
|
L

E == = = F—[_]
|

| O : OO O O Photos | I —
|

| 1 : —i—1 — Comments |
i — [1]
1

I\ : Audio 2 I_— *l})
1

| ! [] Audio3 |_: "))
I
]
L

| —t—t $ =t Mol | ’"_-.———
]

Fig. 7 A single media experience made from multiple media components (blue), possibly dis-
tributed across multiple devices. Each media component is connected to motion (red) and a source
of timed data (black). There are different types of timed data: an AV container, a subtitle track,
photos, comments and two extra audio tracks. The motion defines the timeline for the presentation,
and timed data is mapped to this timeline by each media component. Since all the media com-
ponents are connected to the same motion, they will operate in precise synchrony. One particular
media component (bottom media element) provides interactive controls for the presentation, and
connects only with motion.

8.2 Dedicated media components

The motion model typically encourages a pattern where each media component is
dedicated to solving a small and well defined challenge: Given timed data and a mo-
tion, the media component must generate the correct presentation at all times. Such
custom media components are implemented in application code, and an appropriate
delivery method may be selected for the particular media type and the task at hand.
This way, application specific data formats may be integrated into a presentation, as
well as standardized formats. Importantly, timed data sources may be dynamic and
live, implying that presentations may interact directly with live backend systems and
update their presentations during playback.

Media components may also be dedicated with respect to Ul For instance, a
single media component may implement interactive controls for the motion, thereby
relieving other media components from this added complexity. This encourages a
pattern where media components are designed for specific roles in an application,
e.g. controllers, viewers and editors, and combined to form the full functionality.

Media Synchronization on the Web 25

Of course, the fact that these media components are independent may be hidden
for end users with appropriate layout and styling, giving the impression of a tightly
integrated product. In any case, dedicated media components may be reusable across
different views, applications, devices or data sets, as long as APIs to data model and
motions remain unchanged.

8.3 Flexible coupling

The motion model allows modularity and flexibility by loose coupling of media
components. In fact, media components may be coupled only indirectly through
shared motions and shared data sources. This ensures that media components can
be added or removed dynamically during playback, or even fail, without disrupt-
ing the rest of the presentation. This flexibility is also valuable in development, as
media components may be coded and tested in isolation or with other components.
New components may always be added without introducing any additional increase
in complexity, naturally supporting an incremental development process. Also, the
model does not impose restrictions on how motions and timed data sources are con-
nected with media components. A single data source may be shared between multi-
ple media components, or conversely, a single media component may use multiple
data sources. The same flexibility goes for motions. There might be multiple aspects
of timing and control in an application, requiring multiple motions to be shared be-
tween media components.

8.4 Client-side Synthesis

Client-side synthesis is core design principle of the Web platform, and central to key
properties such as flexibility, extensibility, reusability and scalability. This principle
may now be fully exploited in the context of timed media applications. With the
motion model, timed media experiences may be synthesised in real time within the
browsing context (client-side), by independent media components working directly
on live data sources and motions.

Interestingly, client-side synthesis is not the established approach to linear me-
dia, not even in the Web context. With media frameworks such as Flash [1] or
MPEG-4 [30], media is typically assembled in a media file or a media container,
before being downloaded or streamed to a client-side media player. Essentially, this
is server-side synthesis (and client-side playback). While server-side synthesis may
have certain advantages (e.g. robustness and simplicity), the disadvantages are also
evident. By assembling data within media files and container formats, data is decou-
pled from its source and effectively flattened into an immutable copy. Introduction of
new media types may also be inconvenient, as this must be addressed through stan-
dardization of new media and container formats, and support must be implemented

26 Ingar M. Arntzen, Njal T. Borch and Frangois Daoust

by media players. This may be a time-consuming process. That said, server-side
synthesis may still be an appropriate choice for a wide range of media products.

Importantly though, in the motion model the choice between client-side synthesis
and server-side synthesis is left to application programmers. Established container-
based media frameworks are still usable, provided only that the framework can be
integrated and controlled by external motion. Ideally, this integration should be per-
formed internally by the framework. If this is done, frameworks can easily be used
in conjunction with native media elements, other frameworks or components that
support external motion. If not, integration may also be done externally, subject to
the limitations of the framework API. In any case, the motion model relieves media
frameworks from the challenge of doing everything, and highlights their value as
dedicated, reusable components.

9 Evaluation

The evaluation is concerned with feasibility of the motion model and simplicity for
Web developers.

9.1 Motion Synchronization

We have used motion synchronization for a wide range of technical demonstration
since 2010. An early evaluation of the research prototype is discussed in the pa-
per titled The Media State Vector [6]. Though the interpretations of the experiments
are conservative, early findings indicated that motion synchronization could provide
frame rate levels of accuracy (33 milliseconds). A few years later, a production ready
service called InMotion was built by spin off company Motion Corporation [28].
With the introduction of WebSockets [43], results improved significantly. Synchro-
nization errors are in the order of a few milliseconds on all major browsers and most
operating systems (including Android). Typically we observe 0-1 millisecond errors
for desktop browsers, compared to a system clock synchronized by NTP. The InMo-
tion service has also been running continuously for years, supporting a wide range
of technical demonstrations, at any time, at any place, and across a wide range of
devices. As such, the value of a production grade online service is also confirmed.
Furthermore, the precision of motion synchronization degrades well with poor
network conditions. For instance, experiments with video synchronization in EDGE
connectivity (Enhanced Data rates for GSM Evolution) has not been visibly worse,
except for longer update latency. In this instance, video data were fetched from
local files. Conferences are also notorious hotspots for bad connectivity. In these
circumstances, availability of media data consistently fails before synchronization.

Media Synchronization on the Web 27

9.2 Synchronization of HTMLS media elements

Two technical reports [8, 9] document the abilities and limitations of HTMLS media
elements with respect to media synchronization, as well the quality of synchroniza-
tion achieved by the MediaSync library (Fig. 8). Synchronization errors of about 7
milliseconds is reported for both audio and video, on desktops, laptops and high-
end smartphones. This corresponds to echoless audio playback. Smartphones and
embedded devices such as ChromeCast can be expected to provide frame accurate
synchronization.

These results have been consistently confirmed by day to day usage over sev-
eral years. The user experience of multi-device video synchronization is also very
good, to the point that errors are hardly visible, as demonstrated by this video [10].
Echoless synchronization with the MediaSync library may also produce various au-
dio effects, like failing to hear one audio source, until volume levels are changed
and only the other audio source can be heard. Since these effects are also achieved
across browser types and architectures, this is a strong indication that external tim-
ing is feasible and already at a useful level.

Synchronization has also been maintained for hours and days at end, without ac-
cumulated errors. Loading speeds are also acceptable. Even though the MediaSync
library requires about 3 seconds to reach echoless, the experience is perceived as ac-
ceptable much before this. A variety of video demonstrations have been published
at the Multi-device Timing Community Group Website [32].

100ms[— —\ Diff 4 1.03
Muted
W Playbackrate
M Skips
Frame accurate
Oms| Echoless 0.19
-100ms -0.65
0 2 4 6 8 10 12 14 16 18 20 22 24

Fig. 8 The figure illustrates an experiment with video (mp4) synchronization on Android using
Chrome browser. The plot shows currentTime compared to the ideal playback position defined
by motion. The X-axis denotes the timeline of the experiment (seconds). The left Y-axis denotes
difference Diff (milliseconds) between currentTime and motion. The green band (echoless) is +-
10 millisecond and the yellow (frame accurate is) +-25 millisecond. This is achived using variable
playbackRate. No skips were performed in this experiment. The right Y-axis denotes the value of
playbackrate (seconds per second). The media element was muted until playbackrate stabilized.

Though echoless synchronization is generally achievable, a lack of standardiza-
tion and common tests makes it impossible to provide any guarantees. The experi-
ence might also be improved or become broken across software updates. To be able

28 Ingar M. Arntzen, Njal T. Borch and Frangois Daoust

to support echoless synchronization reliably across browsers and devices, standards
must include requirements for synchronization, and testing-suites must be devel-
oped to ensure that those requirements are met. Ideally though, media synchroniza-
tion should be implemented natively in media elements.

9.3 Summary

Interestingly, the results for motion synchronization and HTMLS media synchro-
nization are well aligned with current limitations of the Web platform. For instance,
the precision of timed operation in JavaScript is about 1 millisecond, and a 60Hz
screen refresh rate corresponds to 16 milliseconds. Furthermore, these results also
match limitations in human sensitivity to synchronization errors.

Finally, programming synchronized media experiences in the motion model is
both easy and rewarding. In our experience, motions and sequencers are effective
thinking tools as well as programming tools. A globally synchronized video experi-
ence essentially requires three code statements.

With this, we argue that the feasibility of the motion model is confirmed. It is also
clear that synchronization errors in online synchronization are currently dominated
by errors in synchronization in HTMLS media elements. Future standardization ef-
forts and optimizations would likely yield significant improvements.

10 Standardization

The Web is widely regarded as a universal multi-media platform although it lacks
a common model for timing and media control. The motion model promises to fill
this gap, and indicates a significant potential for the Web as a platform for globally
synchronized capture and playback of timed multimedia. To bring these possibilities
to the attention of the Web community, the motion model has been proposed for
Web standardization. The Multi-device Timing Community Group (MTCG) [32]
has been created to attract support for this initiative. The MTCG has published the
draft specification for the TimingObject [7]. It has also published Timingsrc [3], an
open source JavaScript implementation of the TimingObject specification, including
timing objects, timing converters, sequencers and the MediaSync library.

Though the ideas promoted by the MTCG have been received with enthusiasm
by members within the W3C and within the wider Web community, at present the
MTCG proposal has not been evaluated by the W3C.

Media Synchronization on the Web 29

11 Conclusions

We have explored media synchronization between heterogeneous media compo-
nents, and highlighted the need for temporal interoperability on the Web platform.
While internal timing is the popular approach to Web-based media, external timing
is the key to temporal interoperability.

This chapter provided an introduction to external timing as well as the media
model and programming model that follow from this approach. By focusing on mod-
ularity, loose coupling and client-side synthesis, this media model is well aligned
with key design principles of the Web, thereby fully extending the flexibility and
extensibility of the Web platform to timed Web applications. Equally important, the
external timing approach promises precise distributed playback and media orches-
tration, enabling precise timing and control also in multi-device Web-based media
experiences.

To encourage temporal interoperability on the Web platform, the W3C Multi-
device Timing Community Group (MTCG) [32] advocates standardization of the
timing object [7] as a common interface to external timing and control. Using the
external timing approach, we have demonstrated that the Web is already a strong
platform for timed, multi-device media, though it was not designed for it. With
standardization it will become even better, likely unleashing a new wave of Web-
based creativity across a variety of application domains.

Finally, as the external timing approach to media synchronization works on the
Web, it may also be ported to other native applications in the IP environment. This
provides a simple mechanism for making distributed media from a mixture of native
and Web-based media components.

30 Ingar M. Arntzen, Njal T. Borch and Frangois Daoust
References

1. Adobe: Adobe Flash. https://www.adobe.com/products/flashruntimes.html

2. Arntzen, I.M., Borch, N.T.: Composite Media, A new paradigm for online media. In:

10.
11.

12.
13.

14.

15.
16.
17.
18.
19.
20.
21.
22.
23.

24.
25.
26.
27.

2013 NEM Summit (Networked Electronic Media), NEM Summit *13, pp. 105-110.
Eurescom (2013). URL http://nem-initiative.org/wp-content/uploads/2015/06/2013-NEM-
Summit_Proceedings.pdf

. Arntzen, .M., Borch, N.T.: Timingsrc: A programming model for timed Web applications,

based on the Timing Object. Precise timing, synchronization and control enabled for single-
device and multi-device Web applications. http://webtiming.github.io/timingsrc/ (2015)

. Arntzen, .M., Borch, N.T.: Data-independent Sequencing with the Timing Object: A

JavaScript Sequencer for Single-device and Multi-device Web Media. In: Proceedings
of the 7th International Conference on Multimedia Systems, MMSys ’16, pp. 24:1-
24:10. ACM, New York, NY, USA (2016). DOI 10.1145/2910017.2910614. URL
http://doi.acm.org/10.1145/2910017.2910614

. Arntzen, IM., Borch, N.T.,, Daoust, F., Hazael-Massieux, D.: Multi-device

Linear Composition on the Web; Enabling Multi-device Linear Media with
HTMLTimingobject and Shared Motion. In: Media Synchronization Work-
shop (MediaSync) in conjunction with ACM TVX 2015. ACM (2015). URL
https://sites.google.com/site/mediasynchronization/Paper4_Arntzen_webComposition_CR.pdf

. Arntzen, .M., Borch, N.T., Needham, C.P.: The Media State Vector: A unifying concept for

Multi-device Media Navigation. In: Proceedings of the 5th Workshop on Mobile Video,
MoVid *13, pp. 61-66. ACM, New York, NY, USA (2013). DOI 10.1145/2457413.2457427.
URL http://doi.acm.org/10.1145/2457413.2457427

. Arntzen, .M., Daoust, F.,, Borch, N.T.: Timing Object; Draft community group report.

http://webtiming.github.io/timingobject/ (2015)

. Borch, N.T., Arntzen, I.M.: Distributed Synchronization of HTMLS5 Media. Tech. Rep. 15,

Norut Northern Research Institute (2014)

. Borch, N.T., Arntzen, .M.: Mediasync Report 2015: Evaluating timed playback of HTML5

Media. Tech. Rep. 28, Norut Northern Research Institute (2015)

Video synchronization by Motion Corporation. https://youtu.be/lfoUstnuslE (2015)
Document Object Model (DOM) Level-1. https://www.w3.org/TR/REC-DOM-Level-1/
(1998)

Document Object Model (DOM) Level-2. https://www.w3.org/TR/DOM-Level-2/ (2000)
Document Object Model (DOM) Level-2 Events. https://www.w3.org/TR/DOM-Level-2-
Events/ (2000)

Eidson, J., Lee, K.: Ieee 1588 standard for a precision clock synchronization protocol for
networked measurement and control systems. In: Sensors for Industry Conference, 2002. 2nd
ISA/IEEE, pp. 98-105. Ieee (2002)

Google. https://www.google.com (2017)

High Resolution Time. https://www.w3.org/TR/hr-time-1/ (2012)

High Resolution Time Level 2. https://www.w3.org/TR/hr-time-2/ (2016)

HTML 3.2 Reference Specification. https://www.w3.org/TR/REC-html32 (1997)

HTMLS. https://www.w3.org/TR/html5/ (2014)

HTMLS Media Elements. http://dev.w3.org/html5/spec-preview/media-elements.html (2012)
HTMLS.1. https://www.w3.org/TR/html51/ (2016)

Media Capture and Streams. https://www.w3.org/TR/mediacapture-streams/ (2016)

HTML5 Media Controller. https://dev.w3.org/html5/spec-preview/media-elements.html
(2014)

Media Source Extensions. https://www.w3.org/TR/media-source/ (2016)

MediaStream Recording. https://www.w3.org/TR/mediastream-recording/ (2017)

Microsoft. https://www.microsoft.com/ (2017)

Mills, D.L.: Internet time synchronization: the network time protocol. IEEE Transactions on
Communications 39(10), 1482-1493 (1991). DOI 10.1109/26.103043

Media Synchronization on the Web 31

28.
29.
30.
31.
32.
33.
34.
35.

36.

37.
38.

39.
40.
41.
42.
43.
44.
45.
46.

Motion Corporation. http://motioncorporation.com

Mozilla. https://www.mozilla.org (2017)

MPEG-4. http://mpeg.chiariglione.org/standards/mpeg-4

MPEG-4 Systems. http://mpeg.chiariglione.org/standards/mpeg-4/systems (2005)
Multi-device Timing Community Group. https://www.w3.org/community/webtiming/ (2015)
RealPlayer. http://www.real.com/ (2017)

Scalable Vector Graphics (SVG) 1.1. https://www.w3.0org/TR/SVG/ (2011)

Synchronized Multimedia Integration = Language (SMIL) 1.0 Specification.
https://www.w3.0rg/TR/1998/REC-smil-19980615/ (1998)

SMIL 3.0 Synchronized Multimedia Integration Language. http://www.w3.org/TR/REC-smil/
(2008)

Smil Animation. https://www.w3.org/TR/smil-animation/ (2001)

HTMLS Text Track. http://dev.w3.org/html5/spec-preview/media-elements.html#text-track
(2012)

Twitter. https://twitter.com/ (2017)

W3C DOM4. https://www.w3.org/TR/dom/ (2015)

Web Animations. http://www.w3.org/TR/web-animations/ (2016)

Web Audio API. https://www.w3.org/TR/webaudio/ (2015)

The Web Socket Protocol. https://tools.ietf.org/html/rfc6455 (2011)

Web Workers. https://www.w3.org/TR/workers/ (2015)

WebGL. https://www.khronos.org/webgl/ (2017)

WebRTC Real-time Communication Between Browsers. https://www.w3.org/TR/webrtc/
(2017)

