Skip to content

Change text in Aho Corasick #1451

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Apr 16, 2025
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion src/string/aho_corasick.md
Original file line number Diff line number Diff line change
Expand Up @@ -209,7 +209,7 @@ Assume that at the moment we stand in a vertex $v$ and consider a character $c$.
1. $go[v][c] = -1$. In this case, we may assign $go[v][c] = go[u][c]$, which is already known by the induction hypothesis;
2. $go[v][c] = w \neq -1$. In this case, we may assign $link[w] = go[u][c]$.

In this way, we spend $O(1)$ time per each pair of a vertex and a character, making the running time $O(mk)$. The major overhead here is that we copy a lot of transitions from $u$ in the first case, while the transitions of the second case form the trie and sum up to $m$ over all vertices. To avoid the copying of $go[u][c]$, we may use a persistent array data structure, using which we initially copy $go[u]$ into $go[v]$ and then only update values for characters in which the transition would differ. This leads to the $O(m \log k)$ algorithm.
In this way, we spend $O(1)$ time per each pair of a vertex and a character, making the running time $O(mk)$. The major overhead here is that we copy a lot of transitions from $u$ in the first case, while the transitions of the second case form the trie and sum up to $m$ over all vertices. To avoid the copying of $go[u][c]$, we may use a persistent array data structure, using which we initially copy $go[u]$ into $go[v]$ and then only update values for characters in which the transition would differ. This leads to the $O(n \log k)$ algorithm.

## Applications

Expand Down