
XEP-0433: Extended Channel Search

Jonas Schäfer
mailto:jonas@wielicki.name
xmpp:jonas@wielicki.name

2020-02-27
Version 0.1.0

Status Type Short Name
Deferred Standards Track ECS

This specification provides a standardised protocol to search for public group chats. In contrast to XEP-
0030 (Service Discovery), it works across multiple domains and in contrast to XEP-0055 (Jabber Search) it
more clearly handles extensibility.

mailto:jonas@wielicki.name
xmpp:jonas@wielicki.name

Legal
Copyright
This XMPP Extension Protocol is copyright © 1999 – 2024 by the XMPP Standards Foundation (XSF).

Permissions
Permission is hereby granted, free of charge, to any person obtaining a copy of this specification (the
”Specification”), to make use of the Specification without restriction, including without limitation the
rights to implement the Specification in a software program, deploy the Specification in a network
service, and copy, modify, merge, publish, translate, distribute, sublicense, or sell copies of the Specifi-
cation, and to permit persons to whom the Specification is furnished to do so, subject to the condition
that the foregoing copyright notice and this permission notice shall be included in all copies or sub-
stantial portions of the Specification. Unless separate permission is granted, modified works that are
redistributed shall not contain misleading information regarding the authors, title, number, or pub-
lisher of the Specification, and shall not claim endorsement of the modified works by the authors, any
organization or project to which the authors belong, or the XMPP Standards Foundation.

Warranty
NOTE WELL: This Specification is provided on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDI-
TIONS OF ANY KIND, express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. ##

Liability
In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing,
shall the XMPP Standards Foundation or any author of this Specification be liable for damages, includ-
ing any direct, indirect, special, incidental, or consequential damages of any character arising from,
out of, or in connection with the Specification or the implementation, deployment, or other use of the
Specification (including but not limited to damages for loss of goodwill, work stoppage, computer fail-
ure or malfunction, or any and all other commercial damages or losses), even if the XMPP Standards
Foundation or such author has been advised of the possibility of such damages.

Conformance
This XMPP Extension Protocol has been contributed in full conformance with the XSF’s Intellectual
Property Rights Policy (a copy of which can be found at <https://xmpp.org/about/xsf/ipr-policy>
or obtained by writing to XMPP Standards Foundation, P.O. Box 787, Parker, CO 80134 USA).

https://xmpp.org/
https://xmpp.org/about/xsf/ipr-policy

Contents
1 Introduction & Motivation 1

2 Requirements 1

3 Glossary 1

4 Use Cases 2
4.1 Announcing/discovering support . 2
4.2 Executing a keyword search . 2

4.2.1 Requesting the search form . 2
4.2.2 Send a search request . 4

5 Business Rules 8

6 Implementation Notes 9
6.1 Search Form Fields . 9

6.1.1 Extensibility of the Search Form Fields 11
6.2 Result Item Format . 11

6.2.1 Extensibility . 13

7 Security Considerations 13

8 IANA Considerations 13

9 XMPP Registrar Considerations 13

10 XML Schema 13

11 Design Considerations 13

12 Acknowledgements 14

3 GLOSSARY

1 Introduction & Motivation
The XMPP instant messaging ecosystem is a federated one. This leads to many different group
chat service providers existing and interesting public group chats being spread out across
them. In order to provide users with a way to find public group chats (henceforth called
channels) of interest to them, there needs to be a way to execute a cross-domain search based
on keywords.
The protocol in this document provides a general and extensible search for channels across
different domains and service types (e.g. MUC vs. MIX). It provides meta-information right in
the result set, which allows searching entities to skip additional Service Discovery (XEP-0030)
1 queries against the channels themselves.
The protocol is not only useful for cross-domain search, but also as an alternative to using a
Service Discovery (XEP-0030) 2 disco#items request followed by many disco#info requests on
a group chat service.

2 Requirements
The protocol:

• must work without state on the server side. This is to allow stateless proxies to be used
for pseudonymisation or anonymisation.

• must allow searching the list using a free-text keyword-based search.

• must allow future extensions to the search query and the result.

• must allow retrieving the entire data set (although, for clarification, an operator may
choose to turn this off).

• must use completely machine-readable and machine-writable data.

3 Glossary
Channel A public group chat hosted on a Group Chat Service. This can either be a Multi-

User Chat (XEP-0045) XEP-0045: Multi-User Chat <https://xmpp.org/extensions/xep-
0045.html>. room, a Mediated Information eXchange (MIX) (XEP-0369) XEP-0369:
Mediated Information eXchange (MIX) <https://xmpp.org/extensions/xep-0369.html>.
channel or something else entirely.

Group Chat Service An entity or deployment which offers multi-user chat re-
lay, such as by Multi-User Chat (XEP-0045) XEP-0045: Multi-User Chat

1XEP-0030: Service Discovery <https://xmpp.org/extensions/xep-0030.html>.
2XEP-0030: Service Discovery <https://xmpp.org/extensions/xep-0030.html>.

1

https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0030.html

4 USE CASES

<https://xmpp.org/extensions/xep-0045.html>. or Mediated Information eX-
change (MIX) (XEP-0369) XEP-0369: Mediated Information eXchange (MIX)
<https://xmpp.org/extensions/xep-0369.html>..

Search Service An entity which offers the service described in this specification.

Searcher An entity which requests information from the Search Service.

4 Use Cases
4.1 Announcing/discovering support
An entity annouces that it supports serving search queries by publishing the
urn:xmpp:channel-search:0:search feature via Service Discovery (XEP-0030) 3:

Listing 1: XEP-0030 disco#info response
<iq from=’search.service.example ’ to=’client@user.example ’ id=’id1’

type=’result ’>
<query xmlns=’http: // jabber.org/protocol/disco#info’>

<!-{}- ... -{}->
<feature var=’urn:xmpp:channel -search:0:search ’/>
<!-{}- ... -{}->

</query >
</iq>

4.2 Executing a keyword search
To execute a keyword search, the Searcher MAY first request the search form from the Search
Service. Alternatively, the Searcher MAY use the form specified in this document with only
the fields which must be implemented by the Search Service.
After obtaining the search form, the Searcher completes the form and sends it back to the
Search Service. The Search Service replies with a Result Set Management (XEP-0059) 4

paginated list of results.
The search form is a form conforming to Field Standardization for Data Forms (XEP-0068) 5.

4.2.1 Requesting the search form

To request the search form, an entity sends an empty search element qualified by the
urn:xmpp:channel-search:0:search namespace:

3XEP-0030: Service Discovery <https://xmpp.org/extensions/xep-0030.html>.
4XEP-0059: Result Set Management <https://xmpp.org/extensions/xep-0059.html>.
5XEP-0068: Field Data Standardization for Data Forms <https://xmpp.org/extensions/xep-0068.html>.

2

https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0059.html
https://xmpp.org/extensions/xep-0068.html
https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0059.html
https://xmpp.org/extensions/xep-0068.html

4 USE CASES

Listing 2: Searcher requests form from the Search Service
<iq from=’client@user.example ’ to=’search.service.example ’ id=’id2’

type=’get’ xml:lang=’en’>
<search xmlns=’urn:xmpp:channel -search:0:search ’/>

</iq>

The Search Service replies with the form as in the following example:

Listing 3: Search Service returns the search form
<iq from=’search.service.example ’ to=’client@user.example ’ id=’id2’

type=’result ’ xml:lang=’en’>
<search xmlns=’urn:xmpp:channel -search:0:search ’>

<x xmlns=’jabber:x:data ’ type=’form’>
<field type=’hidden ’ var=’FORM_TYPE ’>

<value >urn:xmpp:channel -search:0:search -params </value >
</field >
<field type=’text -single ’ var=’q’ label=’Search␣for’/>
<field type=’boolean ’ var=’all’ label=’Return␣all␣entries␣(

ignore␣search␣terms)’/>
<field type=’boolean ’ var=’sinname ’ label=’Search␣in␣name’>

<value >true</value >
</field >
<field type=’boolean ’ var=’sindescription ’ label=’Search␣in␣

description ’>
<value >true</value >

</field >
<field type=’boolean ’ var=’sinaddr ’ label=’Search␣in␣address ’>

<value >true</value >
</field >
<field type=’text -single ’ var=’min_users ’ label=’Minimum␣number␣

of␣users ’>
<value >1</value >

</field >
<field var=”types” type=”list -multi” label=”Service␣types”>

<value >xep -0045 </value >
<option label=’XEP -0045␣Multi␣User␣Chats ’><value >xep -0045 </

value ></option >
<option label=’XEP -0369␣MIX␣channels ’><value >xep -0369 </value ><

/option >
</field >
<field type=’list -single ’ var=’key’ label=’Sort␣results␣by’>

<value >{urn:xmpp:channel -search:0:order}nusers </value >
<option label=’Number␣of␣online␣users ’><value >{

urn:xmpp:channel -search:0:order}nusers </value ></option >
<option label=’Address ’><value >{urn:xmpp:channel -

search:0:order}address </value ></option >
</field >

</x>

3

4 USE CASES

</search >
</iq>

Note: Not all of the fields shown above are mandatory to implement. See Search Form Fields
for a list of fields and their implementation status.

4.2.2 Send a search request

To request the result list for a given search query, a Searcher submits a form with the
urn:xmpp:channel-search:0:search-params FORM_TYPE. The Searcher MAY include a Result
Set Management (XEP-0059) 6 <set/> element inside the <search/> element. In either case,
the Search Service may reply with a RSM-paginated result and the Searcher MUST be able to
process that.
If a Searcher composes a search request using a search form template obtained by the Search
Service, it MAY omit all fields it does not know or where it does not change the value already
supplied by the Search Service.

Listing 4: Searcher submits a form to the Search Service
<iq from=’client@user.example ’ to=’search.service.example ’ id=’id3’

type=’get’ xml:lang=’en’>
<search xmlns=’urn:xmpp:channel -search:0:search ’>

<set xmlns=”http: // jabber.org/protocol/rsm”>
<max>5</max>

</set>
<x xmlns=”jabber:x:data” type=”submit”>

<field type=’hidden ’ var=’FORM_TYPE ’>
<value >urn:xmpp:channel -search:0:search -params </value >

</field >
<field var=”q” type=”text -single” label=”Search␣for”>

<value >xmpp.org</value >
</field >
<field var=”key” type=”list -single” label=”Sort␣results␣by”>

<value >{urn:xmpp:channel -search:0:order}address </value >
<option label=’Number␣of␣online␣users ’><value >{

urn:xmpp:channel -search:0:order}nusers </value ></option >
<option label=’Address ’><value >{urn:xmpp:channel -

search:0:order}address </value ></option >
</field >

</x>
</search >

</iq>

The Search Service calculates the result, paginates it according to its own policy (possibly
taking into account the pagination request from the client) and returns a single result page in

6XEP-0059: Result Set Management <https://xmpp.org/extensions/xep-0059.html>.

4

https://xmpp.org/extensions/xep-0059.html
https://xmpp.org/extensions/xep-0059.html
https://xmpp.org/extensions/xep-0059.html

4 USE CASES

the response IQ.

Listing 5: Searcher submits a form to the Search Service
<iq from=’search.service.example ’ to=’client@user.example ’ id=’id3’

type=’result ’ xml:lang=’en’>
<result xmlns=’urn:xmpp:channel -search:0:search ’>

<item address=’commteam@muc.xmpp.org’>
<name>commteam </name>
<nusers >10</nusers >
<is -open/>

</item>
<!-{}- three more items -{}->
<item address=’operators@muc.xmpp.org’>

<name>XMPP Service Operators </name>
<description >Discussion venue for operators of federated XMPP

services </description >
<nusers >43</nusers >
<is -open/>

</item>
<set xmlns=’http: // jabber.org/protocol/rsm’>

<first >opaque -string -1</first >
<last>opaque -string -2</last>
<max>5</max>

</set>
</result >

</iq>

The result items are <item/> elements wrapped in a <result/> element qualified by the
urn:xmpp:channel-search:0:search namespace. The schema, along with extension rules, is
described in Result Item Format.
To obtain further results, the Searcher re-submits the identical form with an appropriate
Result Set Management (XEP-0059) 7 pagination request, using the information provided by
the Search Service in the result <set/> element.
If the sort key requested by the Searcher is not supported by the Search Service, the Search
Service MUST reply with <feature-not-implemented/> and the <invalid-sort-key> application
defined condition and a modify type:

Listing 6: Search Service replies with feature-not-implemented
<iq from=’search.service.example ’ to=’client@user.example ’ id=’id3’

type=’error ’ xml:lang=’en’>
<error type=’modify ’>

<feature -not -implemented xmlns=’urn:ietf:params:xml:ns:xmpp -
stanzas ’/>

<invalid -sort -key xmlns=’urn:xmpp:channel -search:0:error ’/>

7XEP-0059: Result Set Management <https://xmpp.org/extensions/xep-0059.html>.

5

https://xmpp.org/extensions/xep-0059.html
https://xmpp.org/extensions/xep-0059.html

4 USE CASES

</error >
</iq>

If the q field was supplied by the Searcher and the contents of the q field did not yield any
term suitable for search, the Search Service MUST reply with an <bad-request/> error and the
<invalid-search-terms/> application defined condition. The error type MUST be modify.
The server SHOULD include a human-readable description of the constraints for search terms
which were not met in the <text/> element of the error.

Listing 7: Search Service replies with the invalid-search-terms error
<iq from=’search.service.example ’ to=’client@user.example ’ id=’id3’

type=’error ’ xml:lang=’en’>
<error type=’modify ’>

<bad -request xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>
<text xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’>

Search terms must have at least three characters.
</text>
<invalid -search -terms xmlns=’urn:xmpp:channel -search:0:error ’/>

</error >
</iq>

If the Search Service can not or does (by policy) not want to process the request due to
excessive amounts of requests (either by the requesting entity, their domain or any other
criteria), it MUST reply with an <resource-constraint/> error with type wait.
The application defined error condition <rate-limit/> MUST be included. This error condition
has a RECOMMENDED attribute, retry-after, which provides the amount of seconds after
which the Searcher MAY retry the request.
The Search Service MAY include a human-readable description of the rate limit and when to
retry in the <text/> element.

Listing 8: Search Service replies with a rate limit notification
<iq from=’search.service.example ’ to=’client@user.example ’ id=’id3’

type=’error ’ xml:lang=’en’>
<error type=’wait’>

<resource -constraint xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>
<rate -limit xmlns=’urn:xmpp:channel -search:0:error ’ retry -after=’

30’/>
</error >

</iq>

Note: See also the rate-limiting related business rules for Searcher entities.
If the Search Service can not or does (by policy) not want to allow a Searcher to retrieve the
entire database of channels, it MUST reject queries which set the all field to true with an error
as follows:

6

4 USE CASES

• If the feature is generally disabled: <not-allowed/> with type cancel

• If the feature is not offered to the Searcher based on its identity: <forbidden/> with type
auth

In all cases, the application defined condition <full-set-retrieval-rejected/>MUST be included.
The Search Service MAY include a human-readable description of the restrictions around
full-list retrieval.
For example, if the full set retrieval had been disabled service-wide by configuration, the
Search Service would reply with the following error:

Listing 9: Search Service replies with a full-set-retrieval-rejected error
<iq from=’search.service.example ’ to=’client@user.example ’ id=’id3’

type=’error ’ xml:lang=’en’>
<error type=’cancel ’>

<not -allowed xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>
<text xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’>

Retrieval of the full database is not allowed.
</text>
<full -set -retrieval -rejected xmlns=’urn:xmpp:channel -

search:0:error ’/>
</error >

</iq>

If the Searcher provides form fields which are conflicting, the Search Service MUST reply
with a <bad-request/> error of type modify. In addition, the <conflicting-fields/> application
specific condition MUST be included.
Conflicting field values are those which fundamentally cannot be used in the same query in
such a way that the definition of their function is still adhered to. For example, q restricts the
results by keywords, but all specifies that all entries are returned.
The Search Service SHOULD include a human-readable description of the conflicting fields,
referencing to the label values of the involved fields.
The <conflicting-fields/> element MAY have one or more <var/> child elements which refer
to var values of the submitted fields. At least one of the referenced fields must be changed in
order for a follow-up query to succeed.‘
For example, if the Searcher has set all to true and provided a query in q, the Search Service
would reply with an error similar to the following:

Listing 10: Search Service replies with a conflicting-fields error
<iq from=’search.service.example ’ to=’client@user.example ’ id=’id3’

type=’error ’ xml:lang=’en’>
<error type=’cancel ’>

<not -allowed xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>
<text xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’>

Cannot both return all results and search by keywords.

7

5 BUSINESS RULES

</text>
<conflicting -fields xmlns=’urn:xmpp:channel -search:0:error ’>

<var>all</var>
<var>q</var>

</conflicting -fields >
</error >

</iq>

If no field which would define a result set and which is understood by the Search Service is
present, it MUST reply with a <bad-request/> error of type cancel.
In addition, the <no-search-conditions/> application defined condition MUST be included.

Listing 11: Search Service replies with the no-search-conditions error
<iq from=’search.service.example ’ to=’client@user.example ’ id=’id3’

type=’error ’ xml:lang=’en’>
<error type=’modify ’>

<bad -request xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>
<no -search -conditions xmlns=’urn:xmpp:channel -search:0:error ’/>

</error >
</iq>

An example of this situation would be a form where neither q nor all are given.

5 Business Rules
• When sending the form template, the Search Service MUST include all fields it supports
with their respective default values.

• When submitting a form to the Search Service, a Searcher MAY omit all fields it either
does not understand or it has left unchanged.

• When submitting a form to the Search Service, a Searcher MAY omit the <option/> ele-
ments.

• When receiving a search form, the Search Service MUST ignore fields with a var value it
does not understand.

• When executing a keyword search, the service may process the keyword string in
implementation-defined ways. This may include interpreting quotes and other ”spe-
cial” characters, removing keywords which do not fit internal criteria for suitability and
others.

• If the Searcher receives a <rate-limit/> error, the behaviour of the Searcher depends on
the retry-after attribute:

8

6 IMPLEMENTATION NOTES

– If the retry-after attribute is present, the Searcher MUST NOT send another search
request before the amount of seconds indicated in the retry-after attribute have
elapsed. There is no guarantee that the request will be accepted at that time.

– If the retry-after attribute is not present, the Searcher should wait for an
implementation-defined amount of time and SHOULD back off exponentially on
each subsequent <rate-limit/> error.

• If a search request does not yield any results, the Search Service MUST reply with a
<result/> without any <item/> children in a type=’result’ IQ. Specifically, it MUST NOT
reply with an <item-not-found/> error.

• If the all field is set to true and the Search Service allows this operation, all results MUST
be included in the result set (and then paginated using Result Set Management (XEP-
0059) 8).

6 Implementation Notes
6.1 Search Form Fields
The search form is extensible as per Field Standardization for Data Forms (XEP-0068) 9.
Implementations are free to add fields on both sides of the exchange, as long as they are
properly namespaced using Clark Notation.
The following fields are specified by this document:

var type Support level Description
q text-single RECOMMENDED Input for the keyword-

based search. Conflicts
with all.

all boolean OPTIONAL Return all results,
ignoring text search
terms. This does not
influence the restric-
tions imposed by the
types field. Conflicts
with q.

sinaddress boolean RECOMMENDED if q is
supported

Control whether
the keyword search
searches in the address
of the channel.

8XEP-0059: Result Set Management <https://xmpp.org/extensions/xep-0059.html>.
9XEP-0068: Field Data Standardization for Data Forms <https://xmpp.org/extensions/xep-0068.html>.

9

https://xmpp.org/extensions/xep-0059.html
https://xmpp.org/extensions/xep-0059.html
https://xmpp.org/extensions/xep-0068.html
https://xmpp.org/extensions/xep-0059.html
https://xmpp.org/extensions/xep-0068.html

6 IMPLEMENTATION NOTES

var type Support level Description
sinname boolean REQUIRED if q is sup-

ported
Control whether
the keyword search
searches in the name
of the channel.

sindescription boolean REQUIRED if q is sup-
ported

Control whether
the keyword search
searches in the textual
description of the
channel.

types list-multi RECOMMENDED Constrain the service
types of channels to
return. If not sup-
ported, the search
MUST only cover
Multi-User Chat
(XEP-0045) XEP-
0045: Multi-User Chat
<https://xmpp.org/extensions/xep-
0045.html>. group
chats.

key list-single REQUIRED Select how the results
are ordered.

The sort keys specified by this document are the following:

Value Description
{urn:xmpp:channel-search:0:order}address Order the results by the address of the chan-

nel. This ordering mode guarantees that the
Searcher gets a duplicate-free view without
omissions when paginating.

{urn:xmpp:channel-search:0:order}nusers Order the results descendingly by the num-
ber of users. This mode does not guarantee
that all channels in thedatabase are returned,
nor does it guarantee that noduplicates occur
across multiple pages.

10

6 IMPLEMENTATION NOTES

6.1.1 Extensibility of the Search Form Fields

Search Service implementations may offer custom values for the key field, provided Clark
Notation is used to namespace the values.

6.2 Result Item Format
The result items are <item/> elements qualified by the urn:xmpp:channel-search:0:search
namespace.
Each <item/> element MUST have an address attribute whose value is a proper JID (as per
either RFC 6122 10 or RFC 7622 11). It identifies the channel uniquely.
The following child elements of <item/> are defined by this specification. They are all qualified
by the same namespace as <item/> itself.

Element name Content model Occurences Description
name text character data 1 The human-readable

name of the channel.
description text character data 1 The human-readable

description of the
channel.

language text character data 1 A valid xml:lang code
which indicates the
primary language of
the channel.

nusers non-negative integer
character data

1 Number of occupants

service-type enumeration charac-
ter data

1 The type of the ser-
vice which hosts the
channel. See below
for values and seman-
tics.

is-open boolean character
data

1 If set to true, it indi-
cates that the channel
can be joined without
extra credentials.

anonymity-mode enumeration charac-
ter data

1 Anonymity level of
participation. See
below for values and
semantics.

10RFC 6122: Extensible Messaging and Presence Protocol (XMPP): Address Format <http://tools.ietf.org/htm
l/rfc6122>.

11RFC 7622: Extensible Messaging and Presence Protocol (XMPP): Address Format <http://tools.ietf.org/htm
l/rfc7622>.

11

http://tools.ietf.org/html/rfc6122
http://tools.ietf.org/html/rfc7622
http://tools.ietf.org/html/rfc6122
http://tools.ietf.org/html/rfc6122
http://tools.ietf.org/html/rfc7622
http://tools.ietf.org/html/rfc7622

6 IMPLEMENTATION NOTES

Notes:

1. Any child element may be omitted by a Search Service if the data is not available for any
or all rooms.

2. The number of occupants may be stale by an undefined amount of time.

3. A service MAY return future versions of those elements alongside with past versions.
Entities need to treat elements with the same name, but different namespace, as entirely
different elements.

Value Description
{urn:xmpp:channel-search:0:anonymity}none The bare JID of the account or the full JID

of one or more devices of each occupant is
visible to every other occupant.

muc_semianonymous As specified in Multi-User Chat (XEP-
0045) XEP-0045: Multi-User Chat
<https://xmpp.org/extensions/xep-
0045.html>.

Value Description
xep-0045 A Multi-User Chat (XEP-0045) XEP-0045: Multi-User Chat

<https://xmpp.org/extensions/xep-0045.html>. service.
xep-0369 A Mediated Information eXchange (MIX) (XEP-0369) XEP-0369: Mediated Infor-

mation eXchange (MIX) <https://xmpp.org/extensions/xep-0369.html>. ser-
vice.

If a Search Service would return entries with the same address with different service types,
it SHOULD prefer Mediated Information eXchange (MIX) (XEP-0369) 12 over Multi-User Chat
(XEP-0045) 13. Note that a Search Service MUST NOT return service types the client has not
asked for.

12XEP-0369: Mediated Information eXchange (MIX) <https://xmpp.org/extensions/xep-0369.html>.
13XEP-0045: Multi-User Chat <https://xmpp.org/extensions/xep-0045.html>.

12

https://xmpp.org/extensions/xep-0369.html
https://xmpp.org/extensions/xep-0045.html
https://xmpp.org/extensions/xep-0045.html
https://xmpp.org/extensions/xep-0369.html
https://xmpp.org/extensions/xep-0045.html

11 DESIGN CONSIDERATIONS

6.2.1 Extensibility

Search Service implementations are free to add custom child elements to <item/> elements.
Searcher implementations MUST be prepared to handle any unknown elements in <item/>,
for example by ignoring them.
Additional values for the <anonymity-mode/> element may be specified by future extensions.
If an implementation encounters an unknown value on this field, it is RECOMMENDED to
either treat it as synonymous to {urn:xmpp:channel-search:0:anonymity}none or request the
anonymity mode from the address using a protocol appropriate for the channel’s service.

7 Security Considerations
When sending a search form with a q field, the Searcher transmits potentially sensitive
information to a third party.

8 IANA Considerations
This specification does not require any interaction with the IANA.

9 XMPP Registrar Considerations
This specification should probably create registries for the various fields it defines, as well as
register a form type.

10 XML Schema
To be done.

11 Design Considerations
Instead of rolling a custom protocol for the result items, Jabber Search (XEP-0055) 14 could
have been used.
While the result format of Jabber Search (XEP-0055) 15 allows for some generality, it does so in
a rather restricted way. It is limited by the data formats and types expressable in Data Forms

14XEP-0055: Jabber Search <https://xmpp.org/extensions/xep-0055.html>.
15XEP-0055: Jabber Search <https://xmpp.org/extensions/xep-0055.html>.

13

https://xmpp.org/extensions/xep-0055.html
https://xmpp.org/extensions/xep-0055.html
https://xmpp.org/extensions/xep-0004.html
https://xmpp.org/extensions/xep-0004.html
https://xmpp.org/extensions/xep-0055.html

12 ACKNOWLEDGEMENTS

(XEP-0004) 16. Sturctured data, beyond lists of text and JIDs, can not be represented with Data
Forms (XEP-0004) 17 at all. Machine-readable data would also have to be human-readable
at the same time to provide a fallback view for human users. Interationalization of such
human-readable data in field values is not possible with Data Forms (XEP-0004) 18.
The advantage of entities being able to process unknown fields in a degraded manner is,
principally, still present in the current proposal (although with a different kind of degration).
Given the complexity of fully and correctly processing Data Forms (XEP-0004) 19 report data,
the slim benefits did, in the eyes of the authors, not outweigh the costs.

12 Acknowledgements
The basis for this protocol was developed for the search.jabber.network public group chat
search service. It has been cleaned up for publication as a Standards Track XEP by the author
and modified to support more use-cases.

16XEP-0004: Data Forms <https://xmpp.org/extensions/xep-0004.html>.
17XEP-0004: Data Forms <https://xmpp.org/extensions/xep-0004.html>.
18XEP-0004: Data Forms <https://xmpp.org/extensions/xep-0004.html>.
19XEP-0004: Data Forms <https://xmpp.org/extensions/xep-0004.html>.

14

https://xmpp.org/extensions/xep-0004.html
https://xmpp.org/extensions/xep-0004.html
https://xmpp.org/extensions/xep-0004.html
https://xmpp.org/extensions/xep-0004.html
https://xmpp.org/extensions/xep-0004.html
https://xmpp.org/extensions/xep-0004.html
https://xmpp.org/extensions/xep-0004.html
https://xmpp.org/extensions/xep-0004.html

	Introduction & Motivation
	Requirements
	Glossary
	Use Cases
	Announcing/discovering support
	Executing a keyword search
	Requesting the search form
	Send a search request

	Business Rules
	Implementation Notes
	Search Form Fields
	Extensibility of the Search Form Fields

	Result Item Format
	Extensibility

	Security Considerations
	IANA Considerations
	XMPP Registrar Considerations
	XML Schema
	Design Considerations
	Acknowledgements

