login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A117919
Triangle read by rows: T(n, k) = 2^floor((k-1)/2)*binomial(n-1, k-1).
3
1, 1, 1, 1, 2, 2, 1, 3, 6, 2, 1, 4, 12, 8, 4, 1, 5, 20, 20, 20, 4, 1, 6, 30, 40, 60, 24, 8, 1, 7, 42, 70, 140, 84, 56, 8, 1, 8, 56, 112, 280, 224, 224, 64, 16, 1, 9, 72, 168, 504, 504, 672, 288, 144, 16, 1, 10, 90, 240, 840, 1008, 1680, 960, 720, 160, 32, 1, 11, 110, 330, 1320, 1848, 3696, 2640, 2640, 880, 352, 32
OFFSET
1,5
COMMENTS
Row sums are the Pell sequence A000129.
Right border = inverse binomial transform of the Pell sequence: (A016116).
This triangle = difference terms of columns from an array generated from binomial transforms of (1,0,0,0...); (1,1,0,0,0...); (1,1,2,2...); (1,1,2,2,4,...); where (1, 1, 2, 2, 4, 4,...) = A016116, the inverse binomial transform of the Pell sequence A000129.
Triangle read by rows, iterates of X * [1,0,0,0,...] where X = an infinite bidiagonal matrix with (1,1,1,...) in the main diagonal and (1,2,1,2,1,2,...) in the subdiagonal, with the rest zeros. - Gary W. Adamson, May 10 2008
This sequence is jointly generated with A135837 as a triangular array of coefficients of polynomials u(n,x): initially, u(1,x) = v(1,x) = 1; for n>1, u(n,x) = u(n-1,x) + x*v(n-1) and v(n,x) = 2*x*u(n-1,x) + v(n-1,x). See the Mathematica section. - Clark Kimberling, Feb 26 2012
FORMULA
From G. C. Greubel, Oct 23 2021:
T(n, k) = 2^floor((k-1)/2)*binomial(n-1, k-1).
Sum_{k=0..n} T(n, k) = A000129(n). (End)
EXAMPLE
First few rows of the generating array are:
1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, ...
1, 2, 5, 10, 17, ...
1, 2, 5, 12, 25, ...
1, 2, 5, 12, 29, ...
...
Taking difference terms of the columns, we get this triangle. First few rows are:
1;
1, 1;
1, 2, 2;
1, 3, 6, 2;
1, 4, 12, 8, 4;
1, 5, 20, 20, 20, 4;
1, 6, 30, 40, 60, 24, 8;
1, 7, 42, 70, 140, 84, 56, 8;
...
MATHEMATICA
(* First program *)
u[1, x_]:= 1; v[1, x_]:= 1; z = 13;
u[n_, x_]:= u[n-1, x] + x*v[n-1, x];
v[n_, x_]:= 2*x*u[n-1, x] + v[n-1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A117919 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A135837 *)
(* Second program *)
Table[2^Floor[(k-1)/2]*Binomial[n-1, k-1], {n, 15}, {k, n}]//Flatten (* G. C. Greubel, Oct 23 2021 *)
PROG
(Magma) [2^Floor((k-1)/2)*Binomial(n-1, k-1): k in [1..n], n in [1..15]]; // G. C. Greubel, Oct 23 2021
(Sage) flatten([[2^((k-1)//2)*binomial(n-1, k-1) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Oct 23 2021
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Apr 02 2006
EXTENSIONS
Name changed and more terms added by G. C. Greubel, Oct 23 2021
STATUS
approved