タグ

AIとdeeplearningに関するlont_inのブックマーク (1)

  • ディープラーニング=三次関数のどこがダメなのか解説する

    あるニュース記事で、ディープラーニング=最小二乗法で三次関数なんていう「伝説の画像」が出回っていたので、それに対して突っ込みつつ、非線形関数という立場からディープラーニングの当の表現の豊かさを見ていきたいと思います。 きっかけ ある画像が出回っていた。日経新聞の解説らしい。 伝説の画像になるぞこれhttps://t.co/CpeWKrHseP pic.twitter.com/qfTUVt5j7A — じゃら美少女 (@tonets) 2019年2月19日 確かにこれは伝説の画像だ。今までディープラーニングの入門書を立ち読みしていても、ディープラーニング=最小二乗法で三次関数なんて解説は見たことがない。画期的な説明だ。 しかし、この画像、ディープラーニングを少しでもやったことある人から見ればかなり違和感を覚える解説だと思う。そこを突っ込み始めるとディープラーニング、あるいはニューラルネッ

    ディープラーニング=三次関数のどこがダメなのか解説する
  • 1