
Scale-Space SIFT Flow

Weichao Qiu1,2, Xinggang Wang1,2, Xiang Bai1, Alan Yuille2, and Zhuowen Tu3

1Dept. of Electronics and Information Engineering, Huazhong Univ. of Science and Technology
2Department of Statistics, UCLA

3Department of Cognitive Science, UCSD
qiuwch@gmail.com, {xgwang, xbai@hust.edu.cn}, yuille@stat.ucla.edu, ztu@ucsd.edu

Abstract

The state-of-the-art SIFT flow has been widely adopted
for the general image matching task, especially in dealing
with image pairs from similar scenes but with different ob-
ject configurations. However, the way in which the dense
SIFT features are computed at a fixed scale in the SIFT flow
method limits its capability of dealing with scenes of large
scale changes. In this paper, we propose a simple, intuitive,
and very effective approach, Scale-Space SIFT flow, to deal
with the large scale differences in different image locations.
We introduce a scale field to the SIFT flow function to au-
tomatically explore the scale deformations. Our approach
achieves similar performance as the SIFT flow method on
general natural scenes but obtains significant improvement
on the images with large scale differences. Compared with
a recent method that addresses the similar problem, our ap-
proach shows its clear advantage being more effective, and
significantly less demanding in memory and time require-
ment.

1. Introduction
Methods that are based on dense features have signifi-

cantly advanced the field of image matching and have been
widely adopted in various computer vision applications,
e.g., scene parsing [12, 20], image/video retrieval [13], mo-
tion estimation [13], and depth estimation [21]. Compared
to the previous approaches using extracted sparse features,
e.g. interest points [17, 2], dense features are better to pre-
serve the intrinsic uncertainties so that more robust deci-
sions can be made in the later stages; in practice, significant
improvements over the previous method in image matching
and classification have been widely observed by SIFT flow
[13] and Spatial Pyramid Matching [8] respectively.

Sparse features, e.g. the SIFT points [16] or Harris cor-
ners [17], can somewhat automatically (to a certain degree)
determine the feature scale. They work well for matching
identical objects in the images but fail to deliver reliable
results for semantic image alignment in the more general
cases. In matching, it is hard to determine the right scales

unless both the source and target images are observed.

When applying the dense features, the existing meth-
ods [13, 16] mostly compute the features at a fixed
scale. In this paper, we study the image match-
ing/correspondence/registration problem and focus on the
SIFT flow algorithm [13]. One popular method for comput-
ing the dense features is the Dense SIFT (DSIFT) descriptor
which extracts SIFT histogram at a single scale for all pix-
els with overlapping patches. Using DSIFT, SIFT flow [13]
aligns two images by minimizing matching cost and keep-
ing the flow field smooth. Since the DSIFT feature is only
computed at one scale in SIFT flow, it requires that objects
in two images share the same/similar scales. This makes
SIFT flow problematic in dealing with images of large scale
change, which was observed in [6]. To overcome this prob-
lem, a recent method called Scale-Less SIFT (SLS) was
proposed in [6]. When performing the matching, SLS ex-
tracts a set of DSIFT features at multiple scales for every
pixel and uses set-to-set distance to measure the matching
cost between the corresponding pixels. More specifically,
SLS uses Projection Frobenius Norm to compute the set-to-
set distance. In practice, if there are 100, 000 pixels in each
image then a locality constraint is needed; running SLS with
the Projection Frobenius Norm is both time- and memory-
consuming. For an image of standard size 640 × 480, it
consumes more than 10G memory and takes hours to per-
form one matching, which makes the SLS algorithm nearly
impractical to scale up. In addition, SLS tries to address
the scale difference problem by feature fusion. Instead, we
tackle this problem by creating a scale field to automatically
explore the best SIFT matches at the right scale at each lo-
cation. This simple but intuitive solution yields significant
improvement over SLS in performance, speed, and mem-
ory consumption; it also demonstrates its advantage over
the original SIFT flow method when dealing with images of
large scale differences.

The “Scale-space” theory was firstly introduced by
Witkin in [23] for multi-scale image representation and now
has been considered as a well-studied topic [24, 9]. Linear
Gaussian scale-space is the most widely used multi-scale
image representation method. Anisotropic diffusion [18]

1

1112

rmoore3
Text Box

was proposed to obtain non-linear smooth scale-space by
Perona and Malik. Nevertheless, it is beneficial to look
back at some of the early work in computer vision whose
essences are often inspiring to the modern vision algo-
rithms.

In our approach, we associate each pixel with a scale
factor; scale factors on the image lattice form a scale field;
dense feature for each pixel is estimated for a particular
scale during matching. The “best” match is estimated with
the selection of the right scale factors through (1) minimiz-
ing feature matching cost, (2) keeping the flow field smooth,
and (3) keeping the scale field smooth. Fig. 1 shows the
clear advantage of introducing the scale field of our method
which naturally explores the scale space for matching im-
age pairs of different scales. We give an iterative solution
for minimizing the objective function.

In addition, we will show in the experiments that our
method does not degrade when dealing with image scenes
of small scale changes. We also apply our method to
example-based color enhancement.

2. Related Work
The related work can be roughly divided into categories

on scale invariant image representations and and those per-
forming image matching/registration. To build scale invari-
ant image representations, most methods are based on au-
tomatic scale selection which seeks for each feature point
a stable and characteristic scale. Automatic scale selection
methods usually search for local extrema in the 3D scale-
space representation of an image (x, y and scale). This idea
was introduced in the early eighties by Crowley [3]. Based
on this idea, Laplacian of Gaussian (LoG) [10] and Differ-
ence of Gaussian (DoG) [16] are widely used. Please see
[17] for a more comprehensive survey for automatic scale
selection. In [7], a scale invariant image descriptor is build
without scale selection. Scale invariance of SID is guaran-
teed in the Fourier Transform Modulus. There are a large
number of image matching/aligment/registration methods
in computer vision and medical imaging etc. Some recent
works include: the dense graph matching method in [15],
the vector field learning method in [25], factorized graph
matching [26] etc. Our method is built upon the SIFT flow
[14, 13] method, which does not consider the scale change
problem.

3. Approach
3.1. SIFT Flow Review

We first review the SIFT flow formulation in [13]. In
SIFT flow, it assumes image matching are performed with-
out much scale change. Let p = (x, y) be the grid coordi-
nate of images, w(p) = (u(p), v(p)) be the flow vector at
p, and s1 and s2 be two SIFT images that we want to match.

s1(p) denotes a SIFT descriptor at position p of SIFT im-
age s1. Set ϵ contains all spatial neighborhoods (usually
a four-neighbor system is used). The energy function for
SIFT flow is defined as:

E(w) =
∑
p

min (∥ s1(p)− s2(p+w(p)) ∥1, t)+∑
p

η (|u(p)|+ |v(p)|)+

∑
(p,q)∈ϵ

min(α|w(p)−w(q)|, d)

(1)

which contains a data term, a small displacement term and a
smoothness term (a.k.a spatial regularization). In Eqn. (1),
∥ s1(p) − s2(p + w(p)) ∥1 is the data term which con-
strains the SIFT descriptors to be matched along with the
flow vector w(p). |u(p)|+ |v(p)| is the small displacement
term which constrains the flow vectors to be as small as
possible. |w(p)−w(q)| = |u(p)− u(q)|+ |v(p)− v(q)|
is the displacement smoothness term which constrains the
flow vectors of adjacent pixels to be similar. In this objec-
tive function, truncated ℓ1 norms are used in both the data
term and the displacement smoothness term to account for
matching outliers and flow discontinues, with t and d as
threshold, respectively.

In [13], the optimization problem in Eqn. (1) was solved
using a dual layer loopy belief propagation; a coarse-to-fine
matching scheme is further adapted which can both speed
up matching and obtain a better solution. There is no scale
factor in Eqn. (1), while in many dense feature matching
applications, images are at different scales. In SIFT flow,
dense SIFT feature computed in fixed grids and fixed patch
size in image can handle small scale variation. From our ex-
perimental experience, SIFT flow can handle scale variation
with the ratio in [1/1.5, 1.5]. In the following section, we
proposed a dense feature matching formulation by simply
associating each pixel in image with a scale factor.

3.2. Scale­Space SIFT Flow

When matching two images, we keep the second image
at its own scale. In the first image, we assign a scale factor
for every position which is denoted by σ(p) ∈ R. We de-
note s1(p, σ(p)) as a SIFT feature computed at scale σ(p)
at position p in the first image. For simplicity, we omit the
scale factor if it is 1. Our new energy function is given as
follows:

E(w, σ) =
∑
p

min (||s1(p, σ(p))− s2(p+w(p))||1, t)+∑
p,q∈ϵ

min(α|w(p)−w(q)|, d)+

∑
p,q∈ϵ

min(β|σ(p)− σ(q)|, τ)

(2)

1113

(a) Source image (b) Target image (c) SIFT flow (d) Our method (e) Estimated scale field

Figure 1. We find dense correspondence from (a) to (b), then use dense correspondence to warp the source image to the target image. (c)(d)
are warped image from SIFT flow and our method respectively. (e) shows the estimated scale field.

In Eqn. (2), besides a flow field w, we have another scale
field σ. We require both fields to be smooth. In Eqn. (2),
||σ(p) − σ(q)|| is the scale smoothness term which con-
strains the scale factors of adjacent pixels to be similar.
Different from the energy function in SIFT flow, here we
remove the small displacement term. This is due to the fact
that the displacements are no longer small when objects of
interest to be matched are at different scales. Another ad-
vantage of removing the small displacement term is that it
allows object of interest appears in any position of the sec-
ond image. This gives more flexibility than before. Pa-
rameters β and τ are used for adjusting the weight of scale
smoothness term and truncating scale smoothness term. To
deal with potential outliers in the scale field, we use ℓ1 norm
for scale smoothness term.

Our formulation gives a very natural and intrinsic ap-
proach to deal with the scale variation issue in dense fea-
ture matching. Rather than computing multi-scale DSIFT
descriptors and matching them using set-to-set distance in
[6], we aim at computing feature at a proper scale. We allow
different positions have different scales, and constrains the
final scale field is smooth. This setting is very reasonable.

3.3. Optimization for (2)

In this subsection, we give our optimization method for
our energy function in (2). A straightforward solution is
to put the scale factor σ(p) in the dual layers loopy belief
propagation framework. However, because of the coarse-to-
fine scheme needs to re-scale the images, it is not suitable
for optimizing the scale factor. Alternatively, we propose
an iterative solution. When the scale field σ is fixed, we op-
timize the flow field w; when the flow field w is obtained,
we optimize the scale field σ. To tackle the problem of opti-
mizing scale field, we discrete the scale space into N states,
denoted as ζ = {σ1, σ2, . . . , σN}. The estimated scale fac-
tor for every position should be in the scale space, denoted
as σ(p) ∈ ζ. To clearly illustrate our algorithm, we also de-
fine an index map m = {m(p) ∈ [1, . . . , N]} for the scale
field, thus σ(p) = σm(p).

The whole solution is outlined in Fig 2. For image 2,

we always compute SIFT image at its original scale. In the
initialization stage, for every scale in the scale space, we
compute SIFT image for the first image at this scale, match
the SIFT image to the SIFT image 2 using SIFT flow formu-
lated in Eqn. (3), and obtain the data term for every position
at current scale. Then we initialize scale factor for every
position by looking for smaller data term and keeping scale
smooth at the same time; these two objectives are formu-
lated together in a MRF framework given in Eqn. (4). After
the scale field is initialized, we iteratively optimize the flow
field and the scale field. Now, the idea of optimizing flow
field is fixing SIFT feature as s1(p, σ ˆm(p)

) in the first im-
age and computing SIFT flow; this is formulated in Eqn. (5).
The idea of optimizing scale field is fixing flow as ŵ(p) and
looking for smaller data term across scales and keeping the
scale space smooth at the same time; this is formulated in
Eqn. (6).

The problems of optimizing flow field (in Eqn. (3)
and Eqn. (5)) and optimizing scale field (in Eqn. (4) and
Eqn. (6)) are easy to tackle using existing optimizing tech-
nics. We directly use optimization method in SIFT flow
[13] to optimize flow field. We use the efficient belief prop-
agation algorithm in [4]; coarse-to-fine scheme is not used
when optimizing the scale field, since the scale space is very
small compared to the displacement space.

4. Experiment

In our experiments, we report the image matching results
by our method on benchmark datasets and compare with
SIFT flow [13] and SLS [6], which are most related. For
a quantitative evaluation, we use the standard Middlebury
dataset [1], which has been widely used as benchmark for
optical flow algorithms. Then we quantitatively and qual-
itatively compare the matching performance to [6] on the
identical images used in [6]. Furthermore, we apply our
algorithm to example-based color enhancement.

Through our experiment, the scale space of the dense
SIFT is set to ζ = {1, 2, 4, 6, 8}; the weight parameters
α = 3, β = 60; the threshold for flow field d = 60; for

1114

Initialization: For n ∈ [1, . . . , N], we compute flow field by solving:

ŵn = argminw
∑
p

min (||s1(p, σn)− s2(p+w(p))||1, t) +
∑
p,q∈ϵ

min(α|w(p)−w(q)|, d) (3)

Then, we compute scale field by solving:
m̂ = argminm(p)∈[1,...,N]

∑
p

min
(
||s1(p, σm(p))− s2(p+ ˆwm(p)(p))||1, t

)
+

∑
p,q∈ϵ

min(β|σm(p) − σm(q)|, τ)

σ̂ = {σ ˆm(p)
}

(4)

Run the following two procedures for a desired number of iterations.

Optimize flow field w:

ŵ = argminw
∑
p

min
(
||s1(p, σ ˆm(p)

)− s2(p+w(p))||1, t
)
+

∑
p,q∈ϵ

min(α|w(p)−w(q)|, d) (5)

Optimize scale field σ:
m̂ = argminm(p)∈[1,...,N]

∑
p

min
(
||s1(p, σm(p))− s2(p+ ŵ(p))||1, t

)
+

∑
p,q∈ϵ

min(β|σm(p) − σm(q)|, τ)

σ̂ = {σ ˆm(p)
}

(6)

Output: The estimated flow field w∗ = ŵ and scale field σ∗ = σ̂.

Figure 2. Optimization algorithm for Eqn. (2).

the threshold of scale field τ = 120; the threshold of data
term t is set follows the way in [12]. We run our scale-space
SIFT flow following our algorithm description in Fig. 2.

4.1. Quantitative result

The original Middlebury dataset[1] images are of iden-
tical scale. To perform image matching across different
scales, we re-scale images in this dataset, following the pro-
tocol in [6]. Source images are scaled to 0.7 and target im-
ages are scaled to 0.2. The ground-truths are also scaled
accordingly. Quantitative image matching performance is
measured by the angular error and the endpoint error which
are the same as in [1]. Specifically, the angular error is the
angle between estimated flow and ground truth. It is defined
as AE = cos−1 (1.0+u∗uGT+v∗vGT√

1.0+u2+v2
√

1.0+u2
GT+v2

GT

). Endpoint er-

ror is defined as EE =
√
(u− uGT)2 + (v − vGT)2. Av-

erage values and standard deviations of both angular error
and endpoint error(±SD) for three methods are reported in
Table. 1.

Table. 1 shows that original SIFT flow fails to deal with
large scale difference. Both SLS and our method can han-

dle large scale difference and our method consistently out-
performs SLS in both angular error and endpoint error mea-
sures.

We also test our method on the original Middlebury
dataset. From Table 2 it is obvious that our method can
perform equally well as the original SIFT flow, which has
been successfully applied to scene parsing[11].

4.2. Qualitative result

To further illustrate the ability of our method, some vi-
sual comparisons are shown in this section. For our method
and other compared methods, we compute dense feature
correspondences between the source image and the target
image; the result image is the warped source image accord-
ing to the computed dense correspondences.

At first, we show the matching results as the scale fac-
tor change in Fig. 3. As shown in Fig. 3, from left to right,
the scale of the source image reduces gradually. The orig-
inal SIFT flow can handle small scale variation, but will
inevitably fail when scale difference become large. Both
our method and SLS can effectively handle large scale vari-

1115

Angular error Endpoint error
Data SIFT flow[13] SLS[6] Our method SIFT flow[13] SLS[6] Our method
Dimetrodon 25.99± 38.28 0.17± 0.42 0.13± 0.18 59.06± 37.98 0.83± 0.40 0.52± 0.27
Grove2 5.12± 12.89 0.15± 0.26 0.11± 0.23 25.89± 39.60 0.80± 0.36 0.48± 0.34
Grove3 5.73± 12.80 0.16± 0.32 0.12± 0.27 69.24± 69.84 0.91± 0.47 0.62± 0.83
Hydrangea 5.98± 13.82 0.18± 0.37 0.26± 1.77 24.52± 34.14 0.79± 0.40 0.63± 1.18
RubberWhale 20.73± 30.05 0.15± 0.23 0.12± 0.17 63.29± 41.46 0.85± 0.50 0.52± 0.28
Urban2 6.24± 13.32 0.32± 1.28 0.14± 0.18 42.59± 55.57 1.53± 5.40 0.65± 0.53
Urban3 9.65± 14.98 0.66± 1.39 0.19± 0.37 58.25± 52.05 18.20± 35.11 0.79± 0.81
Venus 5.51± 15.21 0.23± 0.47 0.22± 0.55 15.94± 29.94 0.78± 0.39 0.62± 0.73

Table 1. Quantitative results for SIFT flow [13], SLS [6] and our method on scaled version of Middlebury dataset [1].

Angular error Endpoint error
Data SIFT flow[13] Our method SIFT flow[13] Our method
Dimetrodon 9.82± 8.55 10.71± 11.24 0.43± 0.28 0.47± 0.37
Grove2 8.29± 12.52 6.65± 8.37 0.57± 0.64 0.50± 0.50
Grove3 12.44± 19.18 10.69± 17.13 1.10± 1.66 0.98± 1.51
Hydrangea 8.96± 18.74 8.23± 17.53 0.60± 1.17 0.56± 1.10
Rubberwhale 11.46± 15.78 10.59± 14.87 0.37± 0.42 0.35± 0.40
Urban2 10.77± 17.40 8.34± 12.29 1.51± 3.57 0.77± 1.74
Urban3 14.48± 35.09 8.28± 21.29 1.46± 3.23 0.97± 2.04
Venus 7.17± 22.07 10.93± 34.00 0.55± 1.05 1.25± 4.14

Table 2. Quantitative results of original SIFT flow [13] and our method on the original version of Middlebury dataset [1].

ation.
We take the identical images presented in [6] for a fair

comparison. Fig. 4 shows the case that scale difference is
caused by scene motion. As shown in the figure, the original
SIFT flow method manages to lock onto single scale, which
causes large distortion on the result image. Both SLS and
our method can find correct correspondences between the
source images to the target images. Since our method do
not have a region of interest (ROI) strategy as used in SLS,
the warped source image becomes more flexible in defor-
mation.

Fig. 5 shows the image matching results with scale dif-
ference in different scenes. For the flower and butterfly
cases, our method can tackle scale difference to produce
appealing results. For the racing car case, though each car
in the source image found its correspondence on the tar-
get image, the road becomes more cluttered than the other
method. So we consider it as a “failure” case.

Computational cost In this part, we compare compu-
tational time and memory cost needed by SLS and our
method. According to our algorithm in Fig. 2, the com-
putational time of our algorithm is roughly number of scale
times execution time of original SIFT flow. But in SLS,
computing set-to-set distance for multi-scale SIFTs is very
time and memory consuming. We report average computa-
tional time and memory cost for matching one pair of im-

SLS [6] Ours
Computational Time 45 minutes 2 minutes

Memory Cost 6G 1G

Table 3. Comparison of computational cost of SLS[6] and our
method.

ages in the experiments in Sec. 4.1 in Table 3. In addition,
our platform is a Xeon 3.07Ghz server with 64G memory.

From those previous experiment, we observe that both
SLS and the proposed method are able to cope with scale
difference problem in matching. The significantly improved
quantitative performance with much less computation bur-
den illustrates the evident advantage of our method over
SLS.

4.3. Example based color enhancement

Most successful applications of SIFT flow don’t suffer
from the scale problem, for example [12, 13]. In this sec-
tion, we apply our algorithm to example based color en-
hancement. This application requires both reliable dense
correspondence and the ability to handle scale change.

Due to lighting condition or camera specification, color
quality of photos varies a lot. Examples are shown in Fig. 6
and Fig. 7. Traditional method uses expert and software to
manually regrade color, which requires tedious work. Some
recent progress [22, 19, 5] tried to use example photographs

1116

Target Image

Source Image

SIFT flow[13]

SLS[6]

Our method

Figure 3. Matching results of SIFT flow [13], SLS [6] and our method on different scales. SIFT flow can only handle small scale variance.
Our method and SLS can tolerate much bigger scale difference.

Source Target SIFT flow[13] SLS[6] Our method

Figure 4. Matching results of SIFT flow [13], SLS [6] and our method on different scale images caused by camera and scene motion.

to regrade low quality photos’ color automatically. Most of
those work rely or can benefit from reliable dense corre-
spondence of input images.

In this experiment, we use the estimated correspondent
region to estimate color statistics instead of using whole im-
age. Then we manipulate the color statistics of source im-
age to match example image, using the color transfer tech-
nique proposed in [19]. For more detail of the color trans-

fer algorithm, please refer to [19]. Fig. 6 shows the dif-
ference between using correspondent region and whole im-
age as input of color transfer. The large background region
in example image makes the color statistics quite different,
though these two input images share a large portion of con-
tent. We can not generate satisfactory result based on SIFT
flow’s correspondence, because its limitation of handling
scale change.

1117

Source Target SIFT flow[13] SLS[6] Our method

Figure 5. Matching results of SIFT flow [13], SLS [6] and our method on multi-scale images in different scenes.

In Fig. 7, we show another case of example based en-
hancement. In this case, source image is captured by a
low-end android phone and example image is retrieved by
google image search. We are not able to find an example
image which shares the same content with our low qual-
ity images, but we can easily find visually similar exemplar
images. Computing correspondence for this case is difficult
and [5] failed to get any correspondent region. Our method
can still produce reasonable result. For the second image
in Fig. 7, the correspondence is not reliable, but the color
statistics of correspondent region and whole image are still
similar. In this situation, our color enhancement method
shows similar behaviour to [19].

5. Conclusion

In this paper, we have presented a general image match-
ing algorithm, which extends from SIFT flow by automati-
cally exploring the scale-space of the dense SIFT features.
Our system is simple, intuitive, easy to reproduce1, and
very effective. By explicitly estimating the scale field, our
method can effectively deal with large scale difference in
the image pairs, while reaching the similar performance as
the original SIFT flow method in normal images.

The computational complexity and memory consump-
tion of our method is linear to SIFT flow, which makes it

1Source code can be found at http://weichaoqiu.com/code/
ssf.zip

Example Image Source Image Our method
Figure 7. Our method can enhance image based on visually similar
example, while NRDC[5] will fail at finding correspondence and
can not produce result

easy to scale to deal with a large number images. We expect
our method to be applied in a variety of computer vision
tasks for scene understanding, retrieval, and 3D construc-
tion.

Acknowledgement
This work is supported by the National Natural Science

Foundation of China (grant No. 61222308) and the NSF
under Grants IIS-1216528 (IIS-1360566), IIS-0844566(IIS-
1360568) and IIS-0917141.

1118

Example Image Source Image Our method Pitie et al.[19] NRDC[5]
Figure 6. Comparison with Pitié et al.[19] and NRDC[5]. The dense correspondent region can provide more reliable color statistics than
whole image

References
[1] S. Baker, D. Scharstein, J. Lewis, S. Roth, M. J. Black, and

R. Szeliski. A database and evaluation methodology for opti-
cal flow. International Journal of Computer Vision, 92(1):1–
31, 2011. 3, 4, 5

[2] S. Belongie, J. Malik, and J. Puzicha. Shape matching and
object recognition using shape contexts. PAMI, 24(4):509–
522, 2002. 1

[3] J. Crowley. A representation for visual information. PhD
thesis, Carnegie Mellon University, 1981. 2

[4] P. F. Felzenszwalb and D. P. Huttenlocher. Efficient belief
propagation for early vision. International journal of com-
puter vision, 70(1):41–54, 2006. 3

[5] Y. HaCohen, E. Shechtman, D. B. Goldman, and D. Lischin-
ski. Non-rigid dense correspondence with applications for
image enhancement. In ACM Transactions on Graphics
(TOG), volume 30, page 70. ACM, 2011. 5, 7, 8

[6] T. Hassner, V. Mayzels, and L. Zelnik-Manor. On sifts and
their scales. In IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), June. 2012. 1, 3, 4, 5, 6, 7

[7] I. Kokkinos and A. Yuille. Scale invariance without scale
selection. In CVPR, pages 1–8, 2008. 2

[8] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of
features: Spatial pyramid matching for recognizing natural
scene categories. In CVPR, volume 2, pages 2169–2178,
2006. 1

[9] T. Lindeberg. Scale-space theory in computer vision. Kluwer
Academic Publishers, 1994. 1

[10] T. Lindeberg. Feature detection with automatic scale selec-
tion. International Journal of Computer Vision, 30(2):79–
116, 1998. 2

[11] C. Liu, J. Yuen, and A. Torralba. Nonparametric scene pars-
ing: Label transfer via dense scene alignment. In Computer
Vision and Pattern Recognition, 2009. CVPR 2009. IEEE
Conference on, pages 1972–1979. IEEE, 2009. 4

[12] C. Liu, J. Yuen, and A. Torralba. Nonparametric scene pars-
ing via label transfer. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 33(12):2368–2382, 2011. 1, 4, 5

[13] C. Liu, J. Yuen, and A. Torralba. Sift flow: Dense correspon-
dence across scenes and its applications. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 33(5):978–
994, 2011. 1, 2, 3, 5, 6, 7

[14] C. Liu, J. Yuen, A. Torralba, J. Sivic, and W. T. Freeman.
Sift flow: dense correspondence across different scenes. In
ECCV, pages 28–42. Springer, 2008. 2

[15] H. Liu and S. Yan. Common visual pattern discovery via
spatially coherent correspondences. In CVPR, pages 1609–
1616. IEEE, 2010. 2

[16] D. G. Lowe. Distinctive image features from scale-invariant
keypoints. International Journal of Computer Vision,
60(2):91–110, 2004. 1, 2

[17] K. Mikolajczyk and C. Schmid. Scale & affine invariant in-
terest point detectors. International Journal of Computer Vi-
sion, 60(1):63–86, 2004. 1, 2

[18] P. Perona and J. Malik. Scale-space and edge detection using
anisotropic diffusion. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 12(7):629–639, 1990. 1

[19] F. Pitié, A. C. Kokaram, and R. Dahyot. Automated colour
grading using colour distribution transfer. Computer Vision
and Image Understanding, 107(1):123–137, 2007. 5, 6, 7, 8

[20] M. Rubinstein, C. Liu, and W. T. Freeman. Annotation prop-
agation in large image databases via dense image correspon-
dence. In ECCV, pages 85–99. Springer, 2012. 1

[21] E. Tola, V. Lepetit, and P. Fua. Daisy: An efficient dense de-
scriptor applied to wide-baseline stereo. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 32(5):815–
830, 2010. 1

[22] B. Wang, Y. Yu, and Y.-Q. Xu. Example-based image color
and tone style enhancement. To appear in ACM TOG, 30:4.
5

[23] A. Witkin. Scale space filtering. In Proc. of 8th Inter-
national Joint Conference on Artificial Intelligence, pages
1019–1022, 1983. 1

[24] A. Yuille and T. Poggio. Scaling theorems for zero crossings.
IEEE PAMI, 1:15–25, 1986. 1

[25] J. Zhao, J. Ma, J. Tian, J. Ma, and D. Zhang. A robust method
for vector field learning with application to mismatch remov-
ing. In CVPR, pages 2977–2984. IEEE, 2011. 2

[26] F. Zhou and F. De la Torre. Factorized graph matching. In
CVPR, pages 127–134. IEEE, 2012. 2

1119

