Infer a probabilistic schema for a MongoDB collection.
A high-level view of the class interactions is as follows:
mongodb-schema
doesn't do anything directly with mongodb
so to try the examples we'll install the node.js driver.
As well, we'll need some data in a collection to derive the schema of.
Make sure you have a mongod
running on localhost on port 27017 (or change the example accordingly). Then, do:
npm install mongodb mongodb-schema
mongo --eval "db.test.insert([{_id: 1, a: true}, {_id: 2, a: 'true'}, {_id: 3, a: 1}, {_id: 4}])" localhost:27017/test
- Create a new file
parse-schema.js
and paste in the following code:
var parseSchema = require('mongodb-schema');
var connect = require('mongodb');
connect('mongodb://localhost:27017/test', function(err, db){
if(err) return console.error(err);
parseSchema('test.test', db.collection('test').find(), function(err, schema){
if(err) return console.error(err);
console.log(JSON.stringify(schema, null, 2));
db.close();
});
});
- When we run the above with
node parse-schema.js
, we'll see something like the following (some fields not present here for clarity):
{
"count": 4, // parsed 4 documents
"ns": "test.test", // namespace
"fields": [ // an array of Field objects, @see `./lib/field.js`
{
"name": "_id",
"count": 4, // 4 documents counted with _id
"type": "Number", // the type of _id is `Number`
"probability": 1, // all documents had an _id field
"unique": 4, // 4 unique values found
"has_duplicates": false, // therefore no duplicates
"types": [ // an array of Type objects, @see `./lib/types/`
{
"name": "Number", // name of the type
"count": 4, // 4 numbers counted
"probability": 1,
"unique": 4,
"values": [ // array of encountered values
1,
2,
3,
4
]
}
]
},
{
"name": "a",
"count": 3, // only 3 documents with field `a` counted
"probability": 0.75, // hence probability 0.75
"type": [ // found these types
"Boolean",
"String",
"Number",
"Undefined" // for convenience, we treat Undefined as its own type
],
"unique": 3,
"has_duplicates": false, // there were no duplicate values
"types": [
{
"name": "Boolean",
"count": 1,
"probability": 0.25, // probabilities for types are calculated factoring in Undefined
"unique": 1,
"values": [
true
]
},
{
"name": "String",
"count": 1,
"probability": 0.25,
"unique": 1,
"values": [
"true"
]
},
{
"name": "Number",
"count": 1,
"probability": 0.25,
"unique": 1,
"values": [
1
]
},
{
"name": "Undefined",
"count": 1,
"probability": 0.25,
"unique": 0
}
]
}
]
}
mongodb-schema
supports all BSON types.
Checkout the tests for more usage examples.
To compare schemas quantitatively we introduce the following measurable metrics on a schema:
The schema depth is defined as the maximum number of nested levels of keys in the schema. It does not matter if the subdocuments are nested directly or as elements of an array. An empty document has a depth of 0, whereas a document with some top-level keys but no nested subdocuments has a depth of 1.
The schema width is defined as the number of individual keys, added up over all nesting levels of the schema. Array values do not count towards the schema width.
{}
Statistic | Value |
---|---|
Schema Depth | 0 |
Schema Width | 0 |
{
one: 1
}
Statistic | Value |
---|---|
Schema Depth | 1 |
Schema Width | 1 |
{
one: [
"foo",
"bar",
{
two: {
three: 3
}
},
"baz"
],
foo: "bar"
}
Statistic | Value |
---|---|
Schema Depth | 3 |
Schema Width | 4 |
{
a: 1,
b: false,
one: {
c: null,
two: {
three: {
four: 4,
e: "deepest nesting level"
}
}
},
f: {
g: "not the deepest level"
}
}
Statistic | Value |
---|---|
Schema Depth | 4 |
Schema Width | 10 |
// first document
{
foo: [
{
bar: [1, 2, 3]
}
]
},
// second document
{
foo: 0
}
Statistic | Value |
---|---|
Schema Depth | 2 |
Schema Width | 2 |
npm install --save mongodb-schema
npm test
Under the hood, mongodb-schema
uses ampersand-state and
ampersand-collection for modeling Schema, Field's, and Type's.
Note: Currently we are pinning ampersand-state to version 4.8.2 due to a backwards-breaking change introduced in version 4.9.x. For more details, see ampersand-state issue #226.
Apache 2.0