About: Tate twist

An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In number theory and algebraic geometry, the Tate twist, named after John Tate, is an operation on Galois modules. For example, if K is a field, GK is its absolute Galois group, and ρ : GK → AutQp(V) is a representation of GK on a finite-dimensional vector space V over the field Qp of p-adic numbers, then the Tate twist of V, denoted V(1), is the representation on the tensor product V⊗Qp(1), where Qp(1) is the p-adic cyclotomic character (i.e. the Tate module of the group of roots of unity in the separable closure Ks of K). More generally, if m is a positive integer, the mth Tate twist of V, denoted V(m), is the tensor product of V with the m-fold tensor product of Qp(1). Denoting by Qp(−1) the dual representation of Qp(1), the -mth Tate twist of V can be defined as

Property Value
dbo:abstract
  • In number theory and algebraic geometry, the Tate twist, named after John Tate, is an operation on Galois modules. For example, if K is a field, GK is its absolute Galois group, and ρ : GK → AutQp(V) is a representation of GK on a finite-dimensional vector space V over the field Qp of p-adic numbers, then the Tate twist of V, denoted V(1), is the representation on the tensor product V⊗Qp(1), where Qp(1) is the p-adic cyclotomic character (i.e. the Tate module of the group of roots of unity in the separable closure Ks of K). More generally, if m is a positive integer, the mth Tate twist of V, denoted V(m), is the tensor product of V with the m-fold tensor product of Qp(1). Denoting by Qp(−1) the dual representation of Qp(1), the -mth Tate twist of V can be defined as (en)
  • テイト捻り(ていとひねり、Tate twist )とは数論と代数幾何学において、ガロワ加群のある種の操作である。 テイト捻りの「テイト」は、ジョン・テイトから。 (ja)
dbo:wikiPageID
  • 3094946 (xsd:integer)
dbo:wikiPageLength
  • 1671 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1075338221 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • In number theory and algebraic geometry, the Tate twist, named after John Tate, is an operation on Galois modules. For example, if K is a field, GK is its absolute Galois group, and ρ : GK → AutQp(V) is a representation of GK on a finite-dimensional vector space V over the field Qp of p-adic numbers, then the Tate twist of V, denoted V(1), is the representation on the tensor product V⊗Qp(1), where Qp(1) is the p-adic cyclotomic character (i.e. the Tate module of the group of roots of unity in the separable closure Ks of K). More generally, if m is a positive integer, the mth Tate twist of V, denoted V(m), is the tensor product of V with the m-fold tensor product of Qp(1). Denoting by Qp(−1) the dual representation of Qp(1), the -mth Tate twist of V can be defined as (en)
  • テイト捻り(ていとひねり、Tate twist )とは数論と代数幾何学において、ガロワ加群のある種の操作である。 テイト捻りの「テイト」は、ジョン・テイトから。 (ja)
rdfs:label
  • テイト捻り (ja)
  • Tate twist (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License