OFFSET
0,4
COMMENTS
REFERENCES
Clausen, Thomas, "Lehrsatz aus einer Abhandlung ueber die Bernoullischen Zahlen", Astr. Nachr. 17 (1840), 351-352.
LINKS
Charles R Greathouse IV, Rows n = 0..100, flattened
A. Hurwitz, Über die Entwicklungskoeffizienten der lemniskatischen Funktionen, Math. Ann., 51 (1899), 196-226; Mathematische Werke. Vols. 1 and 2, Birkhäuser, Basel, 1962-1963, see Vol. 2, No. LXVII.
Peter Luschny, Generalized Bernoulli numbers.
EXAMPLE
[k\n][0--1--2---3---4---5---6---7----8----9---10---11----12---13---14----15]
[0]...1..1..2...3...2...5...6...7....2....3...10...11.....6...13...14....15
[1]...1..2..6...2..30...2..42...2...30....2...66....2..2730....2....6.....2
[2]...1..3..3..15...3..21..15...3....3..165...21...39....15....3....3..1785
[3]...1..1..5...1..35...1...5...1..385....1...65....1....35....1...85.....1
[4]...1..5..5..35...5...5..35..55....5..455....5....5....35...85...55...665
[5]...1..1..7...1...7...1..77...1...91....1....7....1..1309....1..133.....1
T(3,4) = 35 = 5*7 because 5 and 7 are the only prime numbers p such that
(p - 4) divides 3.
MAPLE
Clausen := proc(n, k) local S, i;
S := numtheory[divisors](n);
S := map(i->i+k, S);
S := select(isprime, S);
mul(i, i=S) end:
MATHEMATICA
t[0, _] = 1; t[n_, k_] := Times @@ (Select[Divisors[n], PrimeQ[# + k] &] + k); Table[t[n-k, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 26 2013 *)
PROG
(Sage)
def Clausen(n, k):
if k == 0: return 1
return mul(filter(lambda s: is_prime(s), map(lambda i: i+n, divisors(k))))
for n in (0..5): [Clausen(n, k) for k in (0..15)] # Peter Luschny, Jun 05 2013
(PARI) T(n, k)=if(n, my(s=1); fordiv(n, d, if(isprime(d+k), s*=d+k)); s, 1)
for(s=0, 9, for(k=0, s, print1(T(s-k, k)", "))) \\ Charles R Greathouse IV, Jun 26 2013
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Apr 29 2009
EXTENSIONS
Swapped n<>k fixed by Peter Luschny, May 04 2009
STATUS
approved