機械学習(ML)、さらには深層学習(DL)は、ほんの数年前までハイエンドのハードウェアでしか実行できず、エッジでのトレーニングや推論はゲートウェイ、エッジサーバ、またはデータセンターで実行されると考えられていた。当時、クラウドとエッジの間で計算リソースを分配するという動きが初期段階にあったため、このような考え方は正しいとされていた。しかし、産学の集中的な研究開発によって、このシナリオは劇的に変化した。 いまやMLを実行するのに優れたTOPS性能を実現可能なプロセッサは必要ない。最新のマイコンの中にはMLアクセラレーターを組み込んだものもあり、エッジデバイスでMLを実行できるケースが増えている。 これらのデバイスは、単にMLを実行するのではなく、低コストと低消費電力を実現し、どうしても必要な場合にのみクラウドに接続することが可能だ。つまり、MLアクセラレーター搭載のマイコンは、次のステップと