login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A104548
Triangle read by rows giving coefficients of Bessel polynomial p_n(x).
2
0, 1, 0, 1, 1, 0, 1, 3, 3, 0, 1, 6, 15, 15, 0, 1, 10, 45, 105, 105, 0, 1, 15, 105, 420, 945, 945, 0, 1, 21, 210, 1260, 4725, 10395, 10395, 0, 1, 28, 378, 3150, 17325, 62370, 135135, 135135, 0, 1, 36, 630, 6930, 51975, 270270, 945945, 2027025, 2027025, 0
OFFSET
0,8
LINKS
Eric Weisstein's World of Mathematics, Bessel Polynomial
FORMULA
From G. C. Greubel, Jan 02 2023: (Start)
T(n, k) = binomial(n-1,k)*(n+k-1)!/(2^k*(n-1)!), with T(n, n) = 0.
Sum_{k=0..n} T(n, k) = A001515(n-1).
Sum_{k=0..n} (-1)^k*T(n, k) = A000806(n-1).
Sum_{k=0..floor(n/2)} T(n-k, k) = A000085(n-1).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = A001464(n-1). (End)
EXAMPLE
Bessel polynomials begin with:
x;
x + x^2;
3*x + 3*x^2 + x^3;
15*x + 15*x^2 + 6*x^3 + x^4;
105*x + 105*x^2 + 45*x^3 + 10*x^4 + x^5;
...
Triangle of coefficients begins as:
0;
1, 0;
1, 1 0;
1, 3, 3 0;
1, 6, 15, 15 0;
1, 10, 45, 105, 105 0;
1, 15, 105, 420, 945, 945 0;
1, 21, 210, 1260, 4725, 10395, 10395 0;
1, 28, 378, 3150, 17325, 62370, 135135, 135135 0;
MATHEMATICA
T[n_, k_]:= If[k==n, 0, Binomial[n-1, k]*(n+k-1)!/(2^k*(n-1)!)];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jan 02 2023 *)
PROG
(Magma)
A104548:= func< n, k | k eq n select 0 else Binomial(n-1, k)*Factorial(n+k-1)/(2^k*Factorial(n-1)) >;
[A104548(n, k): k in [0..n], n in [0..13]]; // G. C. Greubel, Jan 02 2023
(SageMath)
def A104548(n, k): return 0 if (k==n) else binomial(n-1, k)*factorial(n+k-1)/(2^k*factorial(n-1))
flatten([[A104548(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jan 02 2023
CROSSREFS
Essentially the same as A001498 (the main entry).
Sequence in context: A185282 A193470 A102752 * A085707 A320253 A141947
KEYWORD
nonn,tabl
AUTHOR
Eric W. Weisstein, Mar 14 2005
EXTENSIONS
T(0, 0) = 0 prepended by G. C. Greubel, Jan 02 2023
STATUS
approved