login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193470
Square array A(n,k) (n>=1, k>=0) read by antidiagonals: A(n,0) = 0 and A(n,k) is the least integer > A(n,k-1) that can be expressed as a triangular number divided by n.
1
0, 0, 1, 0, 3, 3, 0, 1, 5, 6, 0, 7, 2, 14, 10, 0, 2, 9, 5, 18, 15, 0, 1, 3, 30, 7, 33, 21, 0, 3, 6, 9, 34, 12, 39, 28, 0, 15, 4, 11, 11, 69, 15, 60, 36, 0, 4, 17, 13, 13, 21, 75, 22, 68, 45, 0, 1, 5, 62, 15, 20, 24, 124, 26, 95, 55, 0, 5, 12, 17, 66, 30, 35, 38, 132, 35, 105, 66
OFFSET
1,5
EXAMPLE
n\k 0 1 2 3 4 5 6 7
------------------------------------------
1 | 0 1 3 6 10 15 21 28 A000217
2 | 0 3 5 14 18 33 39 60 A074378
3 | 0 1 2 5 7 12 15 22 A001318
4 | 0 7 9 30 34 69 75 124 A154260
5 | 0 2 3 9 11 21 24 38 A057569
6 | 0 1 6 11 13 20 35 46 A154293
7 | 0 3 4 13 15 30 33 54 A057570
8 | 0 15 17 62 66 141 147 252 A157716
MAPLE
A193470_rect := proc(n, k) local j, i, L; L := NULL; j := 0; while nops([L]) < k do add(i/n, i=1..j); if type(%, integer) then L := L, % fi; j := j+1 od; L end:
seq(print(A193470_rect(n, 12)), n = 1..8);
MATHEMATICA
a[_, 0] = 0; a[n_, k_] := a[n, k] = For[j = a[n, k-1]+1, True, j++, If[Reduce[m > 0 && j == m(m+1)/(2n), m, Integers] =!= False, Return[j]]]; Table[a[n-k, k], {n, 1, 12}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Nov 07 2016 *)
CROSSREFS
Sequence in context: A172169 A306629 A185282 * A102752 A104548 A085707
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Jul 27 2011
STATUS
approved