筛法求素数

这篇博客介绍了两种O(n)时间复杂度的求素数算法:Eratosthenes筛法(埃筛)和线性筛。Eratosthenes筛法通过从小到大枚举质数并标记其倍数为非质数来找出所有素数。线性筛则通过优化避免了重复筛选,提高了计算效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

求素数

显然,可以暴力

int zhishu(int n)
{
   
   
	for(int i=2;i<=sqrt(n);i++)
	{
   
   
		if(n%i==0)
		return 0;
	}
	return 1;
}


for(int j=1;j<=m;j++)
zhishu(j);

显然,复杂度为O(n(sqrt(n))的。

复杂度太高。

我会O(1)方法——打表

介绍两种O(n)的算法。

一、Eratosthenes

——(埃筛)

1.基本思想:

质数的倍数一定不是质数。

2.实现方法:

从小至大枚举质数x,把x的倍数都标记为非质数。
即:

用一个bool型的prime数组memset成0,即一开始假设所有的数都是素数(如果不会memset就用for循环遍历一遍全部初始化成0),然后现在我们有两个已知的非素数(合数)prime[0], prime[1]就将它们初始化成1。
2是第一个素数吧,没问题吧?那现在开始了,循环一遍,把2的倍数全部初始化成1,如果2的某个倍数已经超过了我们给的范围, 就结束循环
接下来找离2最近的素数,3吧,没问题吧?再执行上个循环,3的倍数也变成1了,再从3后面找,4已经被改成1了,那就是5了……
后面一直循环就完了
然后主函数里调用一下,输出!prime[i],的i。范围内所有的素数都出来了吧,

3.具体过程:

2,3,4,5,6,7,8,9,10,
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值