面白いアニメーションを作るために物理演算エンジンを使いこなせればとても便利ですが、自力で物理演算に取り組むには高度な知識と技術が必要となります。そんな扱いの難しい物理演算を手軽に導入できるJavaScriptのAPIが「Matter.js」です。 Matter.js - a 2D rigid body JavaScript physics engine http://brm.io/matter-js/ Matter.jsでどんなことができるのかはデモを見れば一発で分かります。上記サイトの「Demo」をクリック。 すると、「Matter.js Physics Engine Demo」という物理エンジンのデモページが開くので、プルダウンメニューにあるデフォルトパラメータを指定して、「Reset」をクリックすればOK。2Dのアニメーションが再生され、Matter.jsでどんなことができるのかが直
宇宙線を使って火山内部を透視する研究が本格的に始まるという(東京新聞)。 東京新聞が「火山透視」と呼ぶのは東京大学地震研究所で開発が進められている火山のミュオグラフィ技術のことだが、宇宙線が地球の大気と衝突する際に発生し、X線などをはね返す巨大な岩盤も透過する素粒子ミューオン(ミュー粒子)を使うもの。 火山のふもとに検出器を置き、山体を突き抜けたミュー粒子の密度によって、どのあたりに火道やマグマ溜まりがあるのかが分かるという。2006年に初実証されて以来、世界中の火山で「山体内部に潜むマグマの形成を視覚的にとらえる」ことや、2013年6月に噴火した薩摩硫黄島のマグマの動きを動画として初めて捉えることに成功しており、このたび噴火活動が活発な桜島で今年1年この技術を用いて火山透視を試みるという。 今までも火山直下のマグマ溜まりは地震波を使って調べられていたが、噴火活動をより精密に観測する技術に
このページにおける、サイト内の位置情報は以下です。 ホーム > 音声付き電気技術解説講座 > 理論 > 電圧、電流の定義、電圧と電流の積が電力となる理由(電気理論 なぜそうなるのか(1)) 電力に関する重要公式 電力[W] =電圧[V]×電流[A]は、電気理論の学習者には大変なじみ深いものである。電圧[V]と電流[A]はいずれも電気系の単位であるが、電力[W]は力学系の単位なので一見矛盾がある。ここでは、電圧の単位[V]、電流の単位[A]がいずれも電気による力学現象に基づき決められた力学単位を基礎にして定義された単位であることを解説し、電気系、力学系のエネルギーとその単位時間当たりの授受について理解を深める。
ポイント メタマテリアルを用いて真空の屈折率1.0より低い屈折率0.35を実現 3次元構造により光の入射軸方向に対して完全な等方性を実現 透明化技術や高速光通信、高性能レンズなどに応用できる可能性 要旨 理化学研究所(理研、野依良治理事長)は、真空の屈折率[1]1.0よりも低い屈折率0.35を実現した三次元メタマテリアル[2]の作製に成功しました。これは、理研田中メタマテリアル研究室の田中拓男准主任研究員と国立台湾大学の蔡定平(ツァイ・ディンピン)教授(当時台湾ITRC所長を兼務)らの国際共同研究グループによる成果です。 メタマテリアルは、光を含む電磁波に応答するマイクロ〜ナノメートルスケールの共振器アンテナ素子[3]を大量に集積化した人工物質で、共振器アンテナ素子をうまく設計することで、物質の光学特性を人工的に操作できるという特性を持っています。これまで報告されているメタマテリアルのほと
「結局、前科がつきました」SNSでの誹謗中傷、被害者が本気出すとどうなる? 身元すぐ判明→賠償拒否→告訴→罰金刑
信じられます? この鮮やかな煌きは、表面に別の物質を箔押しするのではなく全てチョコレートだけでできています。ではその実現方法とは? このチョコレートは、表面にとあるミクロ構造を刻むことで美しいホログラムが得られています。クレジットカードのセキュリティホログラムも同じ方法で実現しているんだそうですが、それにしても不思議ですよね。 スイスのデザイン会社Morphotonix社がドイツのチョコレート型メーカーとコラボして開発したこのデザインは、まず金属のマスター型に刻み込まれ、そこからさらに柔らかいプラスチックの型をプレスしてチョコレートを流し込んでいくことで形成されています。 ミルクチョコレートやダークチョコレートではきちんと作れますが、型を使ったこの製作プロセスだと物理的にうまくいかない種類もあります。 Morphotonix社のCEO 、Veronica SavuさんはNew Scient
「E=mc^2」は、光は物質に変われる、というニュアンスを含んでいるわけですが…。 1934年、物理学者のグレゴリー・ブライトとジョン・ホイーラーは2つの光子を衝突させることによって物質(電子と陽電子)が生成できることを理論的に示しましたが、実証は極めて困難とされてきました。 それから80年。インペリアル・カレッジ・ロンドン物理学部のSteve Rose教授の研究班が、その実証方法を考えつき、Nature Photonicsに発表しました。 実験は2ステップにわかれています。 まず、第1ステップでは、レーザーで電子を光速よりいくぶん遅い程度まで高速化し、金の板にぶつけ、光子のビームをつくります。次に第2ステップでは、金のチューブ内に高出力レーザーを怒涛の如く流し、 熱放射場と星の発光に似た光をつくります。 第1ステップで得た光子のビームを第2ステップで得た場を合体させると、光子が互いにぶつ
東京大の古澤明教授らの研究チームが、光の粒子に乗せた情報をほかの場所に転送する完全な「量子テレポーテーション」に世界で初めて成功したと発表した。 論文が15日付の英科学誌ネイチャーに掲載される。計算能力が高いスーパーコンピューターをはるかにしのぐ、未来の「量子コンピューター」の基本技術になると期待される。 量子テレポーテーションは、量子もつれと呼ばれる物理現象を利用して、二つの光子(光の粒子)の間で、量子の状態に関する情報を瞬時に転送する技術。1993年に理論的に提唱され、97年にオーストリアの研究者が実証した。しかし、この時の方法は転送効率が悪いうえ、受け取った情報をさらに転用することが原理的に不可能という欠点があり、実用化が進まなかった。 光は粒子としての性質のほか、波としての性質を持つ。古澤教授らは、このうち効率がいい「波の性質」の転送技術を改良することで、従来の欠点を克服、これまで
宇宙物理学者であり理学博士である松田卓也博士が2045年問題に関するインタビュー記事が掲載されていた。 松田博士によると、2045年、コンピューターの能力が全人類の知能を上回るという説は確実性が高いそうで、現時点でも知能を問うものや特定のゲームにおいては、すでにコンピューターが人間を上回っているという。
印刷 永久磁石を非常に薄くすると、電圧をかけるだけで磁石ではなくなることを京都大化学研究所のグループが見つけた。電圧をなくせば磁石に戻る。磁力を簡単にオンオフできる装置が実現可能になり、ハードディスクの省エネ化などに役立つという。英科学誌「ネイチャーマテリアルズ」電子版で3日発表する。 京大化学研究所の千葉大地助教(磁性物理学)らは、コバルトの永久磁石を250万分の1ミリという薄い膜にし、絶縁体の層をつけて電流が流れないようにして10ボルトの電圧をかけた。すると磁石の性質が完全に消え、普通の金属になった。電圧で電子の量がわずかに変化するためという。 ハードディスクなどに情報を書き込むのに、電磁石の磁気ヘッドが使われている。電磁石は金属のコイルに電流を流したり止めたりすることで磁力をオンオフするため、電力を消費する。磁気ヘッドにコバルトの薄膜を使えば電流は流れないので、電力はほとんど消
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く