login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A152951
Complementary von Staudt prime numbers.
3
71, 131, 191, 251, 311, 419, 431, 491, 599, 683, 743, 911, 947, 971, 1031, 1091, 1103, 1151, 1163, 1427, 1451, 1511, 1559, 1571, 1583
OFFSET
0,1
COMMENTS
A prime number in the arithmetic progression 12n-1 which is not a von Staudt prime number, i.e., 12p <> denominator(B(p-1)/(p-1)), where B(n) is the Bernoulli number.
MAPLE
select(j->(denom(bernoulli(j-1)/(j-1))<>12*j), select(isprime, [seq(12*k-1, k=1..100)]));
MATHEMATICA
Select[ 12*Range[200] - 1, PrimeQ[#] && 12 # != Denominator[ BernoulliB[# - 1]/(# - 1)]& ] ] (* Jean-François Alcover, Jul 29 2013 *)
PROG
(Perl) use ntheory ":all"; forprimes { my $p=$_; say if $_ % 12 == 11 && vecany { $_ > 3 && $_ < $p-1 && is_prime($_+1) } divisors($p-1); } 10000; # Dana Jacobsen, Dec 29 2015
(Perl) use ntheory ":all"; forprimes { say if $_ % 12 == 11 && (bernfrac($_-1))[1] != 6*$_; } 10000; # Dana Jacobsen, Dec 29 2015
CROSSREFS
Cf. A092307.
Sequence in context: A244167 A115395 A142647 * A090799 A044194 A044575
KEYWORD
easy,nonn
AUTHOR
Peter Luschny, Dec 24 2008
STATUS
approved