Skip to content

Chroma support (pruned Flux model) #696

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 17 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
227 changes: 223 additions & 4 deletions conditioner.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -747,7 +747,7 @@ struct SD3CLIPEmbedder : public Conditioner {

clip_l_tokenizer.pad_tokens(clip_l_tokens, clip_l_weights, max_length, padding);
clip_g_tokenizer.pad_tokens(clip_g_tokens, clip_g_weights, max_length, padding);
t5_tokenizer.pad_tokens(t5_tokens, t5_weights, max_length, padding);
t5_tokenizer.pad_tokens(t5_tokens, t5_weights, NULL, max_length, padding);

// for (int i = 0; i < clip_l_tokens.size(); i++) {
// std::cout << clip_l_tokens[i] << ":" << clip_l_weights[i] << ", ";
Expand Down Expand Up @@ -1004,6 +1004,7 @@ struct FluxCLIPEmbedder : public Conditioner {
T5UniGramTokenizer t5_tokenizer;
std::shared_ptr<CLIPTextModelRunner> clip_l;
std::shared_ptr<T5Runner> t5;
size_t chunk_len = 256;

FluxCLIPEmbedder(ggml_backend_t backend,
std::map<std::string, enum ggml_type>& tensor_types,
Expand Down Expand Up @@ -1077,7 +1078,7 @@ struct FluxCLIPEmbedder : public Conditioner {
}

clip_l_tokenizer.pad_tokens(clip_l_tokens, clip_l_weights, 77, padding);
t5_tokenizer.pad_tokens(t5_tokens, t5_weights, max_length, padding);
t5_tokenizer.pad_tokens(t5_tokens, t5_weights, NULL, max_length, padding);

// for (int i = 0; i < clip_l_tokens.size(); i++) {
// std::cout << clip_l_tokens[i] << ":" << clip_l_weights[i] << ", ";
Expand Down Expand Up @@ -1109,7 +1110,6 @@ struct FluxCLIPEmbedder : public Conditioner {
struct ggml_tensor* pooled = NULL; // [768,]
std::vector<float> hidden_states_vec;

size_t chunk_len = 256;
size_t chunk_count = t5_tokens.size() / chunk_len;
for (int chunk_idx = 0; chunk_idx < chunk_count; chunk_idx++) {
// clip_l
Expand Down Expand Up @@ -1196,7 +1196,226 @@ struct FluxCLIPEmbedder : public Conditioner {
int height,
int adm_in_channels = -1,
bool force_zero_embeddings = false) {
auto tokens_and_weights = tokenize(text, 256, true);
auto tokens_and_weights = tokenize(text, chunk_len, true);
return get_learned_condition_common(work_ctx, n_threads, tokens_and_weights, clip_skip, force_zero_embeddings);
}

std::tuple<SDCondition, std::vector<bool>> get_learned_condition_with_trigger(ggml_context* work_ctx,
int n_threads,
const std::string& text,
int clip_skip,
int width,
int height,
int num_input_imgs,
int adm_in_channels = -1,
bool force_zero_embeddings = false) {
GGML_ASSERT(0 && "Not implemented yet!");
}

std::string remove_trigger_from_prompt(ggml_context* work_ctx,
const std::string& prompt) {
GGML_ASSERT(0 && "Not implemented yet!");
}
};

struct PixArtCLIPEmbedder : public Conditioner {
T5UniGramTokenizer t5_tokenizer;
std::shared_ptr<T5Runner> t5;
size_t chunk_len = 512;

PixArtCLIPEmbedder(ggml_backend_t backend,
std::map<std::string, enum ggml_type>& tensor_types,
int clip_skip = -1) {
t5 = std::make_shared<T5Runner>(backend, tensor_types, "text_encoders.t5xxl.transformer");
}

void set_clip_skip(int clip_skip) {
}

void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors) {
t5->get_param_tensors(tensors, "text_encoders.t5xxl.transformer");
}

void alloc_params_buffer() {
t5->alloc_params_buffer();
}

void free_params_buffer() {
t5->free_params_buffer();
}

size_t get_params_buffer_size() {
size_t buffer_size = 0;

buffer_size += t5->get_params_buffer_size();

return buffer_size;
}

std::tuple<std::vector<int>, std::vector<float>, std::vector<float>> tokenize(std::string text,
size_t max_length = 0,
bool padding = false) {
auto parsed_attention = parse_prompt_attention(text);

{
std::stringstream ss;
ss << "[";
for (const auto& item : parsed_attention) {
ss << "['" << item.first << "', " << item.second << "], ";
}
ss << "]";
LOG_DEBUG("parse '%s' to %s", text.c_str(), ss.str().c_str());
}

auto on_new_token_cb = [&](std::string& str, std::vector<int32_t>& bpe_tokens) -> bool {
return false;
};

std::vector<int> t5_tokens;
std::vector<float> t5_weights;
std::vector<float> t5_mask;
for (const auto& item : parsed_attention) {
const std::string& curr_text = item.first;
float curr_weight = item.second;

std::vector<int> curr_tokens = t5_tokenizer.Encode(curr_text, true);
t5_tokens.insert(t5_tokens.end(), curr_tokens.begin(), curr_tokens.end());
t5_weights.insert(t5_weights.end(), curr_tokens.size(), curr_weight);
}

t5_tokenizer.pad_tokens(t5_tokens, t5_weights, &t5_mask, max_length, padding);

return {t5_tokens, t5_weights, t5_mask};
}

void modify_mask_to_attend_padding(struct ggml_tensor* mask, int max_seq_length, int num_extra_padding = 8) {
float* mask_data = (float*)mask->data;
int num_pad = 0;
for (int64_t i = 0; i < max_seq_length; i++) {
if (num_pad >= num_extra_padding) {
break;
}
if (std::isinf(mask_data[i])) {
mask_data[i] = 0;
++num_pad;
}
}
// LOG_DEBUG("PAD: %d", num_pad);
}

SDCondition get_learned_condition_common(ggml_context* work_ctx,
int n_threads,
std::tuple<std::vector<int>, std::vector<float>, std::vector<float>> token_and_weights,
int clip_skip,
bool force_zero_embeddings = false) {
auto& t5_tokens = std::get<0>(token_and_weights);
auto& t5_weights = std::get<1>(token_and_weights);
auto& t5_attn_mask_vec = std::get<2>(token_and_weights);

int64_t t0 = ggml_time_ms();
struct ggml_tensor* hidden_states = NULL; // [N, n_token, 4096]
struct ggml_tensor* chunk_hidden_states = NULL; // [n_token, 4096]
struct ggml_tensor* pooled = NULL; // [768,]
struct ggml_tensor* t5_attn_mask = vector_to_ggml_tensor(work_ctx, t5_attn_mask_vec); // [768,]

std::vector<float> hidden_states_vec;

size_t chunk_count = t5_tokens.size() / chunk_len;

bool use_mask = true;
const char* SD_CHROMA_USE_T5_MASK = getenv("SD_CHROMA_USE_T5_MASK");
if (SD_CHROMA_USE_T5_MASK != nullptr) {
std::string sd_chroma_use_t5_mask_str = SD_CHROMA_USE_T5_MASK;
if (sd_chroma_use_t5_mask_str == "OFF" || sd_chroma_use_t5_mask_str == "FALSE") {
use_mask = false;
} else if (sd_chroma_use_t5_mask_str != "ON" && sd_chroma_use_t5_mask_str != "TRUE") {
LOG_WARN("SD_CHROMA_USE_T5_MASK environment variable has unexpected value. Assuming default (\"ON\"). (Expected \"ON\"/\"TRUE\" or\"OFF\"/\"FALSE\", got \"%s\")", SD_CHROMA_USE_T5_MASK);
}
}
for (int chunk_idx = 0; chunk_idx < chunk_count; chunk_idx++) {
// t5
std::vector<int> chunk_tokens(t5_tokens.begin() + chunk_idx * chunk_len,
t5_tokens.begin() + (chunk_idx + 1) * chunk_len);
std::vector<float> chunk_weights(t5_weights.begin() + chunk_idx * chunk_len,
t5_weights.begin() + (chunk_idx + 1) * chunk_len);
std::vector<float> chunk_mask(t5_attn_mask_vec.begin() + chunk_idx * chunk_len,
t5_attn_mask_vec.begin() + (chunk_idx + 1) * chunk_len);

auto input_ids = vector_to_ggml_tensor_i32(work_ctx, chunk_tokens);
auto t5_attn_mask_chunk = use_mask ? vector_to_ggml_tensor(work_ctx, chunk_mask) : NULL;

t5->compute(n_threads,
input_ids,
&chunk_hidden_states,
work_ctx,
t5_attn_mask_chunk);
{
auto tensor = chunk_hidden_states;
float original_mean = ggml_tensor_mean(tensor);
for (int i2 = 0; i2 < tensor->ne[2]; i2++) {
for (int i1 = 0; i1 < tensor->ne[1]; i1++) {
for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
float value = ggml_tensor_get_f32(tensor, i0, i1, i2);
value *= chunk_weights[i1];
ggml_tensor_set_f32(tensor, value, i0, i1, i2);
}
}
}
float new_mean = ggml_tensor_mean(tensor);
ggml_tensor_scale(tensor, (original_mean / new_mean));
}

int64_t t1 = ggml_time_ms();
LOG_DEBUG("computing condition graph completed, taking %" PRId64 " ms", t1 - t0);
if (force_zero_embeddings) {
float* vec = (float*)chunk_hidden_states->data;
for (int i = 0; i < ggml_nelements(chunk_hidden_states); i++) {
vec[i] = 0;
}
}

hidden_states_vec.insert(hidden_states_vec.end(),
(float*)chunk_hidden_states->data,
((float*)chunk_hidden_states->data) + ggml_nelements(chunk_hidden_states));
}

if (hidden_states_vec.size() > 0) {
hidden_states = vector_to_ggml_tensor(work_ctx, hidden_states_vec);
hidden_states = ggml_reshape_2d(work_ctx,
hidden_states,
chunk_hidden_states->ne[0],
ggml_nelements(hidden_states) / chunk_hidden_states->ne[0]);
} else {
hidden_states = ggml_new_tensor_2d(work_ctx, GGML_TYPE_F32, 4096, 256);
ggml_set_f32(hidden_states, 0.f);
}

int mask_pad = 1;
const char* SD_CHROMA_MASK_PAD_OVERRIDE = getenv("SD_CHROMA_MASK_PAD_OVERRIDE");
if (SD_CHROMA_MASK_PAD_OVERRIDE != nullptr) {
std::string mask_pad_str = SD_CHROMA_MASK_PAD_OVERRIDE;
try {
mask_pad = std::stoi(mask_pad_str);
} catch (const std::invalid_argument&) {
LOG_WARN("SD_CHROMA_MASK_PAD_OVERRIDE environment variable is not a valid integer (%s). Falling back to default (%d)", SD_CHROMA_MASK_PAD_OVERRIDE, mask_pad);
} catch (const std::out_of_range&) {
LOG_WARN("SD_CHROMA_MASK_PAD_OVERRIDE environment variable value is out of range for `int` type (%s). Falling back to default (%d)", SD_CHROMA_MASK_PAD_OVERRIDE, mask_pad);
}
}
modify_mask_to_attend_padding(t5_attn_mask, ggml_nelements(t5_attn_mask), mask_pad);

return SDCondition(hidden_states, t5_attn_mask, NULL);
}

SDCondition get_learned_condition(ggml_context* work_ctx,
int n_threads,
const std::string& text,
int clip_skip,
int width,
int height,
int adm_in_channels = -1,
bool force_zero_embeddings = false) {
auto tokens_and_weights = tokenize(text, chunk_len, true);
return get_learned_condition_common(work_ctx, n_threads, tokens_and_weights, clip_skip, force_zero_embeddings);
}

Expand Down
Loading
Loading