自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

强化学习曾小健

强化学习、大模型、AIGC、AGI

  • 博客(3956)
  • 资源 (1)
  • 收藏
  • 关注

原创 北大麻将源码 ​/mahjong-rl/model_pool.py​ 用 FIFO 策略管理模型,利用共享内存实现跨进程通信和数据共享,适用于分布式或并行环境下的模型参数管理。

服务端 (:管理模型的存储和共享内存的分配。客户端 (:通过共享内存获取模型的元信息或加载模型参数。模型池采用FIFO策略管理模型,利用共享内存实现跨进程通信和数据共享,适用于分布式或并行环境下的模型参数管理。

2024-12-31 23:37:37 1083

原创 RICAI -A Review of Mahjong AI Research 论文 麻将AI论文

由Mizukami N(2015)提出,使用逻辑回归构建对手预测模型,预测对手是否快赢、胜利牌和支付点数。该模型的基础是为后续研究奠定了基础,并且在防守方面表现良好。然而,该模型在攻击性方面存在不足,因为它没有考虑玩家得分对选择动作的影响。

2024-12-30 14:43:15 866

原创 我叫曾小健,开发第一线:新Windows与开发环境:大模型LLM/量化 Win-Mac统一快捷键体验

对于开发者用Windows来说,最大的建议就是不要用Windows,既然必须要用,那就来吧!!!

2023-07-24 10:45:24 356

原创 Ubuntu Linux AI大模型开发常用命令 - 更新中 包括NVIDIA状态,和安装相关常用软件包,没事就背背 - 背诵创造美好生活

Ubuntu AI大模型开发常用命令 - 更新中 包括NVIDIA状态,NVIDIA状态,实时更新:和安装相关常用软件包没事就背背,增加开发效率。

2023-06-21 11:28:05 580

原创 DeepSeek 新研究,会让 AI 奖励模型彻底颠覆吗?

再基于 KS 处理后的序列,运用长短期记忆网络(LSTM)预测长期连续缺失值,利用 LSTM 捕捉复杂非线性模式和长期依赖关系的能力,实现对长期缺失值的有效填充。,针对有效波高数据缺失问题,发挥KS在短期缺失值填充的优势和LSTM处理长期依赖关系的能力,实现同时高效填补短、长期缺失值。在推理时的可扩展性,使模型能自适应生成原则和批判,提升奖励质量,应用于GRM训练,得到DeepSeek-GRM模型。,最大程度降低了预测误差,RMSE最大降低率分别达49.6%、59.4%和57.8%,展现出更强的泛化能力。

2025-04-09 09:46:58 385

原创 创始人离场!激光大厂多位高管请辞,彭国红女士彻底退出奇致激光

资料显示,这位1968年出生的企业家是奇致激光发展历程中的核心人物,2001年,彭国红参与创立公司,并带领团队研发出中国第一台光子嫩肤设备,成功将强脉冲光技术引入国内医疗美容市场。2024年末,奇致激光IPO折戟后,彭国红相继辞去董事长、总经理职务,此次再辞董事职务,彻底退出决策层,新氧完成对奇致激光的全面接管,实现对经营决策的绝对掌控。,在2024年12月辞去董事长、总经理职务后,又于2025年4月2日卸任董事职位,其彻底退出管理层的动作,与新氧资本全面接管形成鲜明对照。,折射出公司决策权转移的完成。

2025-04-09 09:42:15 384

原创 南大院士谭铁牛 | 首个多模态统一大模型综合评测基准MME-Unify问世。

统一多模态大语言模型(UMLLMs)因其能够无缝集成生成和理解任务而备受关注。然而,现有研究缺乏统一的评估标准,往往依赖孤立的基准测试来评估这些能力。此外,当前的工作通过案例研究突出了“混合模态生成能力”的潜力,例如在图像中生成辅助线以解决几何问题,或在生成相应图像之前对问题进行推理。尽管如此,目前尚无标准化的基准测试来评估模型在这些统一任务上的表现。为了填补这一空白,提出MME-Unify,也称为MME-U,这是首个旨在评估多模态理解、生成和混合模态生成能力的基准测试。

2025-04-09 09:38:45 268

原创 迈向机器人领域ImageNet,大牛PieterAbbeel领衔北大、通院、斯坦福发布RoboVerse大一统仿真平台

在自然语言处理和计算机视觉领域,数据规模化和标准化评测推动了技术的飞速发展。然而,机器人学习却长期面临三大痛点:(1)实验环境碎片化,实验室各建"孤岛";(2)训练数据难复用,每次都要"从头造轮子";(3)评估标准不统一(论文结果无法横向对比)如何构建高保真、可扩展、标准化的机器人学习基础设施?RoboVerse通过三大创新模块破解困局。三大核心突破:平台、数据、评测三位一体RoboVerse并非单一工具,而是首个打通仿真训练、数据。

2025-04-09 09:36:13 549

原创 漫画 | 重磅!七国集团决定制裁Go语言!

为期两天的G7峰会胜利闭幕了,参会各方再次划分了势力范围,发表了一个重要的宣言。2022年6月, 编程语言的七国集团会议在风景优美的Linux庄园如期召开。C语言作为会议召集人,在大屏幕上用一幅图总结了一下近二十年各国的沉浮。C语言给每个人发了一份报告, 上面列举了最近10年出现的编程新秀。只不过新人加入会触动现有的利益,需要从长计议。病毒肆虐,各国首脑也都保持了良好的社交距离。眼瞅着第一个议题就要打起来,C老大赶紧出手。C语言随后介绍了本次G7峰会的两大议题。第一个议题刚刚开始,各方就吵成了一锅粥。

2025-04-09 09:32:08 132

原创 睡眠不足?你的身体和大脑正在发生以下变化

西澳大利亚大学睡眠科学中心的主任詹·沃尔什表示,所有这些缺失的睡眠都会付出代价,“我认为人们可能意识到短期影响,因为他们已经体验过,但他们可能没有意识到长期影响。“有一个名为‘午夜之后’的假设,该研究发现,在午夜到早上6点之间醒着的人自杀风险增加,”睡眠健康基金会的首席执行官、心理学家莫伊拉·容格说。虽然这在一定程度上是有益的,但不规律的睡眠仍然存在风险,因为我们的内部生物钟渴望一致性。科学家认为,这是因为大量的记忆巩固过程发生在深度睡眠(慢波睡眠)期间,而如果你睡眠不足,你会得到更少的这种记忆。

2025-04-09 09:23:06 222

原创 学术型OCR天花板!这个开源多模态OCR神器,专为教育场景适配,准确率超95%!Versatile-OCR-Program。

并不是又一个“识别图片上文字”的工具。而是一个完整的教育材料数字化、结构化、语义化工具链。输出不仅是干巴巴的文字,还能结构化输出,保留排版,也可自动生成语义注解与自动说明,极度贴心!GitHub 项目地址:https://github.com/ses4255/Versatile-OCR-Program●一款改变你视频下载体验的神器:MediaGo●新一代开源语音库CoQui TTS冲到了GitHub 20.5k Star●最新最全 VSCODE 插件推荐(2023版)●Star 50.3k!

2025-04-09 09:12:31 238

原创 VSCode v1.99发布,正式推出Agent模式,同时支持MCP!

这里介绍我们自己免费开源的 MCP Servers 的中文搜索引擎:ShareMCP,通过调用 GitHub API 监测全网的 mcp servers 仓库,并且自动进行 AI 评分、标签领域分类、中文摘要、中文介绍生成等。官网的更新文档中提到有:通过用户设置、远程配置、.code-workspace 或 .vscode/mcp.json 文件配置 MCP 服务器,支持动态变量(如 ${env:API_KEY} 环境变量引用,用来设置密钥)。command:部署命令,args:所要填写的参数。

2025-04-08 16:26:58 688

原创 数学界中的菲尔兹奖:“超越心智的界限,洞悉世界奥秘!”

(Timothy Gowers):英国剑桥大学(获奖时),英国剑桥大学(当前/最后) "因其对函数分析和组合学的贡献,发展了无限维几何的新视角,包括解决巴拿赫的两个问题和发现所谓的高尔斯二分法:每个无限维巴拿赫空间要么包含具有许多对称性的子空间(在技术上,具有无条件基),要么包含其上每个算子都是指标为零的弗雷德霍姆算子的子空间。(Atle Selberg):美国高级研究院(获奖时),美国高级研究院(当前/最后) "发展了对维戈·布伦(Viggo Brun)筛法的推广;他选择的问题总是由应用驱动的。

2025-04-08 11:51:43 421

原创 速递|阿里前副总裁贾扬清Lepton已入职英伟达,团队一笔套现或数亿美元,公司仅创立2年

而白俊杰则开创了神经网络交换标准ONNX,这一框架极大地促进了不同深度学习框架之间的互操作性,在加入LeptonAI前,他还在阿里巴巴领导过全栈AI工程团队,拥有丰富的产业实践经验。Lepton AI支持模型的开发、训练和部署,具备生产级性能和成本效益,提供全面的机器学习工具和灵活的GPU选项,满足企业级服务水平协议(SLA)的要求。在他任职期间,贾扬清与团队共同建设了大数据和人工智能平台,推动技术、产品和解决方案的发展,将阿里云的大数据和人工智能业务发展成为行业领先地位。图片来源:Youtube。

2025-04-08 11:50:26 254

原创 全模态模型Ola-7B开源,渐进式策略碾压GPT-4o,横扫音视图主流榜

完整的测试结果表明,与现有的全模态大语言模型(如VITA-1.5、IXC2.5-OmniLive等)相比,Ola有巨大的性能提升,甚至超越了最先进的专有多模态模型的性能,包括最新发布的Qwen2.5-VL、InternVL2.5等。在图像基准测试方面,在极具挑战性的OpenCompass基准测试中,其在MMBench-1.1、MMMU等8个数据集上的总体平均准确率达到72.6%,在市面上所有30B参数以内的模型中排名第1,超越了GPT-4o、InternVL2.5、Qwen2.5-VL等主流模型。

2025-04-08 11:38:17 381

原创 多模态Reasoning新综述!从训练优化和实时推理角度全面总结

原创 编辑部深度学习自然语言处理2025年04月07日 12:26江苏人类的聪明之处在于能“分步骤解决问题”。比如算一道数学题,我们会先列公式、再分步计算,最后验证结果。而传统的AI模型更像“直觉派选手”,直接输出答案,但面对复杂任务容易出错。论文:Why Reasoning Matters?地址:https://arxiv.org/pdf/2504.03151这篇论文指出,让模型学会“推理”(比如分步骤思考、自我修正)是提升其能力的关键。

2025-04-08 11:35:43 593

原创 **AI生成的奇怪符号是什么?**

这些使用痛点,ima都听到了,也帮大家解决了!大家呼声很高的markdown格式,我们已经陆续在问问ima、知识库、笔记支持了。,要手动复制到专门的笔记软件,或者在笔记内准备手搓代码时发现功能要收费。总之就是,针对markdown的搜、读、写,你都可以在ima完成。针对.md格式的文件,调用腾讯混元或DeepSeek模型进行提问。,但因为找不到可应用的笔记软件或面对复杂的生成流程而抓耳挠腮。导入以往积累的.md的文件,形成自己的知识库。我们找了几位鹅厂同事,听听他们的使用体验。有社群用户问“好用吗?

2025-04-08 10:51:36 471

原创 简明教程!大模型 RL 中的策略梯度算法

随着大模型基建的发展,强化学习在大模型上的作用越来越重要,并且在提升推理能力方面取得了巨大的成功,例如OpenAI o1 / deepseek R1 模型。因此越来越多的人开始学习强化学习。在目前的主流大模型的强化学习算法中,都是以策略梯度(policy gradient,简称PG) 类方法为主。因此本文尝试将PG的原理从头开始讲清楚,同时避免强化学习中的其他前置知识,让没有强化学习背景的人也能看懂。由于作者水平有限,如果存在错误,欢迎朋友指出!

2025-04-08 03:56:13 620

原创 AI 编码新王炸!Augment (SWE-bench 冠军)免费登场,专治复杂大项目,硬刚 Cursor?

Augment Code 自称是第一个能深度理解大型复杂项目、专为团队协作打造的 AI 编码平台, 今天正式亮相,号称能适应你的代码上下文,给团队生产力上 Buff。官方喊话了:“ 免费来试试,把你最大最复杂的代码库丢过来,看我们搞不搞得定。创始人 Scott Dietzen 表示,Webflow、Kong、Pigment 这些公司已经在用了。Augment 官方在博客中写到:AI正在改变我们编写代码的方式,而且变化很快。AI现在可以创建简单的应用程序、解释代码块并发现程序中的错误。

2025-04-08 03:55:01 732

原创 用GPT-4o制作表情包上架微信喂饭级教程,不会PS也能轻松上手。

点击灵感与预设可以看见镜头,鼠标滑动到镜头提示词位置任意一个按钮,都可以看见效果演示,选择你认为你的表情最合适的镜头移动方式,这里我选择the camera is stationary 摄像机是静止的,因为我只要小狗立正摇头就可以了。提示词的地方单独讲,提示词就是,根据它的表情,你希望过程中它有什么样的动作?创建图片:以这个图片中的狗狗为主体,制作一个横版的海报,海报背景是黄色格纹,左边是大字“Hello”下一行是一样的大字“It's me”,文字采用了和狗狗毛材质一样的材质,明度更深一点饱和度更高一点。

2025-04-07 10:25:21 382

原创 谷歌随OpenAI强势入局,劈柴4天闪电部署Gemini+MCP!

劈柴在线征求意见还不到4天,谷歌DeepMind的高级AI关系工程师Philipp Schmid,在X上宣布在Gemini API文档中添加了使用MCP的示例。他表示,考虑到 Anthropic、OpenAI以及DeepSeek全都支持MCP协议,如果谷歌还不采用,将会错失应用开发的热潮。漫画中,劈柴哥与Anthropic(MCP协议的推出者)CEO Dario Amodei微笑握手,奥特曼则站在中间,望着劈柴哥。MCP的持续火爆,加上OpenAI在27日官宣对MCP的支持,终究还是让谷歌坐不住了。

2025-04-06 21:32:54 1006

原创 实测Llama 4,究竟是王者归来,还是廉颇老矣?

相比于之前的模型,Llama 4系列模型是混合专家架构(MoE)的多模态模型,能够支持文本和多模态体验(输入支持文本和图片,但是输出结果尚未支持图片)。截至目前(4月6日)官方开放Llama 4系列的两个高效模型的下载。1、。具有16个专家,170亿激活参数,总参数量109B,支持10M长度的上下文(即1000 万上下文窗口)。在广泛报告的基准测试中优于 Gemma 3、Gemini 2.0 Flash-Lite 和 Mistral 3.1。

2025-04-06 21:31:32 849

原创 武汉衷华脑机-----这莫非是人类的未来吗?

.....这湖北的朋友们可要多挣几年钱了,万一后面技术先进了,能把AI接口跟咱们的脑子对接一下,那就真的唯楚有材了.....做强的话,别说新能源汽车错过了没啥,就算把武汉分两个区送给其它省都没啥了.....后面默默地努力了,说实话,看到这个企业后,个人觉得,如果这家能够做大。,是不是比咱们普通人差一些,但做出来了,后面就有机会升级了....今天看湖北的新闻,说实话,一条新闻真的把我惊到发呆了,居然。到那时候,可能真的会把咱们的生活,社会模式都改变了....是太保守了,这以后,还健啥身呢?

2025-04-06 21:30:23 387

原创 DeepSeek GRM | 对强化学习·RM的重新审视与深度求索Inference-Time Scaling for Generalist Reward Modeling

此外,通过推理时扩展(如多次采样和元RM引导),模型可以自适应的动态调整奖励信号,适应不同场景的复杂性。关于更细粒度的奖励信号的价值,论文中提到,传统Scalar·标量奖励缺乏多样性,无法通过多采样提升质量,而GRM通过生成多个原则和批评,扩展奖励空间,使奖励信号具有更高的分辨率。未来,结合动态原则生成、工具增强及多目标强化学习梯度策略优化算法,也许可以进一步释放其更大的潜力,我个人是十分看好的,感觉当前仅仅在奖励建模维度上实现了小的进展,但在RL层面,还会有如上述更多的可探索空间。

2025-04-06 21:28:28 571

原创 刚刚,Llama 4深夜开源击败DeepSeek V3!2万亿多模态巨兽抢回王座

本文转自:新智元支持1000万上下文单H100可跑2万亿参数巨兽一大早,Llama 4重磅发布了!Meta官宣开源首个原生多模态Llama 4,首次采用MoE架构,支持12种语言,首批发布一共两款:Llama 4 Scout:共有1090亿参数,17B活跃参数16个专家,1000万上下文Llama 4 Maverick:共有4000亿参数,17B活跃参数,128个专家,100万上下文另外,2万亿参数Llama 4 Behemoth将在未来几个月面世288B活跃参数,16个专家。

2025-04-06 21:23:29 731

原创 谷歌为NotebookLM添加了网络搜索功能;微软发布了实时AI生成的《雷神之锤2》可玩演示版

NotebookLM是b谷歌的人工智能研究工具,它独特地依赖于用户提供的资源,而不是广泛的训练材料,以最大限度地减少人工智能的幻觉。目前还不清楚将完整的网络资源导入到NotebookLM是否会面临来自内容创建者的挑战,尤其是那些可能反对通过谷歌的工具而不是他们自己的网站访问他们的内容的出版商。虽然去年10月,NotebookLM的访问量达到了3150万,但它仍然落后于数十亿的访问量。谷歌通过新的网络搜索功能扩展了NotebookLM的功能,该功能可以帮助用户发现并将在线资源直接合并到他们的笔记本中。

2025-04-06 21:21:07 237

原创 一文搞懂RAG技术范式演变及Agentic RAG:未来AI应用的基石

检索增强生成(RAG)代表了人工智能领域的一项重大进展,它将大语言模型(LLMs)的生成能力与实时数据检索相结合。虽然大语言模型在自然语言处理方面展现了显著的能力,但它们对静态预训练数据的依赖往往导致响应过时或不完整。RAG通过从外部动态检索相关信息并将其纳入生成过程来克服这一限制,从而实现上下文准确且最新的输出。图1:Agentic RAG概览。

2025-04-06 20:48:50 849

原创 ROS2机器人操作系统 - ROS1升级到ROS2

ROS机器人操作系统并不是传统意义的“操作系统”,而是一个机器人操作系统的中间件框架,通过这个通讯框架,在基于ROS的应用程序之间建立起了沟通的桥梁。ROS2基于DDS,不像ROS1依赖中心化的Master节点进行节点发现和管理,ROS2实现去中心化的节点发现机制,支持实时性、高可靠性通信,并允许通过配置QoS策略提升数据传输可靠性。(6)启动与生命周期管理:ROS1的roslaunch使用XML编写,ROS2的launch文件改用Python编写,支持更复杂的逻辑,如条件判断等。

2025-04-06 20:47:30 634

原创 Llama 4来了!DeepSeek R2、Qwen3迎来最强对手

Llama 4 Maverick 是同类中最佳的多模态模型,在编程、推理、多语言、长上下文和图像基准测试中超过了类似模型(如 GPT-4o 和 Gemini 2.0),并且在编程和推理方面与规模大得多的 DeepSeek v3.1 相当。而且 Llama 4 模型采用原生多模态设计,预训练阶段就是联合使用大量未标记的文本、图像和视频数据一起训练,但是 Llama 4 只支持图像做输入,并不支持 GPT-4o 的图像生成能力,所以 Llama 4 只能做视觉理解。

2025-04-06 20:44:39 843

原创 VSCode发布Agent+MCP,Cursor劲敌又回来了?

VS Code 正式推出 Agent Mode、MCP 支持和 BYOK 功能,标志着主流代码编辑器进入了一个新时代。这场 AI 编程革命才刚刚开始,而微软显然不想让 Cursor 等第三方产品独享这块蛋糕。作为开发者,你准备好拥抱这些新功能了吗?欢迎在评论区分享你的看法!关注我们,第一时间获取AI领域最新动态!"AI智见录" 期待与您相遇,在这里,我们用独特视角解读 AI 世界的每一个精彩瞬间,让科技与人文在此相融。

2025-04-06 20:42:50 734

原创 AIGC时代算法工程师的面试秘籍(第三十三式2025.3.17-2025.4.6) |【三年面试五年模拟】

【三年面试五年模拟】旨在挖掘&沉淀AI算法工程师在实习/校招/社招时所需的干货知识点与面试方法,力求让读者在获得心仪offer的同时,持续增强技术基本面。更多干货资源,大家可在文末查阅~大家好,我是Rocky。又到了定期学习《三年面试五年模拟》文章的时候了!本周期我们持续更新了丰富的AIGC面试高频问答,依旧干货满满!诚意满满!Rocky创办的《三年面试五年模拟》项目在持续帮助很多读者获得了心仪的AIGC科技公司和互联网大厂的算法岗offer,收到了大家非常多的好评,Rocky觉得很开心也很有意义。

2025-04-06 20:39:43 728

原创 聊聊 LLM 推理引擎中,那些已经成为事实标准的优化方法

作者:进击的Killua原文:https://zhuanlan.zhihu.com/p/685706549本文主要是记录目前在各个LLM推理引擎中经常使用的一些方法。

2025-04-06 20:37:48 673

原创 ICLR 2025 Spotlight |合成数据伪装术 vs 大模型火眼金睛,中大&上海AI Lab提出合成检测基准LOKI

LOKI基准揭示了LMM在合成数据检测中的显著偏差。LOKI基准引入了多层次的细粒度标注体系,每个数据样本都附带真实/合成标签,并标注了更精细的异常细节,确保模型在识别异常特征时具备更强的可解释性。:LOKI支持主流多模态模型(如GPT-4o、Claude-3、LLaVA等)使用多种数据格式输入,涵盖视频、图像、文本、音频、点云等,全面评估LMM在复杂数据环境下的泛化能力。尽管在简单问题上表现良好,但在处理复杂合成数据检测任务时,其表现明显下降,甚至低于随机选择,显示出当前LMM在复杂任务上的不足。

2025-04-06 01:05:34 1011

原创 TPAMI 2025 | 国防科大提出RGBT-Tiny数据集与SAFit指标,推动小目标检测技术发展

现有数据集多聚焦单一模态(可见光或红外成像),且目标尺寸偏大、场景单一,难以满足实际需求,针对可见光-红外双模态(Visible-Thermal, RGBT)小目标检测的研究却鲜有突破。在无人机监控、自动驾驶、夜间搜救等场景中,小目标检测(如远处行人、微型无人机)一直是技术难点——目标尺寸小、背景干扰多、光照条件复杂。115组对齐序列、9.3万帧图像、120万标注,覆盖7类目标(如船舶、汽车、行人等)和8种场景(如海洋、湖泊、城市道路等)。RGBT目标检测(如UA-CMDet、CMA-Det)。

2025-04-06 01:03:18 612

原创 大模型多语言能力来自哪?大模型是否有内部语言?英文上学习的知识可以用在中文吗?Anthropic最新研究解释大模型多语言能力机制

大模型内部是否存在一种通用的“思维语言”?但是这种对齐训练无法解释为什么大模型可以把英文学到的知识用中文表达出来,例如,你使用中文问大模型一个问题,如果大模型本身的中文训练数据中不包含这个知识,但是英文包含了,当前的大模型似乎也可以用中文很好的回答。特定的英语“引用”特征(就是说如果你的文本输入中有英文的引号这种)似乎参与了某种抑制机制,它会抑制其他语言相关特征(如中文“大”或法语“grand”)强化英语的默认输出(也就是说如果你不加“在某语言中说某词”这种表示,大模型会更倾向输出英文)。

2025-04-06 01:00:47 255

原创 体验 DeepSite:用 DeepSeek-V3-0324 免费“氛围编码”,生成你的第一个 AI App

DeepSite 就是一个典型案例,这个刚刚在 Hugging Face 上开源的免费工具,直接接入了 DeepSeek-V3-0324,并尝试用“氛围编码”的理念,让用户通过自然语言描述“感觉”来生成应用。体验 DeepSite:用 DeepSeek-V3-0324 免费“氛围编码”,生成你的第一个 AI App。但DeepSite 的价值在于它免费展示了顶尖 AI 模型驱动下的低代码/无代码开发潜力,并为我们提供了一个观察和体验 DeepSeek-V3-0324 实际应用效果的窗口。

2025-04-06 00:43:29 214

原创 Alibaba推出Embodied-Reasoner,持续反思,自我纠错,破解任务规划难题!

在整个过程中,模型会不断生成多样化的思考内容,如:空间推理(根据房间布局和物体关系推断钥匙链可能的位置)、任务规划(制定搜索和放置的步骤)、自我反思(在搜索失败后调整策略)等,这些思考内容使得模型能够以一种连贯、逻辑一致的方式完成任务。例如,在一个任务中,目标物体隐藏在一个不那么显眼的位置,模型通过这一阶段的训练,能够生成更复杂的搜索路径,优先搜索可能性较高的区域,并在必要时调整搜索策略。例如,在面对一个需要在多个位置搜索的任务时,模型可能在未能直接找到目标物体后就放弃搜索,而不会尝试其他潜在的搜索地点。

2025-04-05 23:59:20 575

原创 狂揽74.7K星 !!n8n! 再见扣子 , 搭配DeepSeek , 效率飞快 , 太6了

n8n 是一个灵活的开源自动化平台,支持 400+ 应用和服务集成,拥有强大的自定义代码能力,同时支持拖拽式操作,再复杂的流程都能轻松打造。更棒的是,DeepSeek的加入将其 AI 功能提升到新高度!专注高效互动,适合实时应用,成本极低。专为复杂推理任务设计,提供深度分析能力。结合 n8n,你可以在工作流中轻松嵌入 AI,并自托管保护数据安全,彻底解放生产力!

2025-04-05 23:58:35 536

原创 如果本身熬夜避免不了,有什么办法能阻止鼻头长黑头?

首先,护肤方面,要强调温和清洁,避免过度清洁导致皮肤屏障受损,反而刺激更多油脂分泌。生活习惯方面,虽然避免不了熬夜,但可以提醒用户注意枕套清洁,避免细菌滋生,以及不要用手频繁触摸脸部,减少细菌感染的机会。最后,总结这些方法,强调即使熬夜,通过系统的护肤和生活调整,还是可以有效控制黑头的产生。另外,用户可能有挤压黑头的习惯,导致毛孔粗大和感染,所以需要强调不要挤压,使用正确的产品帮助黑头自然代谢。同时,保湿也很重要,保持皮肤水油平衡,减少因缺水导致的油脂分泌增多。的精华,抑制皮脂氧化,预防黑头颜色加深。

2025-04-05 23:56:49 509

原创 为什么鼻头黑头挤完后喜欢长火疖子?

挤压黑头→破坏屏障→细菌感染→炎症反应→形成疖子。鼻部皮肤脆弱且易感染,粗暴处理会显著增加风险。科学护理比挤压更安全有效。嗯,用户问为什么挤完鼻头的黑头之后容易长火疖子。首先,我需要理解这两个问题的关联性。黑头是毛孔堵塞,而火疖子通常是由细菌感染引起的炎症,比如金黄色葡萄球菌。所以可能用户在挤压黑头时,导致皮肤受损,细菌侵入,从而引发感染。接下来,我要确认黑头挤压和火疖子形成的具体步骤。当挤压黑头时,手指或工具可能不干净,带入细菌。

2025-04-05 23:51:25 466

搜索引擎概览 searchengine

搜索引擎概览 searchengine

2024-11-19

11个代码生成相关的论文,20241022更新版本-持续更新,包含代码搜索、代码搜索、代码模型survey、代码评论评估、代码评

find . -mindepth 2 -maxdepth 2 -type f -name "*.pdf" | awk -F/ '{print $(NF-1)}' | sort | uniq -c 2 代码或bug分类 1 代码搜索 1 代码生成 1 代码模型survey 1 代码评论评估 5 代码评估与提示

2024-10-22

10篇代码生成的论文,包括代码评估、代码搜索、代码生成、survey、代码或bug分类

题目 类型 分区 摘要 精读链接 Comparing large language models and humanprogrammers for generating programming code 代码评估 arxiv 评估七种LLMs在生成编程代码方面的性能,探讨不同提示策略对LLMs编码性能的影响,直接比较LLMs与人类程序员的编程能力,评估LLMs在不同编程语言之间生成和翻译代码的能力,以及考察LLMs的计算效率和从过去错误中学习的能力。 A Comparison of the Effectiveness of ChatGPT andCo-Pilot for Generating Quality Python Code 代码评估 会议 包括评估ChatGPT和Copilot在解决LeetCode编程问题上的有效性,探讨ChatGPT在接收到反馈后纠正代码的能力,以及其在提高代码质量和性能方面的潜力。 Program Code Generation with Generative AIs 代码评估 MDPI水刊-Algorithms非SCI 比较了人类生成的代码

2024-10-21

Multimodal Representation for Neural Code Search

—Semantic code search is about finding semantically relevant code snippets for a given natural language query. In the state-of-the-art approaches, the semantic similarity between code and query is quantified as the distance of their representation in the shared vector space. In this paper, to improve the vector space, we introduce tree-serialization methods on a simplified form of AST and build the multimodal representation for the code data. We conduct extensive experiments using a single corpu

2024-10-21

[MDPI水刊Algorithm非SCI]Program Code Generation with Generative AIs

[MDPI水刊-非SCI]Program Code Generation with Generative AIs

2024-10-21

Evolving code with a large language model

Evolving code with a large language model

2024-10-19

avx2_tensorflow-1.9.0-cp36-cp36m-win_amd64.zip

avx2_tensorflow1.9.0_win,avx2_tensorflow-1.9.0-cp36-cp36m-win_amd64.whl

2020-04-23

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除