Top > ラーニング > 京都大学、Pythonの基本を解説した無料の教科書「素晴らしすぎる」「非常にわかりやすくて良い」
本書はCC-BY-NC-NDライセンスによって許諾されています。ライセンスの内容を知りたい方はhttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.ja でご確認ください。
米ハーバード大が無償公開しているプログラミング入門講座を日本語に訳したWebサイト「CS50.jp」が公開された。プログラミング教育ベンチャーのLABOTが、「コロナ禍などで大学のキャンパスの環境が不安定になる中、多くの学ぶ意欲がある学生に、良質な教材に母語でアクセスしてほしい」と翻訳作業を進めてきたという。 公開したのは、ハーバード大コンピューターサイエンス学部のデビッド・J・マラン教授が、無料オンライン教育サービス「edX」で公開している人気講座「CS50」のうち、コンピュータサイエンス入門と、Python・JavaScriptを使ったプログラミング講座を日本語訳したもの。YouTubeの英語教材とあわせ、日本語のテキストで学べる。 CS50は、非営利で再配布・改変可能なクリエイティブ・コモンズライセンス(CC BY-NC-SA 4.0)で公開されており、非営利なら改編や再配布が可能だ
東京大学がちょっとびっくりするくらいの超良質な教材を無料公開していたので、まとめました Python入門講座 東大のPython入門が無料公開されています。scikit-learnといった機械学習関連についても説明されています。ホントいいです Pythonプログラミング入門 東京大学 数理・情報教育研究センター: utokyo-ipp.github.io 東大のPython本も非常にオススメです Pythonによるプログラミング入門 東京大学教養学部テキスト: アルゴリズムと情報科学の基礎を学ぶ https://amzn.to/2oSw4ws Pythonプログラミング入門 - 東京大学 数理・情報教育研究センター Google Colabで学習出来るようになっています。練習問題も豊富です https://colab.research.google.com/github/utokyo-ip
米ハーバード大学がオンラインで無料公開している、PythonやJavaScriptのプログラミング学習とコンピューターサイエンスの入門講座の日本語訳ページ「CS50.jp」が無償公開されました。2022年8月31日に2022年度最新版の日本語化が完了しました。講義動画の日本語字幕の翻訳化を順次すすめています。学生向けですが、年代にかかわらず、コロナ禍で学習環境やキャリアに悩んでいる誰もが学ぶことができます。 ハーバード大学のCS50xとは ハーバード大学のCS50xとは、日本語翻訳ページ「CS50.jp」によると、コンピューターサイエンスとプログラミング技術を紹介するオンラインコースです。この講義がオンライン上で無償公開されており、世界で282万人が履修登録しています。 edX - CS50s Introduction to Computer Science 学べる内容はPythonのプロ
オープンソース VOICEVOX は OSS(オープンソース・ソフトウェア)版 VOICEVOX をもとに構築されています。 製品版と OSS 版の違いやモジュール構成は VOICEVOX の全体構成 をご参照ください。 ソフトウェア部分は Electron + Vue 、音声合成エンジン部分は Python + FastAPI です。 追加したい・改善したい機能があれば、ぜひ開発にご参加ください。
お知らせ: 2022/9/1 CS50 を活用した非営利/協賛企業による「コロナ学生支援」プロジェクトを実施中 ▼ 学生の方へ:CS50 の学習(履修証明書の取得)を一緒に取り組むプロジェクト CS50日本語版の翻訳コントリビューターである CODEGYM が主催する、非営利/無償のプロジェクト「CODEGYM Academy (外部リンク)」は、昨年に続き2022年度(春/秋)も、キャリア選択を控えた学生に対し、以下の企業の協賛により無償で17週間のプログラミング教育カリキュラムを提供します。 CODEGYM Academy 協賛企業(2022年) https://codegym.jp/academy/ 今年度のエントリーは締め切りました — ようこそ! このページは、ハーバード大学 CS50 の日本語版翻訳プロジェクトのページです。当サイトのドメインに掲載されているコンテンツは、Cre
Youtubeで配信しながら全プロンプトを実行しましたので、各節へのリンクを整理しました。時間のところにYoutubeへのリンクになっています。 もしずれていたら、その時間まで移動して視聴ください。 はじめに (4:00) 1章 ChatGPTの基礎知識 (5:50) 2章 ChatGPTの基本的な使い方 (6:28) 3章 ChatGPT Plusのセットアップ (7:32) 4章 ファイルのアップロードとダウンロード (12:40)4.1 アップロード・ダウンロード (13:03) 4.2 扱うことができるファイル (16:02) 5章 繰り返し作業を一瞬で (16:55)5.1 文字列操作 (17:20) 5.2 正規表現でのパターンマッチ (25:36) →54ページの正規表現でできることの例の説明 (29:09) 5.3 ファイルの一括操作 (46:20) 5.4 QRコード作成
いちいち行かなくていい。高いわりに役に立たない。本を買ったりネットの解説動画を見ながら自分でやるんだ。 毎日勉強できるならカリキュラムはこう。大事なのは「わかんなかったら自分で調べる」ということ。これをひとつひとつ解説していくとあっという間に1年ぐらいのカリキュラムになって金がかかるようになる。ググれば全部出てくる。出てこなかったら調べ方が悪いのでググりかたを変えればおk。この記事にも初心者から見ると「なにその言葉。初耳」っていうのがあると思うけど、全部重要なキーワードなのでググって咀嚼して血肉としてほしい。ググればすぐ出てくる。 1日目: Linuxのインストール(Linuxの中でもUbuntuっていうのがおすすめ)とりあえずLinuxを自分のパソコンにインストールする。Linuxを触れるようになればいい。 PCがない場合は、中古のPCなんて3万ぐらいで買えるからそれ買ってきてインストー
各方面でご好評をいただいている本講義資料ですが,この度増補・改訂のうえ書籍として出版することが決定いたしました! 書籍限定の書き下ろしの3章 (約100ページ分!)を新たに追加して,2021年9月27日に発売予定です. この資料を気に入っていただいた方は,手に取っていただけるとありがたいです. ここで公開している資料は引き続きオンラインで無料で読めますので,ご安心ください🙇
QDくん⚡️AI関連の無料教材紹介 @developer_quant 金融技術職/ChatGPT等の生成AI,データサイエンス,プログラミングの勉強に役立つ情報を発信/良質な無料教材,スライド,動画等を紹介/3千ポストで5万5千フォロワー獲得/過去の人気投稿はハイライトを参照/金融工学x機械学習ブログ運営 https://t.co/bQubHSMk4e /Amazonアソシエイト参加中 https://t.co/2Zd5MRXGw3 QDくん⚡️AI関連の無料教材紹介 @developer_quant 東工大が無料公開しているPython解説サイト chokkan.github.io/python/index.h… 初心者の目線に合わせた丁寧な説明で、かゆいところに手が届く教材。 基本的な文法、データ構造、ファイル入出力やオブジェクト指向、NumpyとMatplotlibの使い方などをひと
凄いものが出てきてしまった。 ChatGPTの「Code Interpreter」が話題になったが、あれはあくまでクラウド上で動いているだけ。それを模してローカルで動作するようになった「Open Interpreter」は、衝撃的な成果である。 Open Interpreterのインストールは簡単。コマンド一発だ $ pip install open-interpreter起動も簡単 $ interpreter -yこれだけでOK。 あとはなんでもやってくれる。 たとえばどんなことができるのかというと、「AppleとMetaの株価の推移をグラフ化してくれ」と言うとネットから自動的に情報をとってきてPythonコード書いてグラフをプロットしてくれる。 凄いのは、ローカルで動くのでたとえばApplescriptを使ってmacOSで動いているアプリを直接起動したり操作したりできる。「Keynot
Microsoft Learn では、対話的な方法で、従来の機械学習の概要を理解することができます。 これらのラーニング パスは、ディープ ラーニングのトピックに移行するための優れた基盤にもなり、各自の生産性を向上させます。 最も基本的な従来の機械学習モデルから、探索的データ分析やカスタマイジングのアーキテクチャまで、ブラウザーを離れることなく、概念的内容や対話型の Jupyter Notebook を簡単に把握することができます。 知識と興味に応じて自分のパスを選択してください。 オプション 1: 完全なコース: 機械学習のためのデータ サイエンスの基礎 ほとんどのユーザーには、このパスがお勧めです。 これには、概念の理解を最大限に高めるカスタム フローを備えた、他の 2 つのラーニング パスと同じモジュールがすべて含まれています。 基になる概念と、最も一般的な機械学習ツールでモデルを構
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? 役立つYouTubeのチャンネルまとめ 数学、物理、アルゴリズム、プログラミング、などなど自分が使う技術に役立ちそうだな、困ったときによく見たなと思うチャンネルを紹介する。 取っ掛かり、ハマりがち、コツみたいな物が拾える。数学がメイン。随時更新していくつもり。 当たり前だけどちゃんと本も読んで勉強するんだぞ。 背景 YouTubeは視聴する登録チャンネルの数が増えると、チャンネルが埋もれて発掘困難になりがち (chrome拡張でできるチャンネルのフォルダ分け機能は、ぽちぽち登録するのも面倒で、そのフォルダの中から掘り出すのも難しい) モ
「線形代数を簡単に理解できるようになりたい…」。そう思ったことはないでしょうか。当ページはまさにそのような人のためのものです。ここでは線形代数の基礎のすべてを、誰でもすぐに、そして直感的に理解できるように、文章だけでなく、以下のような幾何学きかがく的なアニメーションを豊富に使って解説しています。ぜひご覧になってみてください(音は出ませんので安心してご覧ください)。 いかがでしょうか。これから線形代数の基礎概念のすべてを、このようなアニメーションとともに解説していきます。 線形代数の参考書の多くは、難しい数式がたくさん出てきて、見るだけで挫折してしまいそうになります。しかし線形代数は本来とてもシンプルです。だからこそ、これだけ多くの分野で活用されています。そして、このシンプルな線形代数の概念の数々は、アニメーションで視覚的に確認することで、驚くほどすんなりと理解することができます。 実際のと
はじめに最近、LLMへのRAGを用いた文書データの連携等を目的に海外を中心にOCRや文書画像解析技術に関連する新しいサービスが活発にリリースされています。 しかし、その多くは日本語をメインターゲットに開発されているわけではありません。日本語文書は、英数字に加えて、ひらがな、漢字、記号など数千種類の文字を識別する必要があったり、縦書きなど日本語ドキュメント特有のレイアウトに対処する必要があったりと日本語特有の難しさがあります。 ですが、今後、海外の開発者がこれらの課題に対処するため、日本のドキュメント画像解析に特化したものをリリースする可能性は低く、やはり自国の言語向けのサービスは自国のエンジニアが開発すべきだと筆者は考えています。 もちろん、Azure Document Intelligenceをはじめとした、クラウドサービスのドキュメント解析サービスはありますが、クラウドを利用できないユ
指針 厳密解法に対しては、解ける問題例の規模の指針を与える。数理最適化ソルバーを使う場合には、Gurobi かmypulpを用い、それぞれの限界を調べる。動的最適化の場合には、メモリの限界について調べる。 近似解法に対しては、近似誤差の指針を与える。 複数の定式化を示し、どの定式化が実務的に良いかの指針を示す。 出来るだけベンチマーク問題例を用いる。OR-Libraryなどから問題例をダウンロードし、ディレクトリごとに保管しておく。 解説ビデオもYoutubeで公開する. 主要な問題に対してはアプリを作ってデモをする. 以下,デモビデオ: 注意 基本的には,コードも公開するが, github自体はプライベート そのうち本にするかもしれない(予約はしているが, 保証はない). プロジェクトに参加したい人は,以下の技量が必要(github, nbdev, poetry, gurobi); ペー
真野 智之 (Tomoyuki Mano) <tomoyukimano@gmail.com> version 1.0, 2020-06-19
長年、後回しにしてきた「正規表現」。四の五の言わずにはじめようよ!と20年前の自分に伝えたく、まとめてみました。 詳しい方が見ると、乱暴だったり、おかしなところがあると思いますが、入り口に立つことが大切だと考えています(書いた人は文系・グラフィックデザイン関連です)。 はじめにたとえば、文章中に「コンピュータ」と「コンピューター」が混在していて、これを「コンピューター」に統一したいとき、あなたなら、どうしますか? 単純な検索置換なら、次のような順番で処理できます。 ❶「コンピューター」を「コンピュータ」に一括置換する ❷「コンピュータ」を「コンピューター」に一括置換する ❸ ちょっと心配なので「ーー」(音引きの繰り返し)をチェック これはこれでアリなのですが、1回の作業でできたらベターです。 しかし、「コンピュ-タ」のように正しく音引き(ー)が入力されていない場合には単純な検索置換ではお手
はじめに: 本講座は「機械学習ってなんか面倒くさそう」と感じている プログラマのためのものである。本講座では 「そもそも機械が『学習する』とはどういうことか?」 「なぜニューラルネットワークで学習できるのか?」といった 根本的な疑問に答えることから始める。 そのうえで「ニューラルネットワークでどのようなことが学習できるのか?」 という疑問に対する具体例として、物体認識や奥行き認識などの問題を扱う。 最終的には、機械学習のブラックボックス性を解消し、所詮は ニューラルネットワークもただのソフトウェアであり、 固有の長所と短所をもっていることを学ぶことが目的である。 なお、この講座では機械学習のソフトウェア的な原理を中心に説明しており、 理論的・数学的な基礎はそれほど厳密には説明しない。 使用環境は Python + PyTorch を使っているが、一度原理を理解してしまえば 環境や使用言語が
画像は『総務省統計局「社会人のためのデータサイエンス演習」講座PV』より 総務省は9月29日から、実践的なデータ分析の手法を学習できるとうたう、データサイエンス・オンライン講座「社会人のためのデータサイエンス演習(外部サイト)」を開講している。登録料および受講料は無料。閉講日時は12月7日の23時59分。 本講座では、ビジネスや行政での活用を想定しており、社会人や大学生に向けて、ビジネスや業務上での分析事例を中心に実践的なデータ分析(統計分析)の手法をわかりやすく解説するという。前提条件は表計算ソフトMicrosoft Excelの基本的な操作ができること。 『総務省統計局「社会人のためのデータサイエンス演習」講座PV』より 講師は、総務省統計局の會田雅人氏、総務省統計局の阿向泰二郎氏、株式会社電通の佐伯諭氏、東京大学の松尾豊氏、株式会社ブレインパッドの奥園朋実氏、株式会社ブレインパッドの
データサイエンティストを生業にする手段と実態について述べる。 途中、具体例・境界値の例として私個人の話もするが、なるべく一般性のある話をする。 この記事で言いたいことは具体的には4つだ。 プログラミングスクールをディスるなら代わりの入門方法を提供しようよ。 もう「未経験文系から3ヶ月でデータサイエンティストで一発逆転物語」を止めろ。*1 おじさんは人生逆転したいなら真面目にやれ。 若者はワンチャンじゃなくて、ちゃんと化け物になれよ。 この記事についてはパブリック・ドメインとして転載・改変・リンク記載を自由にしてよいです。 (続き書いた) a. 入門は辛いが… b. 思考停止でプログラミングスクールに通うな。 なろう系・始めてみよう系資料一覧 (最速・最短ルート用) まずは動かしてみよう。強くてニューゲームが体験出来るぞ! 入門以前の本 一般向け業界本 (AI業界と展望がわかる本) 技術者入
新人: 「本日データサイエンス部に配属になりました森本です!」 先輩: 「お、君が新人の森本さんか。僕が上司の馬庄だ。よろしく!」 新人: 「よろしくお願いします!」 先輩: 「さっそくだけど、練習として簡単なアプリを作ってみようか」 先輩: 「森本くんは Python なら書けるかな?」 新人: 「はい!大学の研究で Python 書いてました!PyTorch でモデル作成もできます!」 先輩: 「ほう、流石だね」 新人: 😊 先輩: 「じゃ、君には今から 3 時間で機械学習 Web アプリを作ってもらうよ」 先輩: 「題材はそうだなぁ、写真に写ってる顔を絵文字で隠すアプリにしよう」 先輩: 「あ、デプロイは不要。ローカルで動けばいいからね。顔認識と画像処理でいけるよね?」 新人: 😐 新人: (えぇぇぇぇぇぇぇ。3 時間?厳しすぎる...) 新人: (まずモデルどうしよう。てかもら
経産省発の npm モジュール!住所や電話番号の正規化、ジオコーディングなどができる IMI コンポーネントツールを試した! Code for Japan の関さんが SNS でシェアしてて知ったのですが、経産省さんがなにやらオープンソースで住所や電話番号の正規化などなどをするツールを公開したとのこと。 https://info.gbiz.go.jp/tools/imi_tools/ 経産省が住所変換や法人種別名、電話番号の正規化に使えるIMIコンポーネントツールを公開しました。 ソースコードも公開。README にも使い方が丁寧に書かれていました。https://t.co/fPbV00EgZP 素晴らしい動き。こういう... #NewsPicks https://t.co/bew0qGKMFE — Hal Seki (@hal_sk) May 28, 2020 ぶっちゃけ当初はあまり期待
Pythonプログラミング入門¶ ▲で始まる項目は授業では扱いません。興味にしたがって学習してください。 ノートブック全体に▲が付いているものもありますので注意してください。
QDくん⚡️Python x 機械学習 x 金融工学 @developer_quant 東工大が無料公開しているPython解説サイト chokkan.github.io/python/index.h… 初心者の目線に合わせた丁寧な説明で、かゆいところに手が届く教材。 基本的な文法、データ構造、ファイル入出力やオブジェクト指向、NumpyとMatplotlibの使い方などをひと通り学べる。 pic.twitter.com/XyBBslyeBa 2022-10-08 22:01:21 QDくん⚡️AI関連の無料教材紹介 @developer_quant 東工大が無料公開しているPython解説サイト chokkan.github.io/python/index.h… 初心者の目線に合わせた丁寧な説明で、かゆいところに手が届く教材。 基本的な文法、データ構造、ファイル入出力やオブジェクト指向、
総務省は1月11日、データサイエンスのオンライン講座「誰でも使える統計オープンデータ」を、MOOC講座プラットフォーム「gacco」で開講した。社会人・大学生に、統計オープンデータを活用したデータ分析の手法を解説する講座で、3月7日まで受講できる。 週約3時間×4週間の内容。政府統計の総合窓口「e-Stat」、総務省と統計センターが提供する統計GIS、API機能などを使い、データ分析の手法を学べる。 講師は「統計学が最強の学問である」の著書で知られる統計家の西内啓氏や、総務省統計局の担当者など。 2017年6月に初開講して以来、断続的に開講し、のべ約2万8000人が受講した講座。 関連記事 政府が「ワクチン接種状況ダッシュボード」公開 性別や都道府県別に可視化 政府が、全国の新型コロナワクチンの接種状況を一覧にまとめた「ワクチン接種状況ダッシュボード」を公開。統計情報をまとめたCSVやJS
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く