Skip to content

A python library for test combinations generator. The generator allows one to create a set of tests using "pairwise combinations" method, reducing a number of combinations of variables into a lesser set that covers most situations.

License

Notifications You must be signed in to change notification settings

pairwise-testing/python-allpairspy

Repository files navigation

https://img.shields.io/travis/thombashi/allpairspy/master.svg?label=Linux https://img.shields.io/appveyor/ci/thombashi/allpairspy/master.svg?label=Windows https://coveralls.io/repos/github/thombashi/allpairspy/badge.svg?branch=master

AllPairs test combinations generator

AllPairs is an open source test combinations generator written in Python, developed and maintained by MetaCommunications Engineering. The generator allows one to create a set of tests using "pairwise combinations" method, reducing a number of combinations of variables into a lesser set that covers most situations.

For more info on pairwise testing see http://www.pairwise.org.

Features

  • Produces good enough dataset.
  • Pythonic, iterator-style enumeration interface.
  • Allows to filter out "invalid" combinations during search for the next combination.
  • Allows to exclude "previously tested" pairs/combinations.
  • Goes beyond pairs! If/when required can generate n-wise combinations.

Get Started

Basic Usage

from allpairspy import AllPairs

parameters = [
    ["Brand X", "Brand Y"],
    ["98", "NT", "2000", "XP"],
    ["Internal", "Modem"],
    ["Salaried", "Hourly", "Part-Time", "Contr."],
    [6, 10, 15, 30, 60]
]

print("PAIRWISE:")
for i, pairs in enumerate(AllPairs(parameters)):
    print("{:2d}: {}".format(i, pairs))
PAIRWISE:
 0: ['Brand X', '98', 'Internal', 'Salaried', 6]
 1: ['Brand Y', 'NT', 'Modem', 'Hourly', 6]
 2: ['Brand Y', '2000', 'Internal', 'Part-Time', 10]
 3: ['Brand X', 'XP', 'Modem', 'Contr.', 10]
 4: ['Brand X', '2000', 'Modem', 'Part-Time', 15]
 5: ['Brand Y', 'XP', 'Internal', 'Hourly', 15]
 6: ['Brand Y', '98', 'Modem', 'Salaried', 30]
 7: ['Brand X', 'NT', 'Internal', 'Contr.', 30]
 8: ['Brand X', '98', 'Internal', 'Hourly', 60]
 9: ['Brand Y', '2000', 'Modem', 'Contr.', 60]
10: ['Brand Y', 'NT', 'Modem', 'Salaried', 60]
11: ['Brand Y', 'XP', 'Modem', 'Part-Time', 60]
12: ['Brand Y', '2000', 'Modem', 'Hourly', 30]
13: ['Brand Y', '98', 'Modem', 'Contr.', 15]
14: ['Brand Y', 'XP', 'Modem', 'Salaried', 15]
15: ['Brand Y', 'NT', 'Modem', 'Part-Time', 15]
16: ['Brand Y', 'XP', 'Modem', 'Part-Time', 30]
17: ['Brand Y', '98', 'Modem', 'Part-Time', 6]
18: ['Brand Y', '2000', 'Modem', 'Salaried', 6]
19: ['Brand Y', '98', 'Modem', 'Salaried', 10]
20: ['Brand Y', 'XP', 'Modem', 'Contr.', 6]
21: ['Brand Y', 'NT', 'Modem', 'Hourly', 10]

Filtering

You can restrict pairs by setting filtering-function to filter_func at AllPairs constructor.

from allpairspy import AllPairs

def is_valid_combination(row):
    """
    This is a filtering function. Filtering functions should return True
    if combination is valid and False otherwise.

    Test row that is passed here can be incomplete.
    To prevent search for unnecessary items filtering function
    is executed with found subset of data to validate it.
    """

    n = len(row)
    if n > 1:
        # Brand Y does not support Windows 98
        if "98" == row[1] and "Brand Y" == row[0]:
            return False
        # Brand X does not work with XP
        if "XP" == row[1] and "Brand X" == row[0]:
            return False
    if n > 4:
        # Contractors are billed in 30 min increments
        if "Contr." == row[3] and row[4] < 30:
            return False

    return True

parameters = [
    ["Brand X", "Brand Y"],
    ["98", "NT", "2000", "XP"],
    ["Internal", "Modem"],
    ["Salaried", "Hourly", "Part-Time", "Contr."],
    [6, 10, 15, 30, 60]
]

print("PAIRWISE:")
for i, pairs in enumerate(AllPairs(parameters, filter_func=is_valid_combination)):
    print("{:2d}: {}".format(i, pairs))
PAIRWISE:
 0: ['Brand X', '98', 'Internal', 'Salaried', 6]
 1: ['Brand Y', 'NT', 'Modem', 'Hourly', 6]
 2: ['Brand Y', '2000', 'Internal', 'Part-Time', 10]
 3: ['Brand X', '2000', 'Modem', 'Contr.', 30]
 4: ['Brand X', 'NT', 'Internal', 'Contr.', 60]
 5: ['Brand Y', 'XP', 'Modem', 'Salaried', 60]
 6: ['Brand X', '98', 'Modem', 'Part-Time', 15]
 7: ['Brand Y', 'XP', 'Internal', 'Hourly', 15]
 8: ['Brand Y', 'NT', 'Internal', 'Part-Time', 30]
 9: ['Brand X', '2000', 'Modem', 'Hourly', 10]
10: ['Brand Y', 'XP', 'Modem', 'Contr.', 30]
11: ['Brand Y', '2000', 'Modem', 'Salaried', 15]
12: ['Brand Y', 'NT', 'Modem', 'Salaried', 10]
13: ['Brand Y', 'XP', 'Modem', 'Part-Time', 6]
14: ['Brand Y', '2000', 'Modem', 'Contr.', 60]

OrderedDict

You can use collections.OrderedDict instance as an argument for AllPairs constructor. Pairs will be returned as namedtuple instances.

from collections import OrderedDict
from allpairspy import AllPairs

parameters = OrderedDict({
    "brand": ["Brand X", "Brand Y"],
    "os": ["98", "NT", "2000", "XP"],
    "minute": [15, 30, 60],
})

print("PAIRWISE:")
for i, pairs in enumerate(AllPairs(parameters)):
    print("{:2d}: {}".format(i, pairs))
PAIRWISE:
 0: Pairs(brand='Brand X', os='98', minute=15)
 1: Pairs(brand='Brand Y', os='NT', minute=15)
 2: Pairs(brand='Brand Y', os='2000', minute=30)
 3: Pairs(brand='Brand X', os='XP', minute=30)
 4: Pairs(brand='Brand X', os='2000', minute=60)
 5: Pairs(brand='Brand Y', os='XP', minute=60)
 6: Pairs(brand='Brand Y', os='98', minute=60)
 7: Pairs(brand='Brand X', os='NT', minute=60)
 8: Pairs(brand='Brand X', os='NT', minute=30)
 9: Pairs(brand='Brand X', os='98', minute=30)
10: Pairs(brand='Brand X', os='XP', minute=15)
11: Pairs(brand='Brand X', os='2000', minute=15)

Other Examples

Other examples could be found in examples directory.

Installation

pip install allpairpy

Known issues

  • Not optimal - there are tools that can create smaller set covering all the pairs. However, they are missing some other important features and/or do not integrate well with Python.
  • Lousy written filtering function may lead to full permutation of parameters.
  • Version 2.0 has become slower (a side-effect of introducing ability to produce n-wise combinations).

Dependencies

Python 2.7+ or 3.3+

About

A python library for test combinations generator. The generator allows one to create a set of tests using "pairwise combinations" method, reducing a number of combinations of variables into a lesser set that covers most situations.

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 96.7%
  • Makefile 3.3%