dbo:abstract
|
- The beam propagation method (BPM) is an approximation technique for simulating the propagation of light in slowly varying optical waveguides. It is essentially the same as the so-called parabolic equation (PE) method in underwater acoustics. Both BPM and the PE were first introduced in the 1970s. When a wave propagates along a waveguide for a large distance (larger compared with the wavelength), rigorous numerical simulation is difficult. The BPM relies on approximate differential equations which are also called the one-way models. These one-way models involve only a first order derivative in the variable z (for the waveguide axis) and they can be solved as "initial" value problem. The "initial" value problem does not involve time, rather it is for the spatial variable z. The original BPM and PE were derived from the slowly varying envelope approximation and they are the so-called paraxial one-way models. Since then, a number of improved one-way models are introduced. They come from a one-way model involving a square root operator. They are obtained by applying rational approximations to the square root operator. After a one-way model is obtained, one still has to solve it by discretizing the variable z. However, it is possible to merge the two steps (rational approximation to the square root operator and discretization of z) into one step. Namely, one can find rational approximations to the so-called one-way propagator (the exponential of the square root operator) directly. The rational approximations are not trivial. Standard diagonal Padé approximants have trouble with the so-called evanescent modes. These evanescent modes should decay rapidly in z, but the diagonal Padé approximants will incorrectly propagate them as propagating modes along the waveguide. Modified rational approximants that can suppress the evanescent modes are now available. The accuracy of the BPM can be further improved, if you use the energy-conserving one-way model or the single-scatter one-way model. (en)
- La méthode de propagation de faisceau ( Beam propagation method abrégé BPM) est une technique d'approximation pour simuler la propagation de la lumière dans des guides d'ondes sous l' (en). C'est essentiellement la même chose que la méthode dite de l' équation parabolique (PE) en acoustique sous l'eau. La BPM et la PE ont été développées pour la première fois dans les années 1970. Lorsqu'une onde se propage le long d'un guide sur une grande distance (plus grande que la longueur d'onde), une simulation numérique rigoureuse est difficile. La BPM repose sur des équations différentielles approximées, également appelées modèles unidirectionnels. Ces modèles unidirectionnels impliquent uniquement une dérivée du premier ordre dans la variable z (pour l'axe du guide d'ondes) et peuvent être résolus en tant que problème de valeur « initiale ». Le problème de la valeur « initiale » ne dépend pas du temps, mais de variable spatiale z. Les premières BPM et PE ont été dérivées de l' (en) et constituent les modèles unidirectionnels paraxiaux. Depuis lors, un certain nombre de modèles unidirectionnels améliorés ont été introduits. Ils proviennent d'un modèle unidirectionnel impliquant un opérateur de racine carrée. Ils sont obtenus en appliquant des approximations rationnelles à l’opérateur racine carrée. Après avoir obtenu un modèle unidirectionnel, il reste à le résoudre en discrétisant la variable z. Cependant, il est possible de fusionner les deux étapes (approximation rationnelle de l'opérateur de racine carrée et discrétisation de z) en une étape. À savoir, on peut trouver directement des approximations rationnelles au propagateur dit unidirectionnel (exponentielle de l'opérateur racine carrée). Les approximations rationnelles ne sont pas triviales. Les approximants de Padé diagonaux standard ont des problèmes avec les modes dits évanescents. Ces modes évanescents devraient décroître rapidement en z, mais les approximations diagonales de Padé les propageront de manière incorrecte en tant que modes de propagation le long du guide d’ondes. Des approximants rationnels modifiés pouvant supprimer les modes évanescents sont maintenant disponibles. La précision du BPM peut être encore améliorée si l'on utilise le modèle unidirectionnel à conservation d'énergie ou le modèle unidirectionnel à diffusion unique. (fr)
|
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 7021 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dcterms:subject
| |
gold:hypernym
| |
rdf:type
| |
rdfs:comment
|
- The beam propagation method (BPM) is an approximation technique for simulating the propagation of light in slowly varying optical waveguides. It is essentially the same as the so-called parabolic equation (PE) method in underwater acoustics. Both BPM and the PE were first introduced in the 1970s. When a wave propagates along a waveguide for a large distance (larger compared with the wavelength), rigorous numerical simulation is difficult. The BPM relies on approximate differential equations which are also called the one-way models. These one-way models involve only a first order derivative in the variable z (for the waveguide axis) and they can be solved as "initial" value problem. The "initial" value problem does not involve time, rather it is for the spatial variable z. (en)
- La méthode de propagation de faisceau ( Beam propagation method abrégé BPM) est une technique d'approximation pour simuler la propagation de la lumière dans des guides d'ondes sous l' (en). C'est essentiellement la même chose que la méthode dite de l' équation parabolique (PE) en acoustique sous l'eau. La BPM et la PE ont été développées pour la première fois dans les années 1970. Lorsqu'une onde se propage le long d'un guide sur une grande distance (plus grande que la longueur d'onde), une simulation numérique rigoureuse est difficile. La BPM repose sur des équations différentielles approximées, également appelées modèles unidirectionnels. Ces modèles unidirectionnels impliquent uniquement une dérivée du premier ordre dans la variable z (pour l'axe du guide d'ondes) et peuvent être résol (fr)
|
rdfs:label
|
- Beam propagation method (en)
- Méthode de propagation de faisceau (fr)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageDisambiguates
of | |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |