タグ

DeepLearningとTensorFlowに関するz_dogmaのブックマーク (2)

  • 【Day-17】DeepLearning系ライブラリ、『Keras』の使い方まとめ(2.x対応版) - プロクラシスト

    【最終更新 : 2017.12.17】 ※以前書いた記事がObsoleteになったため、2.xできちんと動くように書き直しました。 データ分析ガチ勉強アドベントカレンダー 17日目。 16日目に、1からニューラルネットを書きました。 それはそれでデータの流れだとか、活性化関数の働きだとか得るものは多かったのですが、Kerasと言うものを使ってみて、何て素晴らしいんだと感動してしまいました 今まで苦労して数十行書いていたものが、わずか3行で書ける! 正直、スクラッチで書く意味って、理解にはいいけど研究や分析には必要あんまないんですよね。車輪の再発明になるし。 と言うわけで、使えるものはどんどん使っていこうスタンスで、今日はKerasの紹介です! Tutorial+気になった引数を掘り下げて補足のような感じで書いています。 ちなみに、各部のコード以下をつなぎ合わせるとmnistの分類器が動くよ

    【Day-17】DeepLearning系ライブラリ、『Keras』の使い方まとめ(2.x対応版) - プロクラシスト
  • TensorFlow Playgroundはニューラルネットを理解するのにおススメ - 西尾泰和のはてなダイアリー

    ネットワークの重みや各ニューロンがどういう入力の時に発火するのかが、学習していく過程で各時刻可視化されてとても良い教材です。 http://playground.tensorflow.org/ うずまきのデータセットに関して「中間層が1層しかないとうずまき(線形非分離な問題)は解けない」という誤解があるようなので、まずは1層でできるという絵を紹介。なお僕のタイムライン上では id:a2c が僕より先に気付いていたことを名誉のために言及しておきます。 で、じゃあよく言われる「線形非分離な問題が解けない」ってのはどういうことか。それはこんな問題設定。入力に適当な係数を掛けて足し合わせただけでは適切な境界を作ることができません。 こういうケースでは中間層を追加すると、中間層が入力の非線形な組み合わせを担当してくれるおかげで解けなかった問題が解けるようになります。 1つ目のデータセットでは特徴量の

    TensorFlow Playgroundはニューラルネットを理解するのにおススメ - 西尾泰和のはてなダイアリー
  • 1