login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160014
Generalized Clausen numbers (table read by antidiagonals).
39
1, 1, 1, 2, 2, 1, 3, 6, 3, 1, 2, 2, 3, 1, 1, 5, 30, 15, 5, 5, 1, 6, 2, 3, 1, 5, 1, 1, 7, 42, 21, 35, 35, 7, 7, 1, 2, 2, 15, 1, 5, 1, 7, 1, 1, 3, 30, 3, 5, 5, 7, 7, 1, 1, 1, 10, 2, 3, 1, 35, 1, 7, 1, 1, 1, 1, 11, 66, 165, 385, 55, 77, 77, 11, 11, 11, 11, 1
OFFSET
0,4
COMMENTS
T(n,k) = Product_{ p - k | n} p, where p is prime.
T(n,0) is the squarefree kernel of n (A007947).
T(n,1) are the classical Clausen numbers (A141056). The classical Clausen numbers are by the von Staudt-Clausen theorem the denominators of the Bernoulli numbers.
REFERENCES
Clausen, Thomas, "Lehrsatz aus einer Abhandlung ueber die Bernoullischen Zahlen", Astr. Nachr. 17 (1840), 351-352.
LINKS
Charles R Greathouse IV, Rows n = 0..100, flattened
A. Hurwitz, Über die Entwicklungskoeffizienten der lemniskatischen Funktionen, Math. Ann., 51 (1899), 196-226; Mathematische Werke. Vols. 1 and 2, Birkhäuser, Basel, 1962-1963, see Vol. 2, No. LXVII.
EXAMPLE
[k\n][0--1--2---3---4---5---6---7----8----9---10---11----12---13---14----15]
[0]...1..1..2...3...2...5...6...7....2....3...10...11.....6...13...14....15
[1]...1..2..6...2..30...2..42...2...30....2...66....2..2730....2....6.....2
[2]...1..3..3..15...3..21..15...3....3..165...21...39....15....3....3..1785
[3]...1..1..5...1..35...1...5...1..385....1...65....1....35....1...85.....1
[4]...1..5..5..35...5...5..35..55....5..455....5....5....35...85...55...665
[5]...1..1..7...1...7...1..77...1...91....1....7....1..1309....1..133.....1
T(3,4) = 35 = 5*7 because 5 and 7 are the only prime numbers p such that
(p - 4) divides 3.
MAPLE
Clausen := proc(n, k) local S, i;
S := numtheory[divisors](n);
S := map(i->i+k, S);
S := select(isprime, S);
mul(i, i=S) end:
MATHEMATICA
t[0, _] = 1; t[n_, k_] := Times @@ (Select[Divisors[n], PrimeQ[# + k] &] + k); Table[t[n-k, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 26 2013 *)
PROG
(Sage)
def Clausen(n, k):
if k == 0: return 1
return mul(filter(lambda s: is_prime(s), map(lambda i: i+n, divisors(k))))
for n in (0..5): [Clausen(n, k) for k in (0..15)] # Peter Luschny, Jun 05 2013
(PARI) T(n, k)=if(n, my(s=1); fordiv(n, d, if(isprime(d+k), s*=d+k)); s, 1)
for(s=0, 9, for(k=0, s, print1(T(s-k, k)", "))) \\ Charles R Greathouse IV, Jun 26 2013
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Apr 29 2009
EXTENSIONS
Swapped n<>k fixed by Peter Luschny, May 04 2009
STATUS
approved