clang 22.0.0git
CGObjCGNU.cpp
Go to the documentation of this file.
1//===------- CGObjCGNU.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This provides Objective-C code generation targeting the GNU runtime. The
10// class in this file generates structures used by the GNU Objective-C runtime
11// library. These structures are defined in objc/objc.h and objc/objc-api.h in
12// the GNU runtime distribution.
13//
14//===----------------------------------------------------------------------===//
15
16#include "CGCXXABI.h"
17#include "CGCleanup.h"
18#include "CGObjCRuntime.h"
19#include "CodeGenFunction.h"
20#include "CodeGenModule.h"
21#include "CodeGenTypes.h"
22#include "SanitizerMetadata.h"
24#include "clang/AST/Attr.h"
25#include "clang/AST/Decl.h"
26#include "clang/AST/DeclObjC.h"
28#include "clang/AST/StmtObjC.h"
31#include "llvm/ADT/SmallVector.h"
32#include "llvm/ADT/StringMap.h"
33#include "llvm/IR/DataLayout.h"
34#include "llvm/IR/Intrinsics.h"
35#include "llvm/IR/LLVMContext.h"
36#include "llvm/IR/Module.h"
37#include "llvm/Support/Compiler.h"
38#include "llvm/Support/ConvertUTF.h"
39#include <cctype>
40
41using namespace clang;
42using namespace CodeGen;
43
44namespace {
45
46/// Class that lazily initialises the runtime function. Avoids inserting the
47/// types and the function declaration into a module if they're not used, and
48/// avoids constructing the type more than once if it's used more than once.
49class LazyRuntimeFunction {
50 CodeGenModule *CGM = nullptr;
51 llvm::FunctionType *FTy = nullptr;
52 const char *FunctionName = nullptr;
53 llvm::FunctionCallee Function = nullptr;
54
55public:
56 LazyRuntimeFunction() = default;
57
58 /// Initialises the lazy function with the name, return type, and the types
59 /// of the arguments.
60 template <typename... Tys>
61 void init(CodeGenModule *Mod, const char *name, llvm::Type *RetTy,
62 Tys *... Types) {
63 CGM = Mod;
64 FunctionName = name;
65 Function = nullptr;
66 if(sizeof...(Tys)) {
67 SmallVector<llvm::Type *, 8> ArgTys({Types...});
68 FTy = llvm::FunctionType::get(RetTy, ArgTys, false);
69 }
70 else {
71 FTy = llvm::FunctionType::get(RetTy, {}, false);
72 }
73 }
74
75 llvm::FunctionType *getType() { return FTy; }
76
77 /// Overloaded cast operator, allows the class to be implicitly cast to an
78 /// LLVM constant.
79 operator llvm::FunctionCallee() {
80 if (!Function) {
81 if (!FunctionName)
82 return nullptr;
83 Function = CGM->CreateRuntimeFunction(FTy, FunctionName);
84 }
85 return Function;
86 }
87};
88
89
90/// GNU Objective-C runtime code generation. This class implements the parts of
91/// Objective-C support that are specific to the GNU family of runtimes (GCC,
92/// GNUstep and ObjFW).
93class CGObjCGNU : public CGObjCRuntime {
94protected:
95 /// The LLVM module into which output is inserted
96 llvm::Module &TheModule;
97 /// strut objc_super. Used for sending messages to super. This structure
98 /// contains the receiver (object) and the expected class.
99 llvm::StructType *ObjCSuperTy;
100 /// struct objc_super*. The type of the argument to the superclass message
101 /// lookup functions.
102 llvm::PointerType *PtrToObjCSuperTy;
103 /// LLVM type for selectors. Opaque pointer (i8*) unless a header declaring
104 /// SEL is included in a header somewhere, in which case it will be whatever
105 /// type is declared in that header, most likely {i8*, i8*}.
106 llvm::PointerType *SelectorTy;
107 /// Element type of SelectorTy.
108 llvm::Type *SelectorElemTy;
109 /// LLVM i8 type. Cached here to avoid repeatedly getting it in all of the
110 /// places where it's used
111 llvm::IntegerType *Int8Ty;
112 /// Pointer to i8 - LLVM type of char*, for all of the places where the
113 /// runtime needs to deal with C strings.
114 llvm::PointerType *PtrToInt8Ty;
115 /// struct objc_protocol type
116 llvm::StructType *ProtocolTy;
117 /// Protocol * type.
118 llvm::PointerType *ProtocolPtrTy;
119 /// Instance Method Pointer type. This is a pointer to a function that takes,
120 /// at a minimum, an object and a selector, and is the generic type for
121 /// Objective-C methods. Due to differences between variadic / non-variadic
122 /// calling conventions, it must always be cast to the correct type before
123 /// actually being used.
124 llvm::PointerType *IMPTy;
125 /// Type of an untyped Objective-C object. Clang treats id as a built-in type
126 /// when compiling Objective-C code, so this may be an opaque pointer (i8*),
127 /// but if the runtime header declaring it is included then it may be a
128 /// pointer to a structure.
129 llvm::PointerType *IdTy;
130 /// Element type of IdTy.
131 llvm::Type *IdElemTy;
132 /// Pointer to a pointer to an Objective-C object. Used in the new ABI
133 /// message lookup function and some GC-related functions.
134 llvm::PointerType *PtrToIdTy;
135 /// The clang type of id. Used when using the clang CGCall infrastructure to
136 /// call Objective-C methods.
137 CanQualType ASTIdTy;
138 /// LLVM type for C int type.
139 llvm::IntegerType *IntTy;
140 /// LLVM type for an opaque pointer. This is identical to PtrToInt8Ty, but is
141 /// used in the code to document the difference between i8* meaning a pointer
142 /// to a C string and i8* meaning a pointer to some opaque type.
143 llvm::PointerType *PtrTy;
144 /// LLVM type for C long type. The runtime uses this in a lot of places where
145 /// it should be using intptr_t, but we can't fix this without breaking
146 /// compatibility with GCC...
147 llvm::IntegerType *LongTy;
148 /// LLVM type for C size_t. Used in various runtime data structures.
149 llvm::IntegerType *SizeTy;
150 /// LLVM type for C intptr_t.
151 llvm::IntegerType *IntPtrTy;
152 /// LLVM type for C ptrdiff_t. Mainly used in property accessor functions.
153 llvm::IntegerType *PtrDiffTy;
154 /// LLVM type for C int*. Used for GCC-ABI-compatible non-fragile instance
155 /// variables.
156 llvm::PointerType *PtrToIntTy;
157 /// LLVM type for Objective-C BOOL type.
158 llvm::Type *BoolTy;
159 /// 32-bit integer type, to save us needing to look it up every time it's used.
160 llvm::IntegerType *Int32Ty;
161 /// 64-bit integer type, to save us needing to look it up every time it's used.
162 llvm::IntegerType *Int64Ty;
163 /// The type of struct objc_property.
164 llvm::StructType *PropertyMetadataTy;
165 /// Metadata kind used to tie method lookups to message sends. The GNUstep
166 /// runtime provides some LLVM passes that can use this to do things like
167 /// automatic IMP caching and speculative inlining.
168 unsigned msgSendMDKind;
169 /// Does the current target use SEH-based exceptions? False implies
170 /// Itanium-style DWARF unwinding.
171 bool usesSEHExceptions;
172 /// Does the current target uses C++-based exceptions?
173 bool usesCxxExceptions;
174
175 /// Helper to check if we are targeting a specific runtime version or later.
176 bool isRuntime(ObjCRuntime::Kind kind, unsigned major, unsigned minor=0) {
177 const ObjCRuntime &R = CGM.getLangOpts().ObjCRuntime;
178 return (R.getKind() == kind) &&
179 (R.getVersion() >= VersionTuple(major, minor));
180 }
181
182 std::string ManglePublicSymbol(StringRef Name) {
183 return (StringRef(CGM.getTriple().isOSBinFormatCOFF() ? "$_" : "._") + Name).str();
184 }
185
186 std::string SymbolForProtocol(Twine Name) {
187 return (ManglePublicSymbol("OBJC_PROTOCOL_") + Name).str();
188 }
189
190 std::string SymbolForProtocolRef(StringRef Name) {
191 return (ManglePublicSymbol("OBJC_REF_PROTOCOL_") + Name).str();
192 }
193
194
195 /// Helper function that generates a constant string and returns a pointer to
196 /// the start of the string. The result of this function can be used anywhere
197 /// where the C code specifies const char*.
198 llvm::Constant *MakeConstantString(StringRef Str, const char *Name = "") {
199 ConstantAddress Array =
200 CGM.GetAddrOfConstantCString(std::string(Str), Name);
201 return Array.getPointer();
202 }
203
204 /// Emits a linkonce_odr string, whose name is the prefix followed by the
205 /// string value. This allows the linker to combine the strings between
206 /// different modules. Used for EH typeinfo names, selector strings, and a
207 /// few other things.
208 llvm::Constant *ExportUniqueString(const std::string &Str,
209 const std::string &prefix,
210 bool Private=false) {
211 std::string name = prefix + Str;
212 auto *ConstStr = TheModule.getGlobalVariable(name);
213 if (!ConstStr) {
214 llvm::Constant *value = llvm::ConstantDataArray::getString(VMContext,Str);
215 auto *GV = new llvm::GlobalVariable(TheModule, value->getType(), true,
216 llvm::GlobalValue::LinkOnceODRLinkage, value, name);
217 GV->setComdat(TheModule.getOrInsertComdat(name));
218 if (Private)
219 GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
220 ConstStr = GV;
221 }
222 return ConstStr;
223 }
224
225 /// Returns a property name and encoding string.
226 llvm::Constant *MakePropertyEncodingString(const ObjCPropertyDecl *PD,
227 const Decl *Container) {
228 assert(!isRuntime(ObjCRuntime::GNUstep, 2));
229 if (isRuntime(ObjCRuntime::GNUstep, 1, 6)) {
230 std::string NameAndAttributes;
231 std::string TypeStr =
232 CGM.getContext().getObjCEncodingForPropertyDecl(PD, Container);
233 NameAndAttributes += '\0';
234 NameAndAttributes += TypeStr.length() + 3;
235 NameAndAttributes += TypeStr;
236 NameAndAttributes += '\0';
237 NameAndAttributes += PD->getNameAsString();
238 return MakeConstantString(NameAndAttributes);
239 }
240 return MakeConstantString(PD->getNameAsString());
241 }
242
243 /// Push the property attributes into two structure fields.
244 void PushPropertyAttributes(ConstantStructBuilder &Fields,
245 const ObjCPropertyDecl *property, bool isSynthesized=true, bool
246 isDynamic=true) {
247 int attrs = property->getPropertyAttributes();
248 // For read-only properties, clear the copy and retain flags
250 attrs &= ~ObjCPropertyAttribute::kind_copy;
251 attrs &= ~ObjCPropertyAttribute::kind_retain;
252 attrs &= ~ObjCPropertyAttribute::kind_weak;
253 attrs &= ~ObjCPropertyAttribute::kind_strong;
254 }
255 // The first flags field has the same attribute values as clang uses internally
256 Fields.addInt(Int8Ty, attrs & 0xff);
257 attrs >>= 8;
258 attrs <<= 2;
259 // For protocol properties, synthesized and dynamic have no meaning, so we
260 // reuse these flags to indicate that this is a protocol property (both set
261 // has no meaning, as a property can't be both synthesized and dynamic)
262 attrs |= isSynthesized ? (1<<0) : 0;
263 attrs |= isDynamic ? (1<<1) : 0;
264 // The second field is the next four fields left shifted by two, with the
265 // low bit set to indicate whether the field is synthesized or dynamic.
266 Fields.addInt(Int8Ty, attrs & 0xff);
267 // Two padding fields
268 Fields.addInt(Int8Ty, 0);
269 Fields.addInt(Int8Ty, 0);
270 }
271
272 virtual llvm::Constant *GenerateCategoryProtocolList(const
273 ObjCCategoryDecl *OCD);
274 virtual ConstantArrayBuilder PushPropertyListHeader(ConstantStructBuilder &Fields,
275 int count) {
276 // int count;
277 Fields.addInt(IntTy, count);
278 // int size; (only in GNUstep v2 ABI.
279 if (isRuntime(ObjCRuntime::GNUstep, 2)) {
280 const llvm::DataLayout &DL = TheModule.getDataLayout();
281 Fields.addInt(IntTy, DL.getTypeSizeInBits(PropertyMetadataTy) /
282 CGM.getContext().getCharWidth());
283 }
284 // struct objc_property_list *next;
285 Fields.add(NULLPtr);
286 // struct objc_property properties[]
287 return Fields.beginArray(PropertyMetadataTy);
288 }
289 virtual void PushProperty(ConstantArrayBuilder &PropertiesArray,
290 const ObjCPropertyDecl *property,
291 const Decl *OCD,
292 bool isSynthesized=true, bool
293 isDynamic=true) {
294 auto Fields = PropertiesArray.beginStruct(PropertyMetadataTy);
295 ASTContext &Context = CGM.getContext();
296 Fields.add(MakePropertyEncodingString(property, OCD));
297 PushPropertyAttributes(Fields, property, isSynthesized, isDynamic);
298 auto addPropertyMethod = [&](const ObjCMethodDecl *accessor) {
299 if (accessor) {
300 std::string TypeStr = Context.getObjCEncodingForMethodDecl(accessor);
301 llvm::Constant *TypeEncoding = MakeConstantString(TypeStr);
302 Fields.add(MakeConstantString(accessor->getSelector().getAsString()));
303 Fields.add(TypeEncoding);
304 } else {
305 Fields.add(NULLPtr);
306 Fields.add(NULLPtr);
307 }
308 };
309 addPropertyMethod(property->getGetterMethodDecl());
310 addPropertyMethod(property->getSetterMethodDecl());
311 Fields.finishAndAddTo(PropertiesArray);
312 }
313
314 /// Ensures that the value has the required type, by inserting a bitcast if
315 /// required. This function lets us avoid inserting bitcasts that are
316 /// redundant.
317 llvm::Value *EnforceType(CGBuilderTy &B, llvm::Value *V, llvm::Type *Ty) {
318 if (V->getType() == Ty)
319 return V;
320 return B.CreateBitCast(V, Ty);
321 }
322
323 // Some zeros used for GEPs in lots of places.
324 llvm::Constant *Zeros[2];
325 /// Null pointer value. Mainly used as a terminator in various arrays.
326 llvm::Constant *NULLPtr;
327 /// LLVM context.
328 llvm::LLVMContext &VMContext;
329
330protected:
331
332 /// Placeholder for the class. Lots of things refer to the class before we've
333 /// actually emitted it. We use this alias as a placeholder, and then replace
334 /// it with a pointer to the class structure before finally emitting the
335 /// module.
336 llvm::GlobalAlias *ClassPtrAlias;
337 /// Placeholder for the metaclass. Lots of things refer to the class before
338 /// we've / actually emitted it. We use this alias as a placeholder, and then
339 /// replace / it with a pointer to the metaclass structure before finally
340 /// emitting the / module.
341 llvm::GlobalAlias *MetaClassPtrAlias;
342 /// All of the classes that have been generated for this compilation units.
343 std::vector<llvm::Constant*> Classes;
344 /// All of the categories that have been generated for this compilation units.
345 std::vector<llvm::Constant*> Categories;
346 /// All of the Objective-C constant strings that have been generated for this
347 /// compilation units.
348 std::vector<llvm::Constant*> ConstantStrings;
349 /// Map from string values to Objective-C constant strings in the output.
350 /// Used to prevent emitting Objective-C strings more than once. This should
351 /// not be required at all - CodeGenModule should manage this list.
352 llvm::StringMap<llvm::Constant*> ObjCStrings;
353 /// All of the protocols that have been declared.
354 llvm::StringMap<llvm::Constant*> ExistingProtocols;
355 /// For each variant of a selector, we store the type encoding and a
356 /// placeholder value. For an untyped selector, the type will be the empty
357 /// string. Selector references are all done via the module's selector table,
358 /// so we create an alias as a placeholder and then replace it with the real
359 /// value later.
360 typedef std::pair<std::string, llvm::GlobalAlias*> TypedSelector;
361 /// Type of the selector map. This is roughly equivalent to the structure
362 /// used in the GNUstep runtime, which maintains a list of all of the valid
363 /// types for a selector in a table.
364 typedef llvm::DenseMap<Selector, SmallVector<TypedSelector, 2> >
365 SelectorMap;
366 /// A map from selectors to selector types. This allows us to emit all
367 /// selectors of the same name and type together.
368 SelectorMap SelectorTable;
369
370 /// Selectors related to memory management. When compiling in GC mode, we
371 /// omit these.
372 Selector RetainSel, ReleaseSel, AutoreleaseSel;
373 /// Runtime functions used for memory management in GC mode. Note that clang
374 /// supports code generation for calling these functions, but neither GNU
375 /// runtime actually supports this API properly yet.
376 LazyRuntimeFunction IvarAssignFn, StrongCastAssignFn, MemMoveFn, WeakReadFn,
377 WeakAssignFn, GlobalAssignFn;
378
379 typedef std::pair<std::string, std::string> ClassAliasPair;
380 /// All classes that have aliases set for them.
381 std::vector<ClassAliasPair> ClassAliases;
382
383protected:
384 /// Function used for throwing Objective-C exceptions.
385 LazyRuntimeFunction ExceptionThrowFn;
386 /// Function used for rethrowing exceptions, used at the end of \@finally or
387 /// \@synchronize blocks.
388 LazyRuntimeFunction ExceptionReThrowFn;
389 /// Function called when entering a catch function. This is required for
390 /// differentiating Objective-C exceptions and foreign exceptions.
391 LazyRuntimeFunction EnterCatchFn;
392 /// Function called when exiting from a catch block. Used to do exception
393 /// cleanup.
394 LazyRuntimeFunction ExitCatchFn;
395 /// Function called when entering an \@synchronize block. Acquires the lock.
396 LazyRuntimeFunction SyncEnterFn;
397 /// Function called when exiting an \@synchronize block. Releases the lock.
398 LazyRuntimeFunction SyncExitFn;
399
400private:
401 /// Function called if fast enumeration detects that the collection is
402 /// modified during the update.
403 LazyRuntimeFunction EnumerationMutationFn;
404 /// Function for implementing synthesized property getters that return an
405 /// object.
406 LazyRuntimeFunction GetPropertyFn;
407 /// Function for implementing synthesized property setters that return an
408 /// object.
409 LazyRuntimeFunction SetPropertyFn;
410 /// Function used for non-object declared property getters.
411 LazyRuntimeFunction GetStructPropertyFn;
412 /// Function used for non-object declared property setters.
413 LazyRuntimeFunction SetStructPropertyFn;
414
415protected:
416 /// The version of the runtime that this class targets. Must match the
417 /// version in the runtime.
418 int RuntimeVersion;
419 /// The version of the protocol class. Used to differentiate between ObjC1
420 /// and ObjC2 protocols. Objective-C 1 protocols can not contain optional
421 /// components and can not contain declared properties. We always emit
422 /// Objective-C 2 property structures, but we have to pretend that they're
423 /// Objective-C 1 property structures when targeting the GCC runtime or it
424 /// will abort.
425 const int ProtocolVersion;
426 /// The version of the class ABI. This value is used in the class structure
427 /// and indicates how various fields should be interpreted.
428 const int ClassABIVersion;
429 /// Generates an instance variable list structure. This is a structure
430 /// containing a size and an array of structures containing instance variable
431 /// metadata. This is used purely for introspection in the fragile ABI. In
432 /// the non-fragile ABI, it's used for instance variable fixup.
433 virtual llvm::Constant *GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames,
435 ArrayRef<llvm::Constant *> IvarOffsets,
438
439 /// Generates a method list structure. This is a structure containing a size
440 /// and an array of structures containing method metadata.
441 ///
442 /// This structure is used by both classes and categories, and contains a next
443 /// pointer allowing them to be chained together in a linked list.
444 llvm::Constant *GenerateMethodList(StringRef ClassName,
445 StringRef CategoryName,
447 bool isClassMethodList);
448
449 /// Emits an empty protocol. This is used for \@protocol() where no protocol
450 /// is found. The runtime will (hopefully) fix up the pointer to refer to the
451 /// real protocol.
452 virtual llvm::Constant *GenerateEmptyProtocol(StringRef ProtocolName);
453
454 /// Generates a list of property metadata structures. This follows the same
455 /// pattern as method and instance variable metadata lists.
456 llvm::Constant *GeneratePropertyList(const Decl *Container,
457 const ObjCContainerDecl *OCD,
458 bool isClassProperty=false,
459 bool protocolOptionalProperties=false);
460
461 /// Generates a list of referenced protocols. Classes, categories, and
462 /// protocols all use this structure.
463 llvm::Constant *GenerateProtocolList(ArrayRef<std::string> Protocols);
464
465 /// To ensure that all protocols are seen by the runtime, we add a category on
466 /// a class defined in the runtime, declaring no methods, but adopting the
467 /// protocols. This is a horribly ugly hack, but it allows us to collect all
468 /// of the protocols without changing the ABI.
469 void GenerateProtocolHolderCategory();
470
471 /// Generates a class structure.
472 llvm::Constant *GenerateClassStructure(
473 llvm::Constant *MetaClass,
474 llvm::Constant *SuperClass,
475 unsigned info,
476 const char *Name,
477 llvm::Constant *Version,
478 llvm::Constant *InstanceSize,
479 llvm::Constant *IVars,
480 llvm::Constant *Methods,
481 llvm::Constant *Protocols,
482 llvm::Constant *IvarOffsets,
483 llvm::Constant *Properties,
484 llvm::Constant *StrongIvarBitmap,
485 llvm::Constant *WeakIvarBitmap,
486 bool isMeta=false);
487
488 /// Generates a method list. This is used by protocols to define the required
489 /// and optional methods.
490 virtual llvm::Constant *GenerateProtocolMethodList(
492 /// Emits optional and required method lists.
493 template<class T>
494 void EmitProtocolMethodList(T &&Methods, llvm::Constant *&Required,
495 llvm::Constant *&Optional) {
498 for (const auto *I : Methods)
499 if (I->isOptional())
500 OptionalMethods.push_back(I);
501 else
502 RequiredMethods.push_back(I);
503 Required = GenerateProtocolMethodList(RequiredMethods);
504 Optional = GenerateProtocolMethodList(OptionalMethods);
505 }
506
507 /// Returns a selector with the specified type encoding. An empty string is
508 /// used to return an untyped selector (with the types field set to NULL).
509 virtual llvm::Value *GetTypedSelector(CodeGenFunction &CGF, Selector Sel,
510 const std::string &TypeEncoding);
511
512 /// Returns the name of ivar offset variables. In the GNUstep v1 ABI, this
513 /// contains the class and ivar names, in the v2 ABI this contains the type
514 /// encoding as well.
515 virtual std::string GetIVarOffsetVariableName(const ObjCInterfaceDecl *ID,
516 const ObjCIvarDecl *Ivar) {
517 const std::string Name = "__objc_ivar_offset_" + ID->getNameAsString()
518 + '.' + Ivar->getNameAsString();
519 return Name;
520 }
521 /// Returns the variable used to store the offset of an instance variable.
522 llvm::GlobalVariable *ObjCIvarOffsetVariable(const ObjCInterfaceDecl *ID,
523 const ObjCIvarDecl *Ivar);
524 /// Emits a reference to a class. This allows the linker to object if there
525 /// is no class of the matching name.
526 void EmitClassRef(const std::string &className);
527
528 /// Emits a pointer to the named class
529 virtual llvm::Value *GetClassNamed(CodeGenFunction &CGF,
530 const std::string &Name, bool isWeak);
531
532 /// Looks up the method for sending a message to the specified object. This
533 /// mechanism differs between the GCC and GNU runtimes, so this method must be
534 /// overridden in subclasses.
535 virtual llvm::Value *LookupIMP(CodeGenFunction &CGF,
536 llvm::Value *&Receiver,
537 llvm::Value *cmd,
538 llvm::MDNode *node,
539 MessageSendInfo &MSI) = 0;
540
541 /// Looks up the method for sending a message to a superclass. This
542 /// mechanism differs between the GCC and GNU runtimes, so this method must
543 /// be overridden in subclasses.
544 virtual llvm::Value *LookupIMPSuper(CodeGenFunction &CGF,
545 Address ObjCSuper,
546 llvm::Value *cmd,
547 MessageSendInfo &MSI) = 0;
548
549 /// Libobjc2 uses a bitfield representation where small(ish) bitfields are
550 /// stored in a 64-bit value with the low bit set to 1 and the remaining 63
551 /// bits set to their values, LSB first, while larger ones are stored in a
552 /// structure of this / form:
553 ///
554 /// struct { int32_t length; int32_t values[length]; };
555 ///
556 /// The values in the array are stored in host-endian format, with the least
557 /// significant bit being assumed to come first in the bitfield. Therefore,
558 /// a bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] },
559 /// while a bitfield / with the 63rd bit set will be 1<<64.
560 llvm::Constant *MakeBitField(ArrayRef<bool> bits);
561
562public:
563 CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion,
564 unsigned protocolClassVersion, unsigned classABI=1);
565
567
568 RValue
570 QualType ResultType, Selector Sel,
571 llvm::Value *Receiver, const CallArgList &CallArgs,
572 const ObjCInterfaceDecl *Class,
573 const ObjCMethodDecl *Method) override;
574 RValue
576 QualType ResultType, Selector Sel,
577 const ObjCInterfaceDecl *Class,
578 bool isCategoryImpl, llvm::Value *Receiver,
579 bool IsClassMessage, const CallArgList &CallArgs,
580 const ObjCMethodDecl *Method) override;
581 llvm::Value *GetClass(CodeGenFunction &CGF,
582 const ObjCInterfaceDecl *OID) override;
583 llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override;
585 llvm::Value *GetSelector(CodeGenFunction &CGF,
586 const ObjCMethodDecl *Method) override;
587 virtual llvm::Constant *GetConstantSelector(Selector Sel,
588 const std::string &TypeEncoding) {
589 llvm_unreachable("Runtime unable to generate constant selector");
590 }
591 llvm::Constant *GetConstantSelector(const ObjCMethodDecl *M) {
592 return GetConstantSelector(M->getSelector(),
594 }
595 llvm::Constant *GetEHType(QualType T) override;
596
597 llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD,
598 const ObjCContainerDecl *CD) override;
599
600 // Map to unify direct method definitions.
601 llvm::DenseMap<const ObjCMethodDecl *, llvm::Function *>
602 DirectMethodDefinitions;
603 void GenerateDirectMethodPrologue(CodeGenFunction &CGF, llvm::Function *Fn,
604 const ObjCMethodDecl *OMD,
605 const ObjCContainerDecl *CD) override;
606 void GenerateCategory(const ObjCCategoryImplDecl *CMD) override;
607 void GenerateClass(const ObjCImplementationDecl *ClassDecl) override;
608 void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override;
609 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF,
610 const ObjCProtocolDecl *PD) override;
611 void GenerateProtocol(const ObjCProtocolDecl *PD) override;
612
613 virtual llvm::Constant *GenerateProtocolRef(const ObjCProtocolDecl *PD);
614
615 llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override {
616 return GenerateProtocolRef(PD);
617 }
618
619 llvm::Function *ModuleInitFunction() override;
620 llvm::FunctionCallee GetPropertyGetFunction() override;
621 llvm::FunctionCallee GetPropertySetFunction() override;
622 llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic,
623 bool copy) override;
624 llvm::FunctionCallee GetSetStructFunction() override;
625 llvm::FunctionCallee GetGetStructFunction() override;
626 llvm::FunctionCallee GetCppAtomicObjectGetFunction() override;
627 llvm::FunctionCallee GetCppAtomicObjectSetFunction() override;
628 llvm::FunctionCallee EnumerationMutationFunction() override;
629
631 const ObjCAtTryStmt &S) override;
633 const ObjCAtSynchronizedStmt &S) override;
635 const ObjCAtThrowStmt &S,
636 bool ClearInsertionPoint=true) override;
637 llvm::Value * EmitObjCWeakRead(CodeGenFunction &CGF,
638 Address AddrWeakObj) override;
640 llvm::Value *src, Address dst) override;
642 llvm::Value *src, Address dest,
643 bool threadlocal=false) override;
644 void EmitObjCIvarAssign(CodeGenFunction &CGF, llvm::Value *src,
645 Address dest, llvm::Value *ivarOffset) override;
647 llvm::Value *src, Address dest) override;
649 Address SrcPtr,
650 llvm::Value *Size) override;
652 llvm::Value *BaseValue, const ObjCIvarDecl *Ivar,
653 unsigned CVRQualifiers) override;
654 llvm::Value *EmitIvarOffset(CodeGenFunction &CGF,
656 const ObjCIvarDecl *Ivar) override;
657 llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override;
658 llvm::Constant *BuildGCBlockLayout(CodeGenModule &CGM,
659 const CGBlockInfo &blockInfo) override {
660 return NULLPtr;
661 }
662 llvm::Constant *BuildRCBlockLayout(CodeGenModule &CGM,
663 const CGBlockInfo &blockInfo) override {
664 return NULLPtr;
665 }
666
667 llvm::Constant *BuildByrefLayout(CodeGenModule &CGM, QualType T) override {
668 return NULLPtr;
669 }
670};
671
672/// Class representing the legacy GCC Objective-C ABI. This is the default when
673/// -fobjc-nonfragile-abi is not specified.
674///
675/// The GCC ABI target actually generates code that is approximately compatible
676/// with the new GNUstep runtime ABI, but refrains from using any features that
677/// would not work with the GCC runtime. For example, clang always generates
678/// the extended form of the class structure, and the extra fields are simply
679/// ignored by GCC libobjc.
680class CGObjCGCC : public CGObjCGNU {
681 /// The GCC ABI message lookup function. Returns an IMP pointing to the
682 /// method implementation for this message.
683 LazyRuntimeFunction MsgLookupFn;
684 /// The GCC ABI superclass message lookup function. Takes a pointer to a
685 /// structure describing the receiver and the class, and a selector as
686 /// arguments. Returns the IMP for the corresponding method.
687 LazyRuntimeFunction MsgLookupSuperFn;
688
689protected:
690 llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver,
691 llvm::Value *cmd, llvm::MDNode *node,
692 MessageSendInfo &MSI) override {
693 CGBuilderTy &Builder = CGF.Builder;
694 llvm::Value *args[] = {
695 EnforceType(Builder, Receiver, IdTy),
696 EnforceType(Builder, cmd, SelectorTy) };
697 llvm::CallBase *imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFn, args);
698 imp->setMetadata(msgSendMDKind, node);
699 return imp;
700 }
701
702 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper,
703 llvm::Value *cmd, MessageSendInfo &MSI) override {
704 CGBuilderTy &Builder = CGF.Builder;
705 llvm::Value *lookupArgs[] = {
706 EnforceType(Builder, ObjCSuper.emitRawPointer(CGF), PtrToObjCSuperTy),
707 cmd};
708 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs);
709 }
710
711public:
712 CGObjCGCC(CodeGenModule &Mod) : CGObjCGNU(Mod, 8, 2) {
713 // IMP objc_msg_lookup(id, SEL);
714 MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy);
715 // IMP objc_msg_lookup_super(struct objc_super*, SEL);
716 MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy,
717 PtrToObjCSuperTy, SelectorTy);
718 }
719};
720
721/// Class used when targeting the new GNUstep runtime ABI.
722class CGObjCGNUstep : public CGObjCGNU {
723 /// The slot lookup function. Returns a pointer to a cacheable structure
724 /// that contains (among other things) the IMP.
725 LazyRuntimeFunction SlotLookupFn;
726 /// The GNUstep ABI superclass message lookup function. Takes a pointer to
727 /// a structure describing the receiver and the class, and a selector as
728 /// arguments. Returns the slot for the corresponding method. Superclass
729 /// message lookup rarely changes, so this is a good caching opportunity.
730 LazyRuntimeFunction SlotLookupSuperFn;
731 /// Specialised function for setting atomic retain properties
732 LazyRuntimeFunction SetPropertyAtomic;
733 /// Specialised function for setting atomic copy properties
734 LazyRuntimeFunction SetPropertyAtomicCopy;
735 /// Specialised function for setting nonatomic retain properties
736 LazyRuntimeFunction SetPropertyNonAtomic;
737 /// Specialised function for setting nonatomic copy properties
738 LazyRuntimeFunction SetPropertyNonAtomicCopy;
739 /// Function to perform atomic copies of C++ objects with nontrivial copy
740 /// constructors from Objective-C ivars.
741 LazyRuntimeFunction CxxAtomicObjectGetFn;
742 /// Function to perform atomic copies of C++ objects with nontrivial copy
743 /// constructors to Objective-C ivars.
744 LazyRuntimeFunction CxxAtomicObjectSetFn;
745 /// Type of a slot structure pointer. This is returned by the various
746 /// lookup functions.
747 llvm::Type *SlotTy;
748 /// Type of a slot structure.
749 llvm::Type *SlotStructTy;
750
751 public:
752 llvm::Constant *GetEHType(QualType T) override;
753
754 protected:
755 llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver,
756 llvm::Value *cmd, llvm::MDNode *node,
757 MessageSendInfo &MSI) override {
758 CGBuilderTy &Builder = CGF.Builder;
759 llvm::FunctionCallee LookupFn = SlotLookupFn;
760
761 // Store the receiver on the stack so that we can reload it later
762 RawAddress ReceiverPtr =
763 CGF.CreateTempAlloca(Receiver->getType(), CGF.getPointerAlign());
764 Builder.CreateStore(Receiver, ReceiverPtr);
765
766 llvm::Value *self;
767
768 if (isa<ObjCMethodDecl>(CGF.CurCodeDecl)) {
769 self = CGF.LoadObjCSelf();
770 } else {
771 self = llvm::ConstantPointerNull::get(IdTy);
772 }
773
774 // The lookup function is guaranteed not to capture the receiver pointer.
775 if (auto *LookupFn2 = dyn_cast<llvm::Function>(LookupFn.getCallee()))
776 LookupFn2->addParamAttr(
777 0, llvm::Attribute::getWithCaptureInfo(CGF.getLLVMContext(),
778 llvm::CaptureInfo::none()));
779
780 llvm::Value *args[] = {
781 EnforceType(Builder, ReceiverPtr.getPointer(), PtrToIdTy),
782 EnforceType(Builder, cmd, SelectorTy),
783 EnforceType(Builder, self, IdTy)};
784 llvm::CallBase *slot = CGF.EmitRuntimeCallOrInvoke(LookupFn, args);
785 slot->setOnlyReadsMemory();
786 slot->setMetadata(msgSendMDKind, node);
787
788 // Load the imp from the slot
789 llvm::Value *imp = Builder.CreateAlignedLoad(
790 IMPTy, Builder.CreateStructGEP(SlotStructTy, slot, 4),
791 CGF.getPointerAlign());
792
793 // The lookup function may have changed the receiver, so make sure we use
794 // the new one.
795 Receiver = Builder.CreateLoad(ReceiverPtr, true);
796 return imp;
797 }
798
799 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper,
800 llvm::Value *cmd,
801 MessageSendInfo &MSI) override {
802 CGBuilderTy &Builder = CGF.Builder;
803 llvm::Value *lookupArgs[] = {ObjCSuper.emitRawPointer(CGF), cmd};
804
805 llvm::CallInst *slot =
806 CGF.EmitNounwindRuntimeCall(SlotLookupSuperFn, lookupArgs);
807 slot->setOnlyReadsMemory();
808
809 return Builder.CreateAlignedLoad(
810 IMPTy, Builder.CreateStructGEP(SlotStructTy, slot, 4),
811 CGF.getPointerAlign());
812 }
813
814 public:
815 CGObjCGNUstep(CodeGenModule &Mod) : CGObjCGNUstep(Mod, 9, 3, 1) {}
816 CGObjCGNUstep(CodeGenModule &Mod, unsigned ABI, unsigned ProtocolABI,
817 unsigned ClassABI) :
818 CGObjCGNU(Mod, ABI, ProtocolABI, ClassABI) {
819 const ObjCRuntime &R = CGM.getLangOpts().ObjCRuntime;
820
821 SlotStructTy = llvm::StructType::get(PtrTy, PtrTy, PtrTy, IntTy, IMPTy);
822 SlotTy = PtrTy;
823 // Slot_t objc_msg_lookup_sender(id *receiver, SEL selector, id sender);
824 SlotLookupFn.init(&CGM, "objc_msg_lookup_sender", SlotTy, PtrToIdTy,
825 SelectorTy, IdTy);
826 // Slot_t objc_slot_lookup_super(struct objc_super*, SEL);
827 SlotLookupSuperFn.init(&CGM, "objc_slot_lookup_super", SlotTy,
828 PtrToObjCSuperTy, SelectorTy);
829 // If we're in ObjC++ mode, then we want to make
830 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
831 if (usesCxxExceptions) {
832 // void *__cxa_begin_catch(void *e)
833 EnterCatchFn.init(&CGM, "__cxa_begin_catch", PtrTy, PtrTy);
834 // void __cxa_end_catch(void)
835 ExitCatchFn.init(&CGM, "__cxa_end_catch", VoidTy);
836 // void objc_exception_rethrow(void*)
837 ExceptionReThrowFn.init(&CGM, "__cxa_rethrow", PtrTy);
838 } else if (usesSEHExceptions) {
839 // void objc_exception_rethrow(void)
840 ExceptionReThrowFn.init(&CGM, "objc_exception_rethrow", VoidTy);
841 } else if (CGM.getLangOpts().CPlusPlus) {
842 // void *__cxa_begin_catch(void *e)
843 EnterCatchFn.init(&CGM, "__cxa_begin_catch", PtrTy, PtrTy);
844 // void __cxa_end_catch(void)
845 ExitCatchFn.init(&CGM, "__cxa_end_catch", VoidTy);
846 // void _Unwind_Resume_or_Rethrow(void*)
847 ExceptionReThrowFn.init(&CGM, "_Unwind_Resume_or_Rethrow", VoidTy,
848 PtrTy);
849 } else if (R.getVersion() >= VersionTuple(1, 7)) {
850 // id objc_begin_catch(void *e)
851 EnterCatchFn.init(&CGM, "objc_begin_catch", IdTy, PtrTy);
852 // void objc_end_catch(void)
853 ExitCatchFn.init(&CGM, "objc_end_catch", VoidTy);
854 // void _Unwind_Resume_or_Rethrow(void*)
855 ExceptionReThrowFn.init(&CGM, "objc_exception_rethrow", VoidTy, PtrTy);
856 }
857 SetPropertyAtomic.init(&CGM, "objc_setProperty_atomic", VoidTy, IdTy,
858 SelectorTy, IdTy, PtrDiffTy);
859 SetPropertyAtomicCopy.init(&CGM, "objc_setProperty_atomic_copy", VoidTy,
860 IdTy, SelectorTy, IdTy, PtrDiffTy);
861 SetPropertyNonAtomic.init(&CGM, "objc_setProperty_nonatomic", VoidTy,
862 IdTy, SelectorTy, IdTy, PtrDiffTy);
863 SetPropertyNonAtomicCopy.init(&CGM, "objc_setProperty_nonatomic_copy",
864 VoidTy, IdTy, SelectorTy, IdTy, PtrDiffTy);
865 // void objc_setCppObjectAtomic(void *dest, const void *src, void
866 // *helper);
867 CxxAtomicObjectSetFn.init(&CGM, "objc_setCppObjectAtomic", VoidTy, PtrTy,
868 PtrTy, PtrTy);
869 // void objc_getCppObjectAtomic(void *dest, const void *src, void
870 // *helper);
871 CxxAtomicObjectGetFn.init(&CGM, "objc_getCppObjectAtomic", VoidTy, PtrTy,
872 PtrTy, PtrTy);
873 }
874
875 llvm::FunctionCallee GetCppAtomicObjectGetFunction() override {
876 // The optimised functions were added in version 1.7 of the GNUstep
877 // runtime.
878 assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=
879 VersionTuple(1, 7));
880 return CxxAtomicObjectGetFn;
881 }
882
883 llvm::FunctionCallee GetCppAtomicObjectSetFunction() override {
884 // The optimised functions were added in version 1.7 of the GNUstep
885 // runtime.
886 assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=
887 VersionTuple(1, 7));
888 return CxxAtomicObjectSetFn;
889 }
890
891 llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic,
892 bool copy) override {
893 // The optimised property functions omit the GC check, and so are not
894 // safe to use in GC mode. The standard functions are fast in GC mode,
895 // so there is less advantage in using them.
896 assert ((CGM.getLangOpts().getGC() == LangOptions::NonGC));
897 // The optimised functions were added in version 1.7 of the GNUstep
898 // runtime.
899 assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=
900 VersionTuple(1, 7));
901
902 if (atomic) {
903 if (copy) return SetPropertyAtomicCopy;
904 return SetPropertyAtomic;
905 }
906
907 return copy ? SetPropertyNonAtomicCopy : SetPropertyNonAtomic;
908 }
909};
910
911/// GNUstep Objective-C ABI version 2 implementation.
912/// This is the ABI that provides a clean break with the legacy GCC ABI and
913/// cleans up a number of things that were added to work around 1980s linkers.
914class CGObjCGNUstep2 : public CGObjCGNUstep {
915 enum SectionKind
916 {
917 SelectorSection = 0,
918 ClassSection,
919 ClassReferenceSection,
920 CategorySection,
921 ProtocolSection,
922 ProtocolReferenceSection,
923 ClassAliasSection,
924 ConstantStringSection
925 };
926 /// The subset of `objc_class_flags` used at compile time.
927 enum ClassFlags {
928 /// This is a metaclass
929 ClassFlagMeta = (1 << 0),
930 /// This class has been initialised by the runtime (+initialize has been
931 /// sent if necessary).
932 ClassFlagInitialized = (1 << 8),
933 };
934 static const char *const SectionsBaseNames[8];
935 static const char *const PECOFFSectionsBaseNames[8];
936 template<SectionKind K>
937 std::string sectionName() {
938 if (CGM.getTriple().isOSBinFormatCOFF()) {
939 std::string name(PECOFFSectionsBaseNames[K]);
940 name += "$m";
941 return name;
942 }
943 return SectionsBaseNames[K];
944 }
945 /// The GCC ABI superclass message lookup function. Takes a pointer to a
946 /// structure describing the receiver and the class, and a selector as
947 /// arguments. Returns the IMP for the corresponding method.
948 LazyRuntimeFunction MsgLookupSuperFn;
949 /// Function to ensure that +initialize is sent to a class.
950 LazyRuntimeFunction SentInitializeFn;
951 /// A flag indicating if we've emitted at least one protocol.
952 /// If we haven't, then we need to emit an empty protocol, to ensure that the
953 /// __start__objc_protocols and __stop__objc_protocols sections exist.
954 bool EmittedProtocol = false;
955 /// A flag indicating if we've emitted at least one protocol reference.
956 /// If we haven't, then we need to emit an empty protocol, to ensure that the
957 /// __start__objc_protocol_refs and __stop__objc_protocol_refs sections
958 /// exist.
959 bool EmittedProtocolRef = false;
960 /// A flag indicating if we've emitted at least one class.
961 /// If we haven't, then we need to emit an empty protocol, to ensure that the
962 /// __start__objc_classes and __stop__objc_classes sections / exist.
963 bool EmittedClass = false;
964 /// Generate the name of a symbol for a reference to a class. Accesses to
965 /// classes should be indirected via this.
966
967 typedef std::pair<std::string, std::pair<llvm::GlobalVariable*, int>>
968 EarlyInitPair;
969 std::vector<EarlyInitPair> EarlyInitList;
970
971 std::string SymbolForClassRef(StringRef Name, bool isWeak) {
972 if (isWeak)
973 return (ManglePublicSymbol("OBJC_WEAK_REF_CLASS_") + Name).str();
974 else
975 return (ManglePublicSymbol("OBJC_REF_CLASS_") + Name).str();
976 }
977 /// Generate the name of a class symbol.
978 std::string SymbolForClass(StringRef Name) {
979 return (ManglePublicSymbol("OBJC_CLASS_") + Name).str();
980 }
981 void CallRuntimeFunction(CGBuilderTy &B, StringRef FunctionName,
984 for (auto *Arg : Args)
985 Types.push_back(Arg->getType());
986 llvm::FunctionType *FT = llvm::FunctionType::get(B.getVoidTy(), Types,
987 false);
988 llvm::FunctionCallee Fn = CGM.CreateRuntimeFunction(FT, FunctionName);
989 B.CreateCall(Fn, Args);
990 }
991
992 ConstantAddress GenerateConstantString(const StringLiteral *SL) override {
993
994 auto Str = SL->getString();
995 CharUnits Align = CGM.getPointerAlign();
996
997 // Look for an existing one
998 llvm::StringMap<llvm::Constant*>::iterator old = ObjCStrings.find(Str);
999 if (old != ObjCStrings.end())
1000 return ConstantAddress(old->getValue(), IdElemTy, Align);
1001
1002 bool isNonASCII = SL->containsNonAscii();
1003
1004 auto LiteralLength = SL->getLength();
1005
1006 if ((CGM.getTarget().getPointerWidth(LangAS::Default) == 64) &&
1007 (LiteralLength < 9) && !isNonASCII) {
1008 // Tiny strings are only used on 64-bit platforms. They store 8 7-bit
1009 // ASCII characters in the high 56 bits, followed by a 4-bit length and a
1010 // 3-bit tag (which is always 4).
1011 uint64_t str = 0;
1012 // Fill in the characters
1013 for (unsigned i=0 ; i<LiteralLength ; i++)
1014 str |= ((uint64_t)SL->getCodeUnit(i)) << ((64 - 4 - 3) - (i*7));
1015 // Fill in the length
1016 str |= LiteralLength << 3;
1017 // Set the tag
1018 str |= 4;
1019 auto *ObjCStr = llvm::ConstantExpr::getIntToPtr(
1020 llvm::ConstantInt::get(Int64Ty, str), IdTy);
1021 ObjCStrings[Str] = ObjCStr;
1022 return ConstantAddress(ObjCStr, IdElemTy, Align);
1023 }
1024
1025 StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass;
1026
1027 if (StringClass.empty()) StringClass = "NSConstantString";
1028
1029 std::string Sym = SymbolForClass(StringClass);
1030
1031 llvm::Constant *isa = TheModule.getNamedGlobal(Sym);
1032
1033 if (!isa) {
1034 isa = new llvm::GlobalVariable(TheModule, IdTy, /* isConstant */false,
1035 llvm::GlobalValue::ExternalLinkage, nullptr, Sym);
1036 if (CGM.getTriple().isOSBinFormatCOFF()) {
1037 cast<llvm::GlobalValue>(isa)->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
1038 }
1039 }
1040
1041 // struct
1042 // {
1043 // Class isa;
1044 // uint32_t flags;
1045 // uint32_t length; // Number of codepoints
1046 // uint32_t size; // Number of bytes
1047 // uint32_t hash;
1048 // const char *data;
1049 // };
1050
1051 ConstantInitBuilder Builder(CGM);
1052 auto Fields = Builder.beginStruct();
1053 if (!CGM.getTriple().isOSBinFormatCOFF()) {
1054 Fields.add(isa);
1055 } else {
1056 Fields.addNullPointer(PtrTy);
1057 }
1058 // For now, all non-ASCII strings are represented as UTF-16. As such, the
1059 // number of bytes is simply double the number of UTF-16 codepoints. In
1060 // ASCII strings, the number of bytes is equal to the number of non-ASCII
1061 // codepoints.
1062 if (isNonASCII) {
1063 unsigned NumU8CodeUnits = Str.size();
1064 // A UTF-16 representation of a unicode string contains at most the same
1065 // number of code units as a UTF-8 representation. Allocate that much
1066 // space, plus one for the final null character.
1067 SmallVector<llvm::UTF16, 128> ToBuf(NumU8CodeUnits + 1);
1068 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)Str.data();
1069 llvm::UTF16 *ToPtr = &ToBuf[0];
1070 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumU8CodeUnits,
1071 &ToPtr, ToPtr + NumU8CodeUnits, llvm::strictConversion);
1072 uint32_t StringLength = ToPtr - &ToBuf[0];
1073 // Add null terminator
1074 *ToPtr = 0;
1075 // Flags: 2 indicates UTF-16 encoding
1076 Fields.addInt(Int32Ty, 2);
1077 // Number of UTF-16 codepoints
1078 Fields.addInt(Int32Ty, StringLength);
1079 // Number of bytes
1080 Fields.addInt(Int32Ty, StringLength * 2);
1081 // Hash. Not currently initialised by the compiler.
1082 Fields.addInt(Int32Ty, 0);
1083 // pointer to the data string.
1084 auto Arr = llvm::ArrayRef(&ToBuf[0], ToPtr + 1);
1085 auto *C = llvm::ConstantDataArray::get(VMContext, Arr);
1086 auto *Buffer = new llvm::GlobalVariable(TheModule, C->getType(),
1087 /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, C, ".str");
1088 Buffer->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1089 Fields.add(Buffer);
1090 } else {
1091 // Flags: 0 indicates ASCII encoding
1092 Fields.addInt(Int32Ty, 0);
1093 // Number of UTF-16 codepoints, each ASCII byte is a UTF-16 codepoint
1094 Fields.addInt(Int32Ty, Str.size());
1095 // Number of bytes
1096 Fields.addInt(Int32Ty, Str.size());
1097 // Hash. Not currently initialised by the compiler.
1098 Fields.addInt(Int32Ty, 0);
1099 // Data pointer
1100 Fields.add(MakeConstantString(Str));
1101 }
1102 std::string StringName;
1103 bool isNamed = !isNonASCII;
1104 if (isNamed) {
1105 StringName = ".objc_str_";
1106 for (unsigned char c : Str) {
1107 if (isalnum(c))
1108 StringName += c;
1109 else if (c == ' ')
1110 StringName += '_';
1111 else {
1112 isNamed = false;
1113 break;
1114 }
1115 }
1116 }
1117 llvm::GlobalVariable *ObjCStrGV =
1118 Fields.finishAndCreateGlobal(
1119 isNamed ? StringRef(StringName) : ".objc_string",
1120 Align, false, isNamed ? llvm::GlobalValue::LinkOnceODRLinkage
1121 : llvm::GlobalValue::PrivateLinkage);
1122 ObjCStrGV->setSection(sectionName<ConstantStringSection>());
1123 if (isNamed) {
1124 ObjCStrGV->setComdat(TheModule.getOrInsertComdat(StringName));
1125 ObjCStrGV->setVisibility(llvm::GlobalValue::HiddenVisibility);
1126 }
1127 if (CGM.getTriple().isOSBinFormatCOFF()) {
1128 std::pair<llvm::GlobalVariable*, int> v{ObjCStrGV, 0};
1129 EarlyInitList.emplace_back(Sym, v);
1130 }
1131 ObjCStrings[Str] = ObjCStrGV;
1132 ConstantStrings.push_back(ObjCStrGV);
1133 return ConstantAddress(ObjCStrGV, IdElemTy, Align);
1134 }
1135
1136 void PushProperty(ConstantArrayBuilder &PropertiesArray,
1137 const ObjCPropertyDecl *property,
1138 const Decl *OCD,
1139 bool isSynthesized=true, bool
1140 isDynamic=true) override {
1141 // struct objc_property
1142 // {
1143 // const char *name;
1144 // const char *attributes;
1145 // const char *type;
1146 // SEL getter;
1147 // SEL setter;
1148 // };
1149 auto Fields = PropertiesArray.beginStruct(PropertyMetadataTy);
1150 ASTContext &Context = CGM.getContext();
1151 Fields.add(MakeConstantString(property->getNameAsString()));
1152 std::string TypeStr =
1153 CGM.getContext().getObjCEncodingForPropertyDecl(property, OCD);
1154 Fields.add(MakeConstantString(TypeStr));
1155 std::string typeStr;
1156 Context.getObjCEncodingForType(property->getType(), typeStr);
1157 Fields.add(MakeConstantString(typeStr));
1158 auto addPropertyMethod = [&](const ObjCMethodDecl *accessor) {
1159 if (accessor) {
1160 std::string TypeStr = Context.getObjCEncodingForMethodDecl(accessor);
1161 Fields.add(GetConstantSelector(accessor->getSelector(), TypeStr));
1162 } else {
1163 Fields.add(NULLPtr);
1164 }
1165 };
1166 addPropertyMethod(property->getGetterMethodDecl());
1167 addPropertyMethod(property->getSetterMethodDecl());
1168 Fields.finishAndAddTo(PropertiesArray);
1169 }
1170
1171 llvm::Constant *
1172 GenerateProtocolMethodList(ArrayRef<const ObjCMethodDecl*> Methods) override {
1173 // struct objc_protocol_method_description
1174 // {
1175 // SEL selector;
1176 // const char *types;
1177 // };
1178 llvm::StructType *ObjCMethodDescTy =
1179 llvm::StructType::get(CGM.getLLVMContext(),
1180 { PtrToInt8Ty, PtrToInt8Ty });
1181 ASTContext &Context = CGM.getContext();
1182 ConstantInitBuilder Builder(CGM);
1183 // struct objc_protocol_method_description_list
1184 // {
1185 // int count;
1186 // int size;
1187 // struct objc_protocol_method_description methods[];
1188 // };
1189 auto MethodList = Builder.beginStruct();
1190 // int count;
1191 MethodList.addInt(IntTy, Methods.size());
1192 // int size; // sizeof(struct objc_method_description)
1193 const llvm::DataLayout &DL = TheModule.getDataLayout();
1194 MethodList.addInt(IntTy, DL.getTypeSizeInBits(ObjCMethodDescTy) /
1195 CGM.getContext().getCharWidth());
1196 // struct objc_method_description[]
1197 auto MethodArray = MethodList.beginArray(ObjCMethodDescTy);
1198 for (auto *M : Methods) {
1199 auto Method = MethodArray.beginStruct(ObjCMethodDescTy);
1200 Method.add(CGObjCGNU::GetConstantSelector(M));
1201 Method.add(GetTypeString(Context.getObjCEncodingForMethodDecl(M, true)));
1202 Method.finishAndAddTo(MethodArray);
1203 }
1204 MethodArray.finishAndAddTo(MethodList);
1205 return MethodList.finishAndCreateGlobal(".objc_protocol_method_list",
1206 CGM.getPointerAlign());
1207 }
1208 llvm::Constant *GenerateCategoryProtocolList(const ObjCCategoryDecl *OCD)
1209 override {
1210 const auto &ReferencedProtocols = OCD->getReferencedProtocols();
1211 auto RuntimeProtocols = GetRuntimeProtocolList(ReferencedProtocols.begin(),
1212 ReferencedProtocols.end());
1214 for (const auto *PI : RuntimeProtocols)
1215 Protocols.push_back(GenerateProtocolRef(PI));
1216 return GenerateProtocolList(Protocols);
1217 }
1218
1219 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper,
1220 llvm::Value *cmd, MessageSendInfo &MSI) override {
1221 // Don't access the slot unless we're trying to cache the result.
1222 CGBuilderTy &Builder = CGF.Builder;
1223 llvm::Value *lookupArgs[] = {
1224 CGObjCGNU::EnforceType(Builder, ObjCSuper.emitRawPointer(CGF),
1225 PtrToObjCSuperTy),
1226 cmd};
1227 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs);
1228 }
1229
1230 llvm::GlobalVariable *GetClassVar(StringRef Name, bool isWeak=false) {
1231 std::string SymbolName = SymbolForClassRef(Name, isWeak);
1232 auto *ClassSymbol = TheModule.getNamedGlobal(SymbolName);
1233 if (ClassSymbol)
1234 return ClassSymbol;
1235 ClassSymbol = new llvm::GlobalVariable(TheModule,
1236 IdTy, false, llvm::GlobalValue::ExternalLinkage,
1237 nullptr, SymbolName);
1238 // If this is a weak symbol, then we are creating a valid definition for
1239 // the symbol, pointing to a weak definition of the real class pointer. If
1240 // this is not a weak reference, then we are expecting another compilation
1241 // unit to provide the real indirection symbol.
1242 if (isWeak)
1243 ClassSymbol->setInitializer(new llvm::GlobalVariable(TheModule,
1244 Int8Ty, false, llvm::GlobalValue::ExternalWeakLinkage,
1245 nullptr, SymbolForClass(Name)));
1246 else {
1247 if (CGM.getTriple().isOSBinFormatCOFF()) {
1248 IdentifierInfo &II = CGM.getContext().Idents.get(Name);
1251
1252 const ObjCInterfaceDecl *OID = nullptr;
1253 for (const auto *Result : DC->lookup(&II))
1254 if ((OID = dyn_cast<ObjCInterfaceDecl>(Result)))
1255 break;
1256
1257 // The first Interface we find may be a @class,
1258 // which should only be treated as the source of
1259 // truth in the absence of a true declaration.
1260 assert(OID && "Failed to find ObjCInterfaceDecl");
1261 const ObjCInterfaceDecl *OIDDef = OID->getDefinition();
1262 if (OIDDef != nullptr)
1263 OID = OIDDef;
1264
1265 auto Storage = llvm::GlobalValue::DefaultStorageClass;
1266 if (OID->hasAttr<DLLImportAttr>())
1267 Storage = llvm::GlobalValue::DLLImportStorageClass;
1268 else if (OID->hasAttr<DLLExportAttr>())
1269 Storage = llvm::GlobalValue::DLLExportStorageClass;
1270
1271 cast<llvm::GlobalValue>(ClassSymbol)->setDLLStorageClass(Storage);
1272 }
1273 }
1274 assert(ClassSymbol->getName() == SymbolName);
1275 return ClassSymbol;
1276 }
1277 llvm::Value *GetClassNamed(CodeGenFunction &CGF,
1278 const std::string &Name,
1279 bool isWeak) override {
1280 return CGF.Builder.CreateLoad(
1281 Address(GetClassVar(Name, isWeak), IdTy, CGM.getPointerAlign()));
1282 }
1283 int32_t FlagsForOwnership(Qualifiers::ObjCLifetime Ownership) {
1284 // typedef enum {
1285 // ownership_invalid = 0,
1286 // ownership_strong = 1,
1287 // ownership_weak = 2,
1288 // ownership_unsafe = 3
1289 // } ivar_ownership;
1290 int Flag;
1291 switch (Ownership) {
1293 Flag = 1;
1294 break;
1296 Flag = 2;
1297 break;
1299 Flag = 3;
1300 break;
1303 assert(Ownership != Qualifiers::OCL_Autoreleasing);
1304 Flag = 0;
1305 }
1306 return Flag;
1307 }
1308 llvm::Constant *GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames,
1310 ArrayRef<llvm::Constant *> IvarOffsets,
1312 ArrayRef<Qualifiers::ObjCLifetime> IvarOwnership) override {
1313 llvm_unreachable("Method should not be called!");
1314 }
1315
1316 llvm::Constant *GenerateEmptyProtocol(StringRef ProtocolName) override {
1317 std::string Name = SymbolForProtocol(ProtocolName);
1318 auto *GV = TheModule.getGlobalVariable(Name);
1319 if (!GV) {
1320 // Emit a placeholder symbol.
1321 GV = new llvm::GlobalVariable(TheModule, ProtocolTy, false,
1322 llvm::GlobalValue::ExternalLinkage, nullptr, Name);
1323 GV->setAlignment(CGM.getPointerAlign().getAsAlign());
1324 }
1325 return GV;
1326 }
1327
1328 /// Existing protocol references.
1329 llvm::StringMap<llvm::Constant*> ExistingProtocolRefs;
1330
1331 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF,
1332 const ObjCProtocolDecl *PD) override {
1333 auto Name = PD->getNameAsString();
1334 auto *&Ref = ExistingProtocolRefs[Name];
1335 if (!Ref) {
1336 auto *&Protocol = ExistingProtocols[Name];
1337 if (!Protocol)
1338 Protocol = GenerateProtocolRef(PD);
1339 std::string RefName = SymbolForProtocolRef(Name);
1340 assert(!TheModule.getGlobalVariable(RefName));
1341 // Emit a reference symbol.
1342 auto GV = new llvm::GlobalVariable(TheModule, ProtocolPtrTy, false,
1343 llvm::GlobalValue::LinkOnceODRLinkage,
1344 Protocol, RefName);
1345 GV->setComdat(TheModule.getOrInsertComdat(RefName));
1346 GV->setSection(sectionName<ProtocolReferenceSection>());
1347 GV->setAlignment(CGM.getPointerAlign().getAsAlign());
1348 Ref = GV;
1349 }
1350 EmittedProtocolRef = true;
1351 return CGF.Builder.CreateAlignedLoad(ProtocolPtrTy, Ref,
1352 CGM.getPointerAlign());
1353 }
1354
1355 llvm::Constant *GenerateProtocolList(ArrayRef<llvm::Constant*> Protocols) {
1356 llvm::ArrayType *ProtocolArrayTy = llvm::ArrayType::get(ProtocolPtrTy,
1357 Protocols.size());
1358 llvm::Constant * ProtocolArray = llvm::ConstantArray::get(ProtocolArrayTy,
1359 Protocols);
1360 ConstantInitBuilder builder(CGM);
1361 auto ProtocolBuilder = builder.beginStruct();
1362 ProtocolBuilder.addNullPointer(PtrTy);
1363 ProtocolBuilder.addInt(SizeTy, Protocols.size());
1364 ProtocolBuilder.add(ProtocolArray);
1365 return ProtocolBuilder.finishAndCreateGlobal(".objc_protocol_list",
1366 CGM.getPointerAlign(), false, llvm::GlobalValue::InternalLinkage);
1367 }
1368
1369 void GenerateProtocol(const ObjCProtocolDecl *PD) override {
1370 // Do nothing - we only emit referenced protocols.
1371 }
1372 llvm::Constant *GenerateProtocolRef(const ObjCProtocolDecl *PD) override {
1373 std::string ProtocolName = PD->getNameAsString();
1374 auto *&Protocol = ExistingProtocols[ProtocolName];
1375 if (Protocol)
1376 return Protocol;
1377
1378 EmittedProtocol = true;
1379
1380 auto SymName = SymbolForProtocol(ProtocolName);
1381 auto *OldGV = TheModule.getGlobalVariable(SymName);
1382
1383 // Use the protocol definition, if there is one.
1384 if (const ObjCProtocolDecl *Def = PD->getDefinition())
1385 PD = Def;
1386 else {
1387 // If there is no definition, then create an external linkage symbol and
1388 // hope that someone else fills it in for us (and fail to link if they
1389 // don't).
1390 assert(!OldGV);
1391 Protocol = new llvm::GlobalVariable(TheModule, ProtocolTy,
1392 /*isConstant*/false,
1393 llvm::GlobalValue::ExternalLinkage, nullptr, SymName);
1394 return Protocol;
1395 }
1396
1398 auto RuntimeProtocols =
1399 GetRuntimeProtocolList(PD->protocol_begin(), PD->protocol_end());
1400 for (const auto *PI : RuntimeProtocols)
1401 Protocols.push_back(GenerateProtocolRef(PI));
1402 llvm::Constant *ProtocolList = GenerateProtocolList(Protocols);
1403
1404 // Collect information about methods
1405 llvm::Constant *InstanceMethodList, *OptionalInstanceMethodList;
1406 llvm::Constant *ClassMethodList, *OptionalClassMethodList;
1407 EmitProtocolMethodList(PD->instance_methods(), InstanceMethodList,
1408 OptionalInstanceMethodList);
1409 EmitProtocolMethodList(PD->class_methods(), ClassMethodList,
1410 OptionalClassMethodList);
1411
1412 // The isa pointer must be set to a magic number so the runtime knows it's
1413 // the correct layout.
1414 ConstantInitBuilder builder(CGM);
1415 auto ProtocolBuilder = builder.beginStruct();
1416 ProtocolBuilder.add(llvm::ConstantExpr::getIntToPtr(
1417 llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy));
1418 ProtocolBuilder.add(MakeConstantString(ProtocolName));
1419 ProtocolBuilder.add(ProtocolList);
1420 ProtocolBuilder.add(InstanceMethodList);
1421 ProtocolBuilder.add(ClassMethodList);
1422 ProtocolBuilder.add(OptionalInstanceMethodList);
1423 ProtocolBuilder.add(OptionalClassMethodList);
1424 // Required instance properties
1425 ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, false, false));
1426 // Optional instance properties
1427 ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, false, true));
1428 // Required class properties
1429 ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, true, false));
1430 // Optional class properties
1431 ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, true, true));
1432
1433 auto *GV = ProtocolBuilder.finishAndCreateGlobal(SymName,
1434 CGM.getPointerAlign(), false, llvm::GlobalValue::ExternalLinkage);
1435 GV->setSection(sectionName<ProtocolSection>());
1436 GV->setComdat(TheModule.getOrInsertComdat(SymName));
1437 if (OldGV) {
1438 OldGV->replaceAllUsesWith(GV);
1439 OldGV->removeFromParent();
1440 GV->setName(SymName);
1441 }
1442 Protocol = GV;
1443 return GV;
1444 }
1445 llvm::Value *GetTypedSelector(CodeGenFunction &CGF, Selector Sel,
1446 const std::string &TypeEncoding) override {
1447 return GetConstantSelector(Sel, TypeEncoding);
1448 }
1449 std::string GetSymbolNameForTypeEncoding(const std::string &TypeEncoding) {
1450 std::string MangledTypes = std::string(TypeEncoding);
1451 // @ is used as a special character in ELF symbol names (used for symbol
1452 // versioning), so mangle the name to not include it. Replace it with a
1453 // character that is not a valid type encoding character (and, being
1454 // non-printable, never will be!)
1455 if (CGM.getTriple().isOSBinFormatELF())
1456 llvm::replace(MangledTypes, '@', '\1');
1457 // = in dll exported names causes lld to fail when linking on Windows.
1458 if (CGM.getTriple().isOSWindows())
1459 llvm::replace(MangledTypes, '=', '\2');
1460 return MangledTypes;
1461 }
1462 llvm::Constant *GetTypeString(llvm::StringRef TypeEncoding) {
1463 if (TypeEncoding.empty())
1464 return NULLPtr;
1465 std::string MangledTypes =
1466 GetSymbolNameForTypeEncoding(std::string(TypeEncoding));
1467 std::string TypesVarName = ".objc_sel_types_" + MangledTypes;
1468 auto *TypesGlobal = TheModule.getGlobalVariable(TypesVarName);
1469 if (!TypesGlobal) {
1470 llvm::Constant *Init = llvm::ConstantDataArray::getString(VMContext,
1471 TypeEncoding);
1472 auto *GV = new llvm::GlobalVariable(TheModule, Init->getType(),
1473 true, llvm::GlobalValue::LinkOnceODRLinkage, Init, TypesVarName);
1474 GV->setComdat(TheModule.getOrInsertComdat(TypesVarName));
1475 GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
1476 TypesGlobal = GV;
1477 }
1478 return TypesGlobal;
1479 }
1480 llvm::Constant *GetConstantSelector(Selector Sel,
1481 const std::string &TypeEncoding) override {
1482 std::string MangledTypes = GetSymbolNameForTypeEncoding(TypeEncoding);
1483 auto SelVarName = (StringRef(".objc_selector_") + Sel.getAsString() + "_" +
1484 MangledTypes).str();
1485 if (auto *GV = TheModule.getNamedGlobal(SelVarName))
1486 return GV;
1487 ConstantInitBuilder builder(CGM);
1488 auto SelBuilder = builder.beginStruct();
1489 SelBuilder.add(ExportUniqueString(Sel.getAsString(), ".objc_sel_name_",
1490 true));
1491 SelBuilder.add(GetTypeString(TypeEncoding));
1492 auto *GV = SelBuilder.finishAndCreateGlobal(SelVarName,
1493 CGM.getPointerAlign(), false, llvm::GlobalValue::LinkOnceODRLinkage);
1494 GV->setComdat(TheModule.getOrInsertComdat(SelVarName));
1495 GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
1496 GV->setSection(sectionName<SelectorSection>());
1497 return GV;
1498 }
1499 llvm::StructType *emptyStruct = nullptr;
1500
1501 /// Return pointers to the start and end of a section. On ELF platforms, we
1502 /// use the __start_ and __stop_ symbols that GNU-compatible linkers will set
1503 /// to the start and end of section names, as long as those section names are
1504 /// valid identifiers and the symbols are referenced but not defined. On
1505 /// Windows, we use the fact that MSVC-compatible linkers will lexically sort
1506 /// by subsections and place everything that we want to reference in a middle
1507 /// subsection and then insert zero-sized symbols in subsections a and z.
1508 std::pair<llvm::Constant*,llvm::Constant*>
1509 GetSectionBounds(StringRef Section) {
1510 if (CGM.getTriple().isOSBinFormatCOFF()) {
1511 if (emptyStruct == nullptr) {
1512 emptyStruct = llvm::StructType::create(
1513 VMContext, {}, ".objc_section_sentinel", /*isPacked=*/true);
1514 }
1515 auto ZeroInit = llvm::Constant::getNullValue(emptyStruct);
1516 auto Sym = [&](StringRef Prefix, StringRef SecSuffix) {
1517 auto *Sym = new llvm::GlobalVariable(TheModule, emptyStruct,
1518 /*isConstant*/false,
1519 llvm::GlobalValue::LinkOnceODRLinkage, ZeroInit, Prefix +
1520 Section);
1521 Sym->setVisibility(llvm::GlobalValue::HiddenVisibility);
1522 Sym->setSection((Section + SecSuffix).str());
1523 Sym->setComdat(TheModule.getOrInsertComdat((Prefix +
1524 Section).str()));
1525 Sym->setAlignment(CGM.getPointerAlign().getAsAlign());
1526 return Sym;
1527 };
1528 return { Sym("__start_", "$a"), Sym("__stop", "$z") };
1529 }
1530 auto *Start = new llvm::GlobalVariable(TheModule, PtrTy,
1531 /*isConstant*/false,
1532 llvm::GlobalValue::ExternalLinkage, nullptr, StringRef("__start_") +
1533 Section);
1534 Start->setVisibility(llvm::GlobalValue::HiddenVisibility);
1535 auto *Stop = new llvm::GlobalVariable(TheModule, PtrTy,
1536 /*isConstant*/false,
1537 llvm::GlobalValue::ExternalLinkage, nullptr, StringRef("__stop_") +
1538 Section);
1539 Stop->setVisibility(llvm::GlobalValue::HiddenVisibility);
1540 return { Start, Stop };
1541 }
1542 CatchTypeInfo getCatchAllTypeInfo() override {
1543 return CGM.getCXXABI().getCatchAllTypeInfo();
1544 }
1545 llvm::Function *ModuleInitFunction() override {
1546 llvm::Function *LoadFunction = llvm::Function::Create(
1547 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false),
1548 llvm::GlobalValue::LinkOnceODRLinkage, ".objcv2_load_function",
1549 &TheModule);
1550 LoadFunction->setVisibility(llvm::GlobalValue::HiddenVisibility);
1551 LoadFunction->setComdat(TheModule.getOrInsertComdat(".objcv2_load_function"));
1552
1553 llvm::BasicBlock *EntryBB =
1554 llvm::BasicBlock::Create(VMContext, "entry", LoadFunction);
1555 CGBuilderTy B(CGM, VMContext);
1556 B.SetInsertPoint(EntryBB);
1557 ConstantInitBuilder builder(CGM);
1558 auto InitStructBuilder = builder.beginStruct();
1559 InitStructBuilder.addInt(Int64Ty, 0);
1560 auto &sectionVec = CGM.getTriple().isOSBinFormatCOFF() ? PECOFFSectionsBaseNames : SectionsBaseNames;
1561 for (auto *s : sectionVec) {
1562 auto bounds = GetSectionBounds(s);
1563 InitStructBuilder.add(bounds.first);
1564 InitStructBuilder.add(bounds.second);
1565 }
1566 auto *InitStruct = InitStructBuilder.finishAndCreateGlobal(".objc_init",
1567 CGM.getPointerAlign(), false, llvm::GlobalValue::LinkOnceODRLinkage);
1568 InitStruct->setVisibility(llvm::GlobalValue::HiddenVisibility);
1569 InitStruct->setComdat(TheModule.getOrInsertComdat(".objc_init"));
1570
1571 CallRuntimeFunction(B, "__objc_load", {InitStruct});;
1572 B.CreateRetVoid();
1573 // Make sure that the optimisers don't delete this function.
1574 CGM.addCompilerUsedGlobal(LoadFunction);
1575 // FIXME: Currently ELF only!
1576 // We have to do this by hand, rather than with @llvm.ctors, so that the
1577 // linker can remove the duplicate invocations.
1578 auto *InitVar = new llvm::GlobalVariable(TheModule, LoadFunction->getType(),
1579 /*isConstant*/false, llvm::GlobalValue::LinkOnceAnyLinkage,
1580 LoadFunction, ".objc_ctor");
1581 // Check that this hasn't been renamed. This shouldn't happen, because
1582 // this function should be called precisely once.
1583 assert(InitVar->getName() == ".objc_ctor");
1584 // In Windows, initialisers are sorted by the suffix. XCL is for library
1585 // initialisers, which run before user initialisers. We are running
1586 // Objective-C loads at the end of library load. This means +load methods
1587 // will run before any other static constructors, but that static
1588 // constructors can see a fully initialised Objective-C state.
1589 if (CGM.getTriple().isOSBinFormatCOFF())
1590 InitVar->setSection(".CRT$XCLz");
1591 else
1592 {
1593 if (CGM.getCodeGenOpts().UseInitArray)
1594 InitVar->setSection(".init_array");
1595 else
1596 InitVar->setSection(".ctors");
1597 }
1598 InitVar->setVisibility(llvm::GlobalValue::HiddenVisibility);
1599 InitVar->setComdat(TheModule.getOrInsertComdat(".objc_ctor"));
1600 CGM.addUsedGlobal(InitVar);
1601 for (auto *C : Categories) {
1602 auto *Cat = cast<llvm::GlobalVariable>(C->stripPointerCasts());
1603 Cat->setSection(sectionName<CategorySection>());
1604 CGM.addUsedGlobal(Cat);
1605 }
1606 auto createNullGlobal = [&](StringRef Name, ArrayRef<llvm::Constant*> Init,
1607 StringRef Section) {
1608 auto nullBuilder = builder.beginStruct();
1609 for (auto *F : Init)
1610 nullBuilder.add(F);
1611 auto GV = nullBuilder.finishAndCreateGlobal(Name, CGM.getPointerAlign(),
1612 false, llvm::GlobalValue::LinkOnceODRLinkage);
1613 GV->setSection(Section);
1614 GV->setComdat(TheModule.getOrInsertComdat(Name));
1615 GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
1616 CGM.addUsedGlobal(GV);
1617 return GV;
1618 };
1619 for (auto clsAlias : ClassAliases)
1620 createNullGlobal(std::string(".objc_class_alias") +
1621 clsAlias.second, { MakeConstantString(clsAlias.second),
1622 GetClassVar(clsAlias.first) }, sectionName<ClassAliasSection>());
1623 // On ELF platforms, add a null value for each special section so that we
1624 // can always guarantee that the _start and _stop symbols will exist and be
1625 // meaningful. This is not required on COFF platforms, where our start and
1626 // stop symbols will create the section.
1627 if (!CGM.getTriple().isOSBinFormatCOFF()) {
1628 createNullGlobal(".objc_null_selector", {NULLPtr, NULLPtr},
1629 sectionName<SelectorSection>());
1630 if (Categories.empty())
1631 createNullGlobal(".objc_null_category", {NULLPtr, NULLPtr,
1632 NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr},
1633 sectionName<CategorySection>());
1634 if (!EmittedClass) {
1635 createNullGlobal(".objc_null_cls_init_ref", NULLPtr,
1636 sectionName<ClassSection>());
1637 createNullGlobal(".objc_null_class_ref", { NULLPtr, NULLPtr },
1638 sectionName<ClassReferenceSection>());
1639 }
1640 if (!EmittedProtocol)
1641 createNullGlobal(".objc_null_protocol", {NULLPtr, NULLPtr, NULLPtr,
1642 NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr,
1643 NULLPtr}, sectionName<ProtocolSection>());
1644 if (!EmittedProtocolRef)
1645 createNullGlobal(".objc_null_protocol_ref", {NULLPtr},
1646 sectionName<ProtocolReferenceSection>());
1647 if (ClassAliases.empty())
1648 createNullGlobal(".objc_null_class_alias", { NULLPtr, NULLPtr },
1649 sectionName<ClassAliasSection>());
1650 if (ConstantStrings.empty()) {
1651 auto i32Zero = llvm::ConstantInt::get(Int32Ty, 0);
1652 createNullGlobal(".objc_null_constant_string", { NULLPtr, i32Zero,
1653 i32Zero, i32Zero, i32Zero, NULLPtr },
1654 sectionName<ConstantStringSection>());
1655 }
1656 }
1657 ConstantStrings.clear();
1658 Categories.clear();
1659 Classes.clear();
1660
1661 if (EarlyInitList.size() > 0) {
1662 auto *Init = llvm::Function::Create(llvm::FunctionType::get(CGM.VoidTy,
1663 {}), llvm::GlobalValue::InternalLinkage, ".objc_early_init",
1664 &CGM.getModule());
1665 llvm::IRBuilder<> b(llvm::BasicBlock::Create(CGM.getLLVMContext(), "entry",
1666 Init));
1667 for (const auto &lateInit : EarlyInitList) {
1668 auto *global = TheModule.getGlobalVariable(lateInit.first);
1669 if (global) {
1670 llvm::GlobalVariable *GV = lateInit.second.first;
1671 b.CreateAlignedStore(
1672 global,
1673 b.CreateStructGEP(GV->getValueType(), GV, lateInit.second.second),
1674 CGM.getPointerAlign().getAsAlign());
1675 }
1676 }
1677 b.CreateRetVoid();
1678 // We can't use the normal LLVM global initialisation array, because we
1679 // need to specify that this runs early in library initialisation.
1680 auto *InitVar = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
1681 /*isConstant*/true, llvm::GlobalValue::InternalLinkage,
1682 Init, ".objc_early_init_ptr");
1683 InitVar->setSection(".CRT$XCLb");
1684 CGM.addUsedGlobal(InitVar);
1685 }
1686 return nullptr;
1687 }
1688 /// In the v2 ABI, ivar offset variables use the type encoding in their name
1689 /// to trigger linker failures if the types don't match.
1690 std::string GetIVarOffsetVariableName(const ObjCInterfaceDecl *ID,
1691 const ObjCIvarDecl *Ivar) override {
1692 std::string TypeEncoding;
1693 CGM.getContext().getObjCEncodingForType(Ivar->getType(), TypeEncoding);
1694 TypeEncoding = GetSymbolNameForTypeEncoding(TypeEncoding);
1695 const std::string Name = "__objc_ivar_offset_" + ID->getNameAsString()
1696 + '.' + Ivar->getNameAsString() + '.' + TypeEncoding;
1697 return Name;
1698 }
1699 llvm::Value *EmitIvarOffset(CodeGenFunction &CGF,
1701 const ObjCIvarDecl *Ivar) override {
1702 const ObjCInterfaceDecl *ContainingInterface =
1703 Ivar->getContainingInterface();
1704 const std::string Name =
1705 GetIVarOffsetVariableName(ContainingInterface, Ivar);
1706 llvm::GlobalVariable *IvarOffsetPointer = TheModule.getNamedGlobal(Name);
1707 if (!IvarOffsetPointer) {
1708 IvarOffsetPointer = new llvm::GlobalVariable(TheModule, IntTy, false,
1709 llvm::GlobalValue::ExternalLinkage, nullptr, Name);
1710 if (Ivar->getAccessControl() != ObjCIvarDecl::Private &&
1712 CGM.setGVProperties(IvarOffsetPointer, ContainingInterface);
1713 }
1714 CharUnits Align = CGM.getIntAlign();
1715 llvm::Value *Offset =
1716 CGF.Builder.CreateAlignedLoad(IntTy, IvarOffsetPointer, Align);
1717 if (Offset->getType() != PtrDiffTy)
1718 Offset = CGF.Builder.CreateZExtOrBitCast(Offset, PtrDiffTy);
1719 return Offset;
1720 }
1721 void GenerateClass(const ObjCImplementationDecl *OID) override {
1722 ASTContext &Context = CGM.getContext();
1723 bool IsCOFF = CGM.getTriple().isOSBinFormatCOFF();
1724
1725 // Get the class name
1726 ObjCInterfaceDecl *classDecl =
1727 const_cast<ObjCInterfaceDecl *>(OID->getClassInterface());
1728 std::string className = classDecl->getNameAsString();
1729 auto *classNameConstant = MakeConstantString(className);
1730
1731 ConstantInitBuilder builder(CGM);
1732 auto metaclassFields = builder.beginStruct();
1733 // struct objc_class *isa;
1734 metaclassFields.addNullPointer(PtrTy);
1735 // struct objc_class *super_class;
1736 metaclassFields.addNullPointer(PtrTy);
1737 // const char *name;
1738 metaclassFields.add(classNameConstant);
1739 // long version;
1740 metaclassFields.addInt(LongTy, 0);
1741 // unsigned long info;
1742 // objc_class_flag_meta
1743 metaclassFields.addInt(LongTy, ClassFlags::ClassFlagMeta);
1744 // long instance_size;
1745 // Setting this to zero is consistent with the older ABI, but it might be
1746 // more sensible to set this to sizeof(struct objc_class)
1747 metaclassFields.addInt(LongTy, 0);
1748 // struct objc_ivar_list *ivars;
1749 metaclassFields.addNullPointer(PtrTy);
1750 // struct objc_method_list *methods
1751 // FIXME: Almost identical code is copied and pasted below for the
1752 // class, but refactoring it cleanly requires C++14 generic lambdas.
1753 if (OID->class_methods().empty())
1754 metaclassFields.addNullPointer(PtrTy);
1755 else {
1757 ClassMethods.insert(ClassMethods.begin(), OID->classmeth_begin(),
1758 OID->classmeth_end());
1759 metaclassFields.add(
1760 GenerateMethodList(className, "", ClassMethods, true));
1761 }
1762 // void *dtable;
1763 metaclassFields.addNullPointer(PtrTy);
1764 // IMP cxx_construct;
1765 metaclassFields.addNullPointer(PtrTy);
1766 // IMP cxx_destruct;
1767 metaclassFields.addNullPointer(PtrTy);
1768 // struct objc_class *subclass_list
1769 metaclassFields.addNullPointer(PtrTy);
1770 // struct objc_class *sibling_class
1771 metaclassFields.addNullPointer(PtrTy);
1772 // struct objc_protocol_list *protocols;
1773 metaclassFields.addNullPointer(PtrTy);
1774 // struct reference_list *extra_data;
1775 metaclassFields.addNullPointer(PtrTy);
1776 // long abi_version;
1777 metaclassFields.addInt(LongTy, 0);
1778 // struct objc_property_list *properties
1779 metaclassFields.add(GeneratePropertyList(OID, classDecl, /*isClassProperty*/true));
1780
1781 auto *metaclass = metaclassFields.finishAndCreateGlobal(
1782 ManglePublicSymbol("OBJC_METACLASS_") + className,
1783 CGM.getPointerAlign());
1784
1785 auto classFields = builder.beginStruct();
1786 // struct objc_class *isa;
1787 classFields.add(metaclass);
1788 // struct objc_class *super_class;
1789 // Get the superclass name.
1790 const ObjCInterfaceDecl * SuperClassDecl =
1792 llvm::Constant *SuperClass = nullptr;
1793 if (SuperClassDecl) {
1794 auto SuperClassName = SymbolForClass(SuperClassDecl->getNameAsString());
1795 SuperClass = TheModule.getNamedGlobal(SuperClassName);
1796 if (!SuperClass)
1797 {
1798 SuperClass = new llvm::GlobalVariable(TheModule, PtrTy, false,
1799 llvm::GlobalValue::ExternalLinkage, nullptr, SuperClassName);
1800 if (IsCOFF) {
1801 auto Storage = llvm::GlobalValue::DefaultStorageClass;
1802 if (SuperClassDecl->hasAttr<DLLImportAttr>())
1803 Storage = llvm::GlobalValue::DLLImportStorageClass;
1804 else if (SuperClassDecl->hasAttr<DLLExportAttr>())
1805 Storage = llvm::GlobalValue::DLLExportStorageClass;
1806
1807 cast<llvm::GlobalValue>(SuperClass)->setDLLStorageClass(Storage);
1808 }
1809 }
1810 if (!IsCOFF)
1811 classFields.add(SuperClass);
1812 else
1813 classFields.addNullPointer(PtrTy);
1814 } else
1815 classFields.addNullPointer(PtrTy);
1816 // const char *name;
1817 classFields.add(classNameConstant);
1818 // long version;
1819 classFields.addInt(LongTy, 0);
1820 // unsigned long info;
1821 // !objc_class_flag_meta
1822 classFields.addInt(LongTy, 0);
1823 // long instance_size;
1824 int superInstanceSize = !SuperClassDecl ? 0 :
1825 Context.getASTObjCInterfaceLayout(SuperClassDecl).getSize().getQuantity();
1826 // Instance size is negative for classes that have not yet had their ivar
1827 // layout calculated.
1828 classFields.addInt(
1829 LongTy, 0 - (Context.getASTObjCInterfaceLayout(OID->getClassInterface())
1830 .getSize()
1831 .getQuantity() -
1832 superInstanceSize));
1833
1834 if (classDecl->all_declared_ivar_begin() == nullptr)
1835 classFields.addNullPointer(PtrTy);
1836 else {
1837 int ivar_count = 0;
1838 for (const ObjCIvarDecl *IVD = classDecl->all_declared_ivar_begin(); IVD;
1839 IVD = IVD->getNextIvar()) ivar_count++;
1840 const llvm::DataLayout &DL = TheModule.getDataLayout();
1841 // struct objc_ivar_list *ivars;
1843 auto ivarListBuilder = b.beginStruct();
1844 // int count;
1845 ivarListBuilder.addInt(IntTy, ivar_count);
1846 // size_t size;
1847 llvm::StructType *ObjCIvarTy = llvm::StructType::get(
1848 PtrToInt8Ty,
1849 PtrToInt8Ty,
1850 PtrToInt8Ty,
1851 Int32Ty,
1852 Int32Ty);
1853 ivarListBuilder.addInt(SizeTy, DL.getTypeSizeInBits(ObjCIvarTy) /
1854 CGM.getContext().getCharWidth());
1855 // struct objc_ivar ivars[]
1856 auto ivarArrayBuilder = ivarListBuilder.beginArray();
1857 for (const ObjCIvarDecl *IVD = classDecl->all_declared_ivar_begin(); IVD;
1858 IVD = IVD->getNextIvar()) {
1859 auto ivarTy = IVD->getType();
1860 auto ivarBuilder = ivarArrayBuilder.beginStruct();
1861 // const char *name;
1862 ivarBuilder.add(MakeConstantString(IVD->getNameAsString()));
1863 // const char *type;
1864 std::string TypeStr;
1865 //Context.getObjCEncodingForType(ivarTy, TypeStr, IVD, true);
1866 Context.getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, ivarTy, TypeStr, true);
1867 ivarBuilder.add(MakeConstantString(TypeStr));
1868 // int *offset;
1869 uint64_t BaseOffset = ComputeIvarBaseOffset(CGM, OID, IVD);
1870 uint64_t Offset = BaseOffset - superInstanceSize;
1871 llvm::Constant *OffsetValue = llvm::ConstantInt::get(IntTy, Offset);
1872 std::string OffsetName = GetIVarOffsetVariableName(classDecl, IVD);
1873 llvm::GlobalVariable *OffsetVar = TheModule.getGlobalVariable(OffsetName);
1874 if (OffsetVar)
1875 OffsetVar->setInitializer(OffsetValue);
1876 else
1877 OffsetVar = new llvm::GlobalVariable(TheModule, IntTy,
1878 false, llvm::GlobalValue::ExternalLinkage,
1879 OffsetValue, OffsetName);
1880 auto ivarVisibility =
1881 (IVD->getAccessControl() == ObjCIvarDecl::Private ||
1882 IVD->getAccessControl() == ObjCIvarDecl::Package ||
1883 classDecl->getVisibility() == HiddenVisibility) ?
1884 llvm::GlobalValue::HiddenVisibility :
1885 llvm::GlobalValue::DefaultVisibility;
1886 OffsetVar->setVisibility(ivarVisibility);
1887 if (ivarVisibility != llvm::GlobalValue::HiddenVisibility)
1888 CGM.setGVProperties(OffsetVar, OID->getClassInterface());
1889 ivarBuilder.add(OffsetVar);
1890 // Ivar size
1891 ivarBuilder.addInt(Int32Ty,
1892 CGM.getContext().getTypeSizeInChars(ivarTy).getQuantity());
1893 // Alignment will be stored as a base-2 log of the alignment.
1894 unsigned align =
1895 llvm::Log2_32(Context.getTypeAlignInChars(ivarTy).getQuantity());
1896 // Objects that require more than 2^64-byte alignment should be impossible!
1897 assert(align < 64);
1898 // uint32_t flags;
1899 // Bits 0-1 are ownership.
1900 // Bit 2 indicates an extended type encoding
1901 // Bits 3-8 contain log2(aligment)
1902 ivarBuilder.addInt(Int32Ty,
1903 (align << 3) | (1<<2) |
1904 FlagsForOwnership(ivarTy.getQualifiers().getObjCLifetime()));
1905 ivarBuilder.finishAndAddTo(ivarArrayBuilder);
1906 }
1907 ivarArrayBuilder.finishAndAddTo(ivarListBuilder);
1908 auto ivarList = ivarListBuilder.finishAndCreateGlobal(".objc_ivar_list",
1909 CGM.getPointerAlign(), /*constant*/ false,
1910 llvm::GlobalValue::PrivateLinkage);
1911 classFields.add(ivarList);
1912 }
1913 // struct objc_method_list *methods
1915 InstanceMethods.insert(InstanceMethods.begin(), OID->instmeth_begin(),
1916 OID->instmeth_end());
1917 for (auto *propImpl : OID->property_impls())
1918 if (propImpl->getPropertyImplementation() ==
1920 auto addIfExists = [&](const ObjCMethodDecl *OMD) {
1921 if (OMD && OMD->hasBody())
1922 InstanceMethods.push_back(OMD);
1923 };
1924 addIfExists(propImpl->getGetterMethodDecl());
1925 addIfExists(propImpl->getSetterMethodDecl());
1926 }
1927
1928 if (InstanceMethods.size() == 0)
1929 classFields.addNullPointer(PtrTy);
1930 else
1931 classFields.add(
1932 GenerateMethodList(className, "", InstanceMethods, false));
1933
1934 // void *dtable;
1935 classFields.addNullPointer(PtrTy);
1936 // IMP cxx_construct;
1937 classFields.addNullPointer(PtrTy);
1938 // IMP cxx_destruct;
1939 classFields.addNullPointer(PtrTy);
1940 // struct objc_class *subclass_list
1941 classFields.addNullPointer(PtrTy);
1942 // struct objc_class *sibling_class
1943 classFields.addNullPointer(PtrTy);
1944 // struct objc_protocol_list *protocols;
1945 auto RuntimeProtocols =
1946 GetRuntimeProtocolList(classDecl->all_referenced_protocol_begin(),
1947 classDecl->all_referenced_protocol_end());
1949 for (const auto *I : RuntimeProtocols)
1950 Protocols.push_back(GenerateProtocolRef(I));
1951
1952 if (Protocols.empty())
1953 classFields.addNullPointer(PtrTy);
1954 else
1955 classFields.add(GenerateProtocolList(Protocols));
1956 // struct reference_list *extra_data;
1957 classFields.addNullPointer(PtrTy);
1958 // long abi_version;
1959 classFields.addInt(LongTy, 0);
1960 // struct objc_property_list *properties
1961 classFields.add(GeneratePropertyList(OID, classDecl));
1962
1963 llvm::GlobalVariable *classStruct =
1964 classFields.finishAndCreateGlobal(SymbolForClass(className),
1965 CGM.getPointerAlign(), false, llvm::GlobalValue::ExternalLinkage);
1966
1967 auto *classRefSymbol = GetClassVar(className);
1968 classRefSymbol->setSection(sectionName<ClassReferenceSection>());
1969 classRefSymbol->setInitializer(classStruct);
1970
1971 if (IsCOFF) {
1972 // we can't import a class struct.
1973 if (OID->getClassInterface()->hasAttr<DLLExportAttr>()) {
1974 classStruct->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1975 cast<llvm::GlobalValue>(classRefSymbol)->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1976 }
1977
1978 if (SuperClass) {
1979 std::pair<llvm::GlobalVariable*, int> v{classStruct, 1};
1980 EarlyInitList.emplace_back(std::string(SuperClass->getName()),
1981 std::move(v));
1982 }
1983
1984 }
1985
1986
1987 // Resolve the class aliases, if they exist.
1988 // FIXME: Class pointer aliases shouldn't exist!
1989 if (ClassPtrAlias) {
1990 ClassPtrAlias->replaceAllUsesWith(classStruct);
1991 ClassPtrAlias->eraseFromParent();
1992 ClassPtrAlias = nullptr;
1993 }
1994 if (auto Placeholder =
1995 TheModule.getNamedGlobal(SymbolForClass(className)))
1996 if (Placeholder != classStruct) {
1997 Placeholder->replaceAllUsesWith(classStruct);
1998 Placeholder->eraseFromParent();
1999 classStruct->setName(SymbolForClass(className));
2000 }
2001 if (MetaClassPtrAlias) {
2002 MetaClassPtrAlias->replaceAllUsesWith(metaclass);
2003 MetaClassPtrAlias->eraseFromParent();
2004 MetaClassPtrAlias = nullptr;
2005 }
2006 assert(classStruct->getName() == SymbolForClass(className));
2007
2008 auto classInitRef = new llvm::GlobalVariable(TheModule,
2009 classStruct->getType(), false, llvm::GlobalValue::ExternalLinkage,
2010 classStruct, ManglePublicSymbol("OBJC_INIT_CLASS_") + className);
2011 classInitRef->setSection(sectionName<ClassSection>());
2012 CGM.addUsedGlobal(classInitRef);
2013
2014 EmittedClass = true;
2015 }
2016 public:
2017 CGObjCGNUstep2(CodeGenModule &Mod) : CGObjCGNUstep(Mod, 10, 4, 2) {
2018 MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy,
2019 PtrToObjCSuperTy, SelectorTy);
2020 SentInitializeFn.init(&CGM, "objc_send_initialize",
2021 llvm::Type::getVoidTy(VMContext), IdTy);
2022 // struct objc_property
2023 // {
2024 // const char *name;
2025 // const char *attributes;
2026 // const char *type;
2027 // SEL getter;
2028 // SEL setter;
2029 // }
2030 PropertyMetadataTy =
2031 llvm::StructType::get(CGM.getLLVMContext(),
2032 { PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty });
2033 }
2034
2035 void GenerateDirectMethodPrologue(CodeGenFunction &CGF, llvm::Function *Fn,
2036 const ObjCMethodDecl *OMD,
2037 const ObjCContainerDecl *CD) override {
2038 auto &Builder = CGF.Builder;
2039 bool ReceiverCanBeNull = true;
2040 auto selfAddr = CGF.GetAddrOfLocalVar(OMD->getSelfDecl());
2041 auto selfValue = Builder.CreateLoad(selfAddr);
2042
2043 // Generate:
2044 //
2045 // /* unless the receiver is never NULL */
2046 // if (self == nil) {
2047 // return (ReturnType){ };
2048 // }
2049 //
2050 // /* for class methods only to force class lazy initialization */
2051 // if (!__objc_{class}_initialized)
2052 // {
2053 // objc_send_initialize(class);
2054 // __objc_{class}_initialized = 1;
2055 // }
2056 //
2057 // _cmd = @selector(...)
2058 // ...
2059
2060 if (OMD->isClassMethod()) {
2061 const ObjCInterfaceDecl *OID = cast<ObjCInterfaceDecl>(CD);
2062
2063 // Nullable `Class` expressions cannot be messaged with a direct method
2064 // so the only reason why the receive can be null would be because
2065 // of weak linking.
2066 ReceiverCanBeNull = isWeakLinkedClass(OID);
2067 }
2068
2069 llvm::MDBuilder MDHelper(CGM.getLLVMContext());
2070 if (ReceiverCanBeNull) {
2071 llvm::BasicBlock *SelfIsNilBlock =
2072 CGF.createBasicBlock("objc_direct_method.self_is_nil");
2073 llvm::BasicBlock *ContBlock =
2074 CGF.createBasicBlock("objc_direct_method.cont");
2075
2076 // if (self == nil) {
2077 auto selfTy = cast<llvm::PointerType>(selfValue->getType());
2078 auto Zero = llvm::ConstantPointerNull::get(selfTy);
2079
2080 Builder.CreateCondBr(Builder.CreateICmpEQ(selfValue, Zero),
2081 SelfIsNilBlock, ContBlock,
2082 MDHelper.createUnlikelyBranchWeights());
2083
2084 CGF.EmitBlock(SelfIsNilBlock);
2085
2086 // return (ReturnType){ };
2087 auto retTy = OMD->getReturnType();
2088 Builder.SetInsertPoint(SelfIsNilBlock);
2089 if (!retTy->isVoidType()) {
2090 CGF.EmitNullInitialization(CGF.ReturnValue, retTy);
2091 }
2093 // }
2094
2095 // rest of the body
2096 CGF.EmitBlock(ContBlock);
2097 Builder.SetInsertPoint(ContBlock);
2098 }
2099
2100 if (OMD->isClassMethod()) {
2101 // Prefix of the class type.
2102 auto *classStart =
2103 llvm::StructType::get(PtrTy, PtrTy, PtrTy, LongTy, LongTy);
2104 auto &astContext = CGM.getContext();
2105 // FIXME: The following few lines up to and including the call to
2106 // `CreateLoad` were known to miscompile when MSVC 19.40.33813 is used
2107 // to build Clang. When the bug is fixed in future MSVC releases, we
2108 // should revert these lines to their previous state. See discussion in
2109 // https://github.com/llvm/llvm-project/pull/102681
2110 llvm::Value *Val = Builder.CreateStructGEP(classStart, selfValue, 4);
2111 auto Align = CharUnits::fromQuantity(
2112 astContext.getTypeAlign(astContext.UnsignedLongTy));
2113 auto flags = Builder.CreateLoad(Address{Val, LongTy, Align});
2114 auto isInitialized =
2115 Builder.CreateAnd(flags, ClassFlags::ClassFlagInitialized);
2116 llvm::BasicBlock *notInitializedBlock =
2117 CGF.createBasicBlock("objc_direct_method.class_uninitialized");
2118 llvm::BasicBlock *initializedBlock =
2119 CGF.createBasicBlock("objc_direct_method.class_initialized");
2120 Builder.CreateCondBr(Builder.CreateICmpEQ(isInitialized, Zeros[0]),
2121 notInitializedBlock, initializedBlock,
2122 MDHelper.createUnlikelyBranchWeights());
2123 CGF.EmitBlock(notInitializedBlock);
2124 Builder.SetInsertPoint(notInitializedBlock);
2125 CGF.EmitRuntimeCall(SentInitializeFn, selfValue);
2126 Builder.CreateBr(initializedBlock);
2127 CGF.EmitBlock(initializedBlock);
2128 Builder.SetInsertPoint(initializedBlock);
2129 }
2130
2131 // only synthesize _cmd if it's referenced
2132 if (OMD->getCmdDecl()->isUsed()) {
2133 // `_cmd` is not a parameter to direct methods, so storage must be
2134 // explicitly declared for it.
2135 CGF.EmitVarDecl(*OMD->getCmdDecl());
2136 Builder.CreateStore(GetSelector(CGF, OMD),
2137 CGF.GetAddrOfLocalVar(OMD->getCmdDecl()));
2138 }
2139 }
2140};
2141
2142const char *const CGObjCGNUstep2::SectionsBaseNames[8] =
2143{
2144"__objc_selectors",
2145"__objc_classes",
2146"__objc_class_refs",
2147"__objc_cats",
2148"__objc_protocols",
2149"__objc_protocol_refs",
2150"__objc_class_aliases",
2151"__objc_constant_string"
2152};
2153
2154const char *const CGObjCGNUstep2::PECOFFSectionsBaseNames[8] =
2155{
2156".objcrt$SEL",
2157".objcrt$CLS",
2158".objcrt$CLR",
2159".objcrt$CAT",
2160".objcrt$PCL",
2161".objcrt$PCR",
2162".objcrt$CAL",
2163".objcrt$STR"
2164};
2165
2166/// Support for the ObjFW runtime.
2167class CGObjCObjFW: public CGObjCGNU {
2168protected:
2169 /// The GCC ABI message lookup function. Returns an IMP pointing to the
2170 /// method implementation for this message.
2171 LazyRuntimeFunction MsgLookupFn;
2172 /// stret lookup function. While this does not seem to make sense at the
2173 /// first look, this is required to call the correct forwarding function.
2174 LazyRuntimeFunction MsgLookupFnSRet;
2175 /// The GCC ABI superclass message lookup function. Takes a pointer to a
2176 /// structure describing the receiver and the class, and a selector as
2177 /// arguments. Returns the IMP for the corresponding method.
2178 LazyRuntimeFunction MsgLookupSuperFn, MsgLookupSuperFnSRet;
2179
2180 llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver,
2181 llvm::Value *cmd, llvm::MDNode *node,
2182 MessageSendInfo &MSI) override {
2183 CGBuilderTy &Builder = CGF.Builder;
2184 llvm::Value *args[] = {
2185 EnforceType(Builder, Receiver, IdTy),
2186 EnforceType(Builder, cmd, SelectorTy) };
2187
2188 llvm::CallBase *imp;
2189 if (CGM.ReturnTypeUsesSRet(MSI.CallInfo))
2190 imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFnSRet, args);
2191 else
2192 imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFn, args);
2193
2194 imp->setMetadata(msgSendMDKind, node);
2195 return imp;
2196 }
2197
2198 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper,
2199 llvm::Value *cmd, MessageSendInfo &MSI) override {
2200 CGBuilderTy &Builder = CGF.Builder;
2201 llvm::Value *lookupArgs[] = {
2202 EnforceType(Builder, ObjCSuper.emitRawPointer(CGF), PtrToObjCSuperTy),
2203 cmd,
2204 };
2205
2206 if (CGM.ReturnTypeUsesSRet(MSI.CallInfo))
2207 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFnSRet, lookupArgs);
2208 else
2209 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs);
2210 }
2211
2212 llvm::Value *GetClassNamed(CodeGenFunction &CGF, const std::string &Name,
2213 bool isWeak) override {
2214 if (isWeak)
2215 return CGObjCGNU::GetClassNamed(CGF, Name, isWeak);
2216
2217 EmitClassRef(Name);
2218 std::string SymbolName = "_OBJC_CLASS_" + Name;
2219 llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(SymbolName);
2220 if (!ClassSymbol)
2221 ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false,
2222 llvm::GlobalValue::ExternalLinkage,
2223 nullptr, SymbolName);
2224 return ClassSymbol;
2225 }
2226
2227 void GenerateDirectMethodPrologue(
2228 CodeGenFunction &CGF, llvm::Function *Fn, const ObjCMethodDecl *OMD,
2229 const ObjCContainerDecl *CD) override {
2230 auto &Builder = CGF.Builder;
2231 bool ReceiverCanBeNull = true;
2232 auto selfAddr = CGF.GetAddrOfLocalVar(OMD->getSelfDecl());
2233 auto selfValue = Builder.CreateLoad(selfAddr);
2234
2235 // Generate:
2236 //
2237 // /* for class methods only to force class lazy initialization */
2238 // self = [self self];
2239 //
2240 // /* unless the receiver is never NULL */
2241 // if (self == nil) {
2242 // return (ReturnType){ };
2243 // }
2244 //
2245 // _cmd = @selector(...)
2246 // ...
2247
2248 if (OMD->isClassMethod()) {
2249 const ObjCInterfaceDecl *OID = cast<ObjCInterfaceDecl>(CD);
2250 assert(
2251 OID &&
2252 "GenerateDirectMethod() should be called with the Class Interface");
2253 Selector SelfSel = GetNullarySelector("self", CGM.getContext());
2254 auto ResultType = CGF.getContext().getObjCIdType();
2255 RValue result;
2256 CallArgList Args;
2257
2258 // TODO: If this method is inlined, the caller might know that `self` is
2259 // already initialized; for example, it might be an ordinary Objective-C
2260 // method which always receives an initialized `self`, or it might have
2261 // just forced initialization on its own.
2262 //
2263 // We should find a way to eliminate this unnecessary initialization in
2264 // such cases in LLVM.
2265 result = GeneratePossiblySpecializedMessageSend(
2266 CGF, ReturnValueSlot(), ResultType, SelfSel, selfValue, Args, OID,
2267 nullptr, true);
2268 Builder.CreateStore(result.getScalarVal(), selfAddr);
2269
2270 // Nullable `Class` expressions cannot be messaged with a direct method
2271 // so the only reason why the receive can be null would be because
2272 // of weak linking.
2273 ReceiverCanBeNull = isWeakLinkedClass(OID);
2274 }
2275
2276 if (ReceiverCanBeNull) {
2277 llvm::BasicBlock *SelfIsNilBlock =
2278 CGF.createBasicBlock("objc_direct_method.self_is_nil");
2279 llvm::BasicBlock *ContBlock =
2280 CGF.createBasicBlock("objc_direct_method.cont");
2281
2282 // if (self == nil) {
2283 auto selfTy = cast<llvm::PointerType>(selfValue->getType());
2284 auto Zero = llvm::ConstantPointerNull::get(selfTy);
2285
2286 llvm::MDBuilder MDHelper(CGM.getLLVMContext());
2287 Builder.CreateCondBr(Builder.CreateICmpEQ(selfValue, Zero),
2288 SelfIsNilBlock, ContBlock,
2289 MDHelper.createUnlikelyBranchWeights());
2290
2291 CGF.EmitBlock(SelfIsNilBlock);
2292
2293 // return (ReturnType){ };
2294 auto retTy = OMD->getReturnType();
2295 Builder.SetInsertPoint(SelfIsNilBlock);
2296 if (!retTy->isVoidType()) {
2297 CGF.EmitNullInitialization(CGF.ReturnValue, retTy);
2298 }
2300 // }
2301
2302 // rest of the body
2303 CGF.EmitBlock(ContBlock);
2304 Builder.SetInsertPoint(ContBlock);
2305 }
2306
2307 // only synthesize _cmd if it's referenced
2308 if (OMD->getCmdDecl()->isUsed()) {
2309 // `_cmd` is not a parameter to direct methods, so storage must be
2310 // explicitly declared for it.
2311 CGF.EmitVarDecl(*OMD->getCmdDecl());
2312 Builder.CreateStore(GetSelector(CGF, OMD),
2313 CGF.GetAddrOfLocalVar(OMD->getCmdDecl()));
2314 }
2315 }
2316
2317public:
2318 CGObjCObjFW(CodeGenModule &Mod): CGObjCGNU(Mod, 9, 3) {
2319 // IMP objc_msg_lookup(id, SEL);
2320 MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy);
2321 MsgLookupFnSRet.init(&CGM, "objc_msg_lookup_stret", IMPTy, IdTy,
2322 SelectorTy);
2323 // IMP objc_msg_lookup_super(struct objc_super*, SEL);
2324 MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy,
2325 PtrToObjCSuperTy, SelectorTy);
2326 MsgLookupSuperFnSRet.init(&CGM, "objc_msg_lookup_super_stret", IMPTy,
2327 PtrToObjCSuperTy, SelectorTy);
2328 }
2329};
2330} // end anonymous namespace
2331
2332/// Emits a reference to a dummy variable which is emitted with each class.
2333/// This ensures that a linker error will be generated when trying to link
2334/// together modules where a referenced class is not defined.
2335void CGObjCGNU::EmitClassRef(const std::string &className) {
2336 std::string symbolRef = "__objc_class_ref_" + className;
2337 // Don't emit two copies of the same symbol
2338 if (TheModule.getGlobalVariable(symbolRef))
2339 return;
2340 std::string symbolName = "__objc_class_name_" + className;
2341 llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(symbolName);
2342 if (!ClassSymbol) {
2343 ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false,
2344 llvm::GlobalValue::ExternalLinkage,
2345 nullptr, symbolName);
2346 }
2347 new llvm::GlobalVariable(TheModule, ClassSymbol->getType(), true,
2348 llvm::GlobalValue::WeakAnyLinkage, ClassSymbol, symbolRef);
2349}
2350
2351CGObjCGNU::CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion,
2352 unsigned protocolClassVersion, unsigned classABI)
2353 : CGObjCRuntime(cgm), TheModule(CGM.getModule()),
2354 VMContext(cgm.getLLVMContext()), ClassPtrAlias(nullptr),
2355 MetaClassPtrAlias(nullptr), RuntimeVersion(runtimeABIVersion),
2356 ProtocolVersion(protocolClassVersion), ClassABIVersion(classABI) {
2357
2358 msgSendMDKind = VMContext.getMDKindID("GNUObjCMessageSend");
2359 usesSEHExceptions =
2360 cgm.getContext().getTargetInfo().getTriple().isWindowsMSVCEnvironment();
2361 usesCxxExceptions =
2362 cgm.getContext().getTargetInfo().getTriple().isOSCygMing() &&
2363 isRuntime(ObjCRuntime::GNUstep, 2);
2364
2365 CodeGenTypes &Types = CGM.getTypes();
2366 IntTy = cast<llvm::IntegerType>(
2367 Types.ConvertType(CGM.getContext().IntTy));
2368 LongTy = cast<llvm::IntegerType>(
2369 Types.ConvertType(CGM.getContext().LongTy));
2370 SizeTy = cast<llvm::IntegerType>(
2371 Types.ConvertType(CGM.getContext().getSizeType()));
2372 PtrDiffTy = cast<llvm::IntegerType>(
2373 Types.ConvertType(CGM.getContext().getPointerDiffType()));
2374 BoolTy = CGM.getTypes().ConvertType(CGM.getContext().BoolTy);
2375
2376 Int8Ty = llvm::Type::getInt8Ty(VMContext);
2377
2378 PtrTy = llvm::PointerType::getUnqual(cgm.getLLVMContext());
2379 PtrToIntTy = PtrTy;
2380 // C string type. Used in lots of places.
2381 PtrToInt8Ty = PtrTy;
2382 ProtocolPtrTy = PtrTy;
2383
2384 Zeros[0] = llvm::ConstantInt::get(LongTy, 0);
2385 Zeros[1] = Zeros[0];
2386 NULLPtr = llvm::ConstantPointerNull::get(PtrToInt8Ty);
2387 // Get the selector Type.
2388 QualType selTy = CGM.getContext().getObjCSelType();
2389 if (QualType() == selTy) {
2390 SelectorTy = PtrToInt8Ty;
2391 SelectorElemTy = Int8Ty;
2392 } else {
2393 SelectorTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(selTy));
2394 SelectorElemTy = CGM.getTypes().ConvertTypeForMem(selTy->getPointeeType());
2395 }
2396
2397 Int32Ty = llvm::Type::getInt32Ty(VMContext);
2398 Int64Ty = llvm::Type::getInt64Ty(VMContext);
2399
2400 IntPtrTy =
2401 CGM.getDataLayout().getPointerSizeInBits() == 32 ? Int32Ty : Int64Ty;
2402
2403 // Object type
2404 QualType UnqualIdTy = CGM.getContext().getObjCIdType();
2405 ASTIdTy = CanQualType();
2406 if (UnqualIdTy != QualType()) {
2407 ASTIdTy = CGM.getContext().getCanonicalType(UnqualIdTy);
2408 IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy));
2409 IdElemTy = CGM.getTypes().ConvertTypeForMem(
2410 ASTIdTy.getTypePtr()->getPointeeType());
2411 } else {
2412 IdTy = PtrToInt8Ty;
2413 IdElemTy = Int8Ty;
2414 }
2415 PtrToIdTy = PtrTy;
2416 ProtocolTy = llvm::StructType::get(IdTy,
2417 PtrToInt8Ty, // name
2418 PtrToInt8Ty, // protocols
2419 PtrToInt8Ty, // instance methods
2420 PtrToInt8Ty, // class methods
2421 PtrToInt8Ty, // optional instance methods
2422 PtrToInt8Ty, // optional class methods
2423 PtrToInt8Ty, // properties
2424 PtrToInt8Ty);// optional properties
2425
2426 // struct objc_property_gsv1
2427 // {
2428 // const char *name;
2429 // char attributes;
2430 // char attributes2;
2431 // char unused1;
2432 // char unused2;
2433 // const char *getter_name;
2434 // const char *getter_types;
2435 // const char *setter_name;
2436 // const char *setter_types;
2437 // }
2438 PropertyMetadataTy = llvm::StructType::get(CGM.getLLVMContext(), {
2439 PtrToInt8Ty, Int8Ty, Int8Ty, Int8Ty, Int8Ty, PtrToInt8Ty, PtrToInt8Ty,
2440 PtrToInt8Ty, PtrToInt8Ty });
2441
2442 ObjCSuperTy = llvm::StructType::get(IdTy, IdTy);
2443 PtrToObjCSuperTy = PtrTy;
2444
2445 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
2446
2447 // void objc_exception_throw(id);
2448 ExceptionThrowFn.init(&CGM, "objc_exception_throw", VoidTy, IdTy);
2449 ExceptionReThrowFn.init(&CGM,
2450 usesCxxExceptions ? "objc_exception_rethrow"
2451 : "objc_exception_throw",
2452 VoidTy, IdTy);
2453 // int objc_sync_enter(id);
2454 SyncEnterFn.init(&CGM, "objc_sync_enter", IntTy, IdTy);
2455 // int objc_sync_exit(id);
2456 SyncExitFn.init(&CGM, "objc_sync_exit", IntTy, IdTy);
2457
2458 // void objc_enumerationMutation (id)
2459 EnumerationMutationFn.init(&CGM, "objc_enumerationMutation", VoidTy, IdTy);
2460
2461 // id objc_getProperty(id, SEL, ptrdiff_t, BOOL)
2462 GetPropertyFn.init(&CGM, "objc_getProperty", IdTy, IdTy, SelectorTy,
2463 PtrDiffTy, BoolTy);
2464 // void objc_setProperty(id, SEL, ptrdiff_t, id, BOOL, BOOL)
2465 SetPropertyFn.init(&CGM, "objc_setProperty", VoidTy, IdTy, SelectorTy,
2466 PtrDiffTy, IdTy, BoolTy, BoolTy);
2467 // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL)
2468 GetStructPropertyFn.init(&CGM, "objc_getPropertyStruct", VoidTy, PtrTy, PtrTy,
2469 PtrDiffTy, BoolTy, BoolTy);
2470 // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL)
2471 SetStructPropertyFn.init(&CGM, "objc_setPropertyStruct", VoidTy, PtrTy, PtrTy,
2472 PtrDiffTy, BoolTy, BoolTy);
2473
2474 // IMP type
2475 IMPTy = PtrTy;
2476
2477 const LangOptions &Opts = CGM.getLangOpts();
2478 if ((Opts.getGC() != LangOptions::NonGC) || Opts.ObjCAutoRefCount)
2479 RuntimeVersion = 10;
2480
2481 // Don't bother initialising the GC stuff unless we're compiling in GC mode
2482 if (Opts.getGC() != LangOptions::NonGC) {
2483 // This is a bit of an hack. We should sort this out by having a proper
2484 // CGObjCGNUstep subclass for GC, but we may want to really support the old
2485 // ABI and GC added in ObjectiveC2.framework, so we fudge it a bit for now
2486 // Get selectors needed in GC mode
2487 RetainSel = GetNullarySelector("retain", CGM.getContext());
2488 ReleaseSel = GetNullarySelector("release", CGM.getContext());
2489 AutoreleaseSel = GetNullarySelector("autorelease", CGM.getContext());
2490
2491 // Get functions needed in GC mode
2492
2493 // id objc_assign_ivar(id, id, ptrdiff_t);
2494 IvarAssignFn.init(&CGM, "objc_assign_ivar", IdTy, IdTy, IdTy, PtrDiffTy);
2495 // id objc_assign_strongCast (id, id*)
2496 StrongCastAssignFn.init(&CGM, "objc_assign_strongCast", IdTy, IdTy,
2497 PtrToIdTy);
2498 // id objc_assign_global(id, id*);
2499 GlobalAssignFn.init(&CGM, "objc_assign_global", IdTy, IdTy, PtrToIdTy);
2500 // id objc_assign_weak(id, id*);
2501 WeakAssignFn.init(&CGM, "objc_assign_weak", IdTy, IdTy, PtrToIdTy);
2502 // id objc_read_weak(id*);
2503 WeakReadFn.init(&CGM, "objc_read_weak", IdTy, PtrToIdTy);
2504 // void *objc_memmove_collectable(void*, void *, size_t);
2505 MemMoveFn.init(&CGM, "objc_memmove_collectable", PtrTy, PtrTy, PtrTy,
2506 SizeTy);
2507 }
2508}
2509
2510llvm::Value *CGObjCGNU::GetClassNamed(CodeGenFunction &CGF,
2511 const std::string &Name, bool isWeak) {
2512 llvm::Constant *ClassName = MakeConstantString(Name);
2513 // With the incompatible ABI, this will need to be replaced with a direct
2514 // reference to the class symbol. For the compatible nonfragile ABI we are
2515 // still performing this lookup at run time but emitting the symbol for the
2516 // class externally so that we can make the switch later.
2517 //
2518 // Libobjc2 contains an LLVM pass that replaces calls to objc_lookup_class
2519 // with memoized versions or with static references if it's safe to do so.
2520 if (!isWeak)
2521 EmitClassRef(Name);
2522
2523 llvm::FunctionCallee ClassLookupFn = CGM.CreateRuntimeFunction(
2524 llvm::FunctionType::get(IdTy, PtrToInt8Ty, true), "objc_lookup_class");
2525 return CGF.EmitNounwindRuntimeCall(ClassLookupFn, ClassName);
2526}
2527
2528// This has to perform the lookup every time, since posing and related
2529// techniques can modify the name -> class mapping.
2530llvm::Value *CGObjCGNU::GetClass(CodeGenFunction &CGF,
2531 const ObjCInterfaceDecl *OID) {
2532 auto *Value =
2533 GetClassNamed(CGF, OID->getNameAsString(), OID->isWeakImported());
2534 if (auto *ClassSymbol = dyn_cast<llvm::GlobalVariable>(Value))
2535 CGM.setGVProperties(ClassSymbol, OID);
2536 return Value;
2537}
2538
2539llvm::Value *CGObjCGNU::EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) {
2540 auto *Value = GetClassNamed(CGF, "NSAutoreleasePool", false);
2541 if (CGM.getTriple().isOSBinFormatCOFF()) {
2542 if (auto *ClassSymbol = dyn_cast<llvm::GlobalVariable>(Value)) {
2543 IdentifierInfo &II = CGF.CGM.getContext().Idents.get("NSAutoreleasePool");
2546
2547 const VarDecl *VD = nullptr;
2548 for (const auto *Result : DC->lookup(&II))
2549 if ((VD = dyn_cast<VarDecl>(Result)))
2550 break;
2551
2552 CGM.setGVProperties(ClassSymbol, VD);
2553 }
2554 }
2555 return Value;
2556}
2557
2558llvm::Value *CGObjCGNU::GetTypedSelector(CodeGenFunction &CGF, Selector Sel,
2559 const std::string &TypeEncoding) {
2561 llvm::GlobalAlias *SelValue = nullptr;
2562
2563 for (const TypedSelector &Type : Types) {
2564 if (Type.first == TypeEncoding) {
2565 SelValue = Type.second;
2566 break;
2567 }
2568 }
2569 if (!SelValue) {
2570 SelValue = llvm::GlobalAlias::create(SelectorElemTy, 0,
2571 llvm::GlobalValue::PrivateLinkage,
2572 ".objc_selector_" + Sel.getAsString(),
2573 &TheModule);
2574 Types.emplace_back(TypeEncoding, SelValue);
2575 }
2576
2577 return SelValue;
2578}
2579
2580Address CGObjCGNU::GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) {
2581 llvm::Value *SelValue = GetSelector(CGF, Sel);
2582
2583 // Store it to a temporary. Does this satisfy the semantics of
2584 // GetAddrOfSelector? Hopefully.
2585 Address tmp = CGF.CreateTempAlloca(SelValue->getType(),
2586 CGF.getPointerAlign());
2587 CGF.Builder.CreateStore(SelValue, tmp);
2588 return tmp;
2589}
2590
2591llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF, Selector Sel) {
2592 return GetTypedSelector(CGF, Sel, std::string());
2593}
2594
2595llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF,
2596 const ObjCMethodDecl *Method) {
2597 std::string SelTypes = CGM.getContext().getObjCEncodingForMethodDecl(Method);
2598 return GetTypedSelector(CGF, Method->getSelector(), SelTypes);
2599}
2600
2601llvm::Constant *CGObjCGNU::GetEHType(QualType T) {
2602 if (T->isObjCIdType() || T->isObjCQualifiedIdType()) {
2603 // With the old ABI, there was only one kind of catchall, which broke
2604 // foreign exceptions. With the new ABI, we use __objc_id_typeinfo as
2605 // a pointer indicating object catchalls, and NULL to indicate real
2606 // catchalls
2607 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
2608 return MakeConstantString("@id");
2609 } else {
2610 return nullptr;
2611 }
2612 }
2613
2614 // All other types should be Objective-C interface pointer types.
2616 assert(OPT && "Invalid @catch type.");
2617 const ObjCInterfaceDecl *IDecl = OPT->getObjectType()->getInterface();
2618 assert(IDecl && "Invalid @catch type.");
2619 return MakeConstantString(IDecl->getIdentifier()->getName());
2620}
2621
2622llvm::Constant *CGObjCGNUstep::GetEHType(QualType T) {
2623 if (usesSEHExceptions)
2624 return CGM.getCXXABI().getAddrOfRTTIDescriptor(T);
2625
2626 if (!CGM.getLangOpts().CPlusPlus && !usesCxxExceptions)
2627 return CGObjCGNU::GetEHType(T);
2628
2629 // For Objective-C++, we want to provide the ability to catch both C++ and
2630 // Objective-C objects in the same function.
2631
2632 // There's a particular fixed type info for 'id'.
2633 if (T->isObjCIdType() ||
2635 llvm::Constant *IDEHType =
2636 CGM.getModule().getGlobalVariable("__objc_id_type_info");
2637 if (!IDEHType)
2638 IDEHType =
2639 new llvm::GlobalVariable(CGM.getModule(), PtrToInt8Ty,
2640 false,
2641 llvm::GlobalValue::ExternalLinkage,
2642 nullptr, "__objc_id_type_info");
2643 return IDEHType;
2644 }
2645
2646 const ObjCObjectPointerType *PT =
2648 assert(PT && "Invalid @catch type.");
2649 const ObjCInterfaceType *IT = PT->getInterfaceType();
2650 assert(IT && "Invalid @catch type.");
2651 std::string className =
2652 std::string(IT->getDecl()->getIdentifier()->getName());
2653
2654 std::string typeinfoName = "__objc_eh_typeinfo_" + className;
2655
2656 // Return the existing typeinfo if it exists
2657 if (llvm::Constant *typeinfo = TheModule.getGlobalVariable(typeinfoName))
2658 return typeinfo;
2659
2660 // Otherwise create it.
2661
2662 // vtable for gnustep::libobjc::__objc_class_type_info
2663 // It's quite ugly hard-coding this. Ideally we'd generate it using the host
2664 // platform's name mangling.
2665 const char *vtableName = "_ZTVN7gnustep7libobjc22__objc_class_type_infoE";
2666 auto *Vtable = TheModule.getGlobalVariable(vtableName);
2667 if (!Vtable) {
2668 Vtable = new llvm::GlobalVariable(TheModule, PtrToInt8Ty, true,
2669 llvm::GlobalValue::ExternalLinkage,
2670 nullptr, vtableName);
2671 }
2672 llvm::Constant *Two = llvm::ConstantInt::get(IntTy, 2);
2673 auto *BVtable =
2674 llvm::ConstantExpr::getGetElementPtr(Vtable->getValueType(), Vtable, Two);
2675
2676 llvm::Constant *typeName =
2677 ExportUniqueString(className, "__objc_eh_typename_");
2678
2679 ConstantInitBuilder builder(CGM);
2680 auto fields = builder.beginStruct();
2681 fields.add(BVtable);
2682 fields.add(typeName);
2683 llvm::Constant *TI =
2684 fields.finishAndCreateGlobal("__objc_eh_typeinfo_" + className,
2685 CGM.getPointerAlign(),
2686 /*constant*/ false,
2687 llvm::GlobalValue::LinkOnceODRLinkage);
2688 return TI;
2689}
2690
2691/// Generate an NSConstantString object.
2692ConstantAddress CGObjCGNU::GenerateConstantString(const StringLiteral *SL) {
2693
2694 std::string Str = SL->getString().str();
2695 CharUnits Align = CGM.getPointerAlign();
2696
2697 // Look for an existing one
2698 llvm::StringMap<llvm::Constant*>::iterator old = ObjCStrings.find(Str);
2699 if (old != ObjCStrings.end())
2700 return ConstantAddress(old->getValue(), Int8Ty, Align);
2701
2702 StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass;
2703
2704 if (StringClass.empty()) StringClass = "NSConstantString";
2705
2706 std::string Sym = "_OBJC_CLASS_";
2707 Sym += StringClass;
2708
2709 llvm::Constant *isa = TheModule.getNamedGlobal(Sym);
2710
2711 if (!isa)
2712 isa = new llvm::GlobalVariable(TheModule, IdTy, /* isConstant */ false,
2713 llvm::GlobalValue::ExternalWeakLinkage,
2714 nullptr, Sym);
2715
2716 ConstantInitBuilder Builder(CGM);
2717 auto Fields = Builder.beginStruct();
2718 Fields.add(isa);
2719 Fields.add(MakeConstantString(Str));
2720 Fields.addInt(IntTy, Str.size());
2721 llvm::Constant *ObjCStr = Fields.finishAndCreateGlobal(".objc_str", Align);
2722 ObjCStrings[Str] = ObjCStr;
2723 ConstantStrings.push_back(ObjCStr);
2724 return ConstantAddress(ObjCStr, Int8Ty, Align);
2725}
2726
2727///Generates a message send where the super is the receiver. This is a message
2728///send to self with special delivery semantics indicating which class's method
2729///should be called.
2730RValue
2731CGObjCGNU::GenerateMessageSendSuper(CodeGenFunction &CGF,
2732 ReturnValueSlot Return,
2733 QualType ResultType,
2734 Selector Sel,
2735 const ObjCInterfaceDecl *Class,
2736 bool isCategoryImpl,
2737 llvm::Value *Receiver,
2738 bool IsClassMessage,
2739 const CallArgList &CallArgs,
2740 const ObjCMethodDecl *Method) {
2741 CGBuilderTy &Builder = CGF.Builder;
2742 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
2743 if (Sel == RetainSel || Sel == AutoreleaseSel) {
2744 return RValue::get(EnforceType(Builder, Receiver,
2745 CGM.getTypes().ConvertType(ResultType)));
2746 }
2747 if (Sel == ReleaseSel) {
2748 return RValue::get(nullptr);
2749 }
2750 }
2751
2752 llvm::Value *cmd = GetSelector(CGF, Sel);
2753 CallArgList ActualArgs;
2754
2755 ActualArgs.add(RValue::get(EnforceType(Builder, Receiver, IdTy)), ASTIdTy);
2756 ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType());
2757 ActualArgs.addFrom(CallArgs);
2758
2759 MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs);
2760
2761 llvm::Value *ReceiverClass = nullptr;
2762 bool isV2ABI = isRuntime(ObjCRuntime::GNUstep, 2);
2763 if (isV2ABI) {
2764 ReceiverClass = GetClassNamed(CGF,
2765 Class->getSuperClass()->getNameAsString(), /*isWeak*/false);
2766 if (IsClassMessage) {
2767 // Load the isa pointer of the superclass is this is a class method.
2768 ReceiverClass =
2769 Builder.CreateAlignedLoad(IdTy, ReceiverClass, CGF.getPointerAlign());
2770 }
2771 ReceiverClass = EnforceType(Builder, ReceiverClass, IdTy);
2772 } else {
2773 if (isCategoryImpl) {
2774 llvm::FunctionCallee classLookupFunction = nullptr;
2775 if (IsClassMessage) {
2776 classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get(
2777 IdTy, PtrTy, true), "objc_get_meta_class");
2778 } else {
2779 classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get(
2780 IdTy, PtrTy, true), "objc_get_class");
2781 }
2782 ReceiverClass = Builder.CreateCall(classLookupFunction,
2783 MakeConstantString(Class->getNameAsString()));
2784 } else {
2785 // Set up global aliases for the metaclass or class pointer if they do not
2786 // already exist. These will are forward-references which will be set to
2787 // pointers to the class and metaclass structure created for the runtime
2788 // load function. To send a message to super, we look up the value of the
2789 // super_class pointer from either the class or metaclass structure.
2790 if (IsClassMessage) {
2791 if (!MetaClassPtrAlias) {
2792 MetaClassPtrAlias = llvm::GlobalAlias::create(
2793 IdElemTy, 0, llvm::GlobalValue::InternalLinkage,
2794 ".objc_metaclass_ref" + Class->getNameAsString(), &TheModule);
2795 }
2796 ReceiverClass = MetaClassPtrAlias;
2797 } else {
2798 if (!ClassPtrAlias) {
2799 ClassPtrAlias = llvm::GlobalAlias::create(
2800 IdElemTy, 0, llvm::GlobalValue::InternalLinkage,
2801 ".objc_class_ref" + Class->getNameAsString(), &TheModule);
2802 }
2803 ReceiverClass = ClassPtrAlias;
2804 }
2805 }
2806 // Cast the pointer to a simplified version of the class structure
2807 llvm::Type *CastTy = llvm::StructType::get(IdTy, IdTy);
2808 // Get the superclass pointer
2809 ReceiverClass = Builder.CreateStructGEP(CastTy, ReceiverClass, 1);
2810 // Load the superclass pointer
2811 ReceiverClass =
2812 Builder.CreateAlignedLoad(IdTy, ReceiverClass, CGF.getPointerAlign());
2813 }
2814 // Construct the structure used to look up the IMP
2815 llvm::StructType *ObjCSuperTy =
2816 llvm::StructType::get(Receiver->getType(), IdTy);
2817
2818 Address ObjCSuper = CGF.CreateTempAlloca(ObjCSuperTy,
2819 CGF.getPointerAlign());
2820
2821 Builder.CreateStore(Receiver, Builder.CreateStructGEP(ObjCSuper, 0));
2822 Builder.CreateStore(ReceiverClass, Builder.CreateStructGEP(ObjCSuper, 1));
2823
2824 // Get the IMP
2825 llvm::Value *imp = LookupIMPSuper(CGF, ObjCSuper, cmd, MSI);
2826 imp = EnforceType(Builder, imp, MSI.MessengerType);
2827
2828 llvm::Metadata *impMD[] = {
2829 llvm::MDString::get(VMContext, Sel.getAsString()),
2830 llvm::MDString::get(VMContext, Class->getSuperClass()->getNameAsString()),
2831 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
2832 llvm::Type::getInt1Ty(VMContext), IsClassMessage))};
2833 llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD);
2834
2835 CGCallee callee(CGCalleeInfo(), imp);
2836
2837 llvm::CallBase *call;
2838 RValue msgRet = CGF.EmitCall(MSI.CallInfo, callee, Return, ActualArgs, &call);
2839 call->setMetadata(msgSendMDKind, node);
2840 return msgRet;
2841}
2842
2843/// Generate code for a message send expression.
2844RValue
2845CGObjCGNU::GenerateMessageSend(CodeGenFunction &CGF,
2846 ReturnValueSlot Return,
2847 QualType ResultType,
2848 Selector Sel,
2849 llvm::Value *Receiver,
2850 const CallArgList &CallArgs,
2851 const ObjCInterfaceDecl *Class,
2852 const ObjCMethodDecl *Method) {
2853 CGBuilderTy &Builder = CGF.Builder;
2854
2855 // Strip out message sends to retain / release in GC mode
2856 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
2857 if (Sel == RetainSel || Sel == AutoreleaseSel) {
2858 return RValue::get(EnforceType(Builder, Receiver,
2859 CGM.getTypes().ConvertType(ResultType)));
2860 }
2861 if (Sel == ReleaseSel) {
2862 return RValue::get(nullptr);
2863 }
2864 }
2865
2866 bool isDirect = Method && Method->isDirectMethod();
2867
2868 IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy));
2869 llvm::Value *cmd;
2870 if (!isDirect) {
2871 if (Method)
2872 cmd = GetSelector(CGF, Method);
2873 else
2874 cmd = GetSelector(CGF, Sel);
2875 cmd = EnforceType(Builder, cmd, SelectorTy);
2876 }
2877
2878 Receiver = EnforceType(Builder, Receiver, IdTy);
2879
2880 llvm::Metadata *impMD[] = {
2881 llvm::MDString::get(VMContext, Sel.getAsString()),
2882 llvm::MDString::get(VMContext, Class ? Class->getNameAsString() : ""),
2883 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
2884 llvm::Type::getInt1Ty(VMContext), Class != nullptr))};
2885 llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD);
2886
2887 CallArgList ActualArgs;
2888 ActualArgs.add(RValue::get(Receiver), ASTIdTy);
2889 if (!isDirect)
2890 ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType());
2891 ActualArgs.addFrom(CallArgs);
2892
2893 MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs);
2894
2895 // Message sends are expected to return a zero value when the
2896 // receiver is nil. At one point, this was only guaranteed for
2897 // simple integer and pointer types, but expectations have grown
2898 // over time.
2899 //
2900 // Given a nil receiver, the GNU runtime's message lookup will
2901 // return a stub function that simply sets various return-value
2902 // registers to zero and then returns. That's good enough for us
2903 // if and only if (1) the calling conventions of that stub are
2904 // compatible with the signature we're using and (2) the registers
2905 // it sets are sufficient to produce a zero value of the return type.
2906 // Rather than doing a whole target-specific analysis, we assume it
2907 // only works for void, integer, and pointer types, and in all
2908 // other cases we do an explicit nil check is emitted code. In
2909 // addition to ensuring we produce a zero value for other types, this
2910 // sidesteps the few outright CC incompatibilities we know about that
2911 // could otherwise lead to crashes, like when a method is expected to
2912 // return on the x87 floating point stack or adjust the stack pointer
2913 // because of an indirect return.
2914 bool hasParamDestroyedInCallee = false;
2915 bool requiresExplicitZeroResult = false;
2916 bool requiresNilReceiverCheck = [&] {
2917 // We never need a check if we statically know the receiver isn't nil.
2918 if (!canMessageReceiverBeNull(CGF, Method, /*IsSuper*/ false,
2919 Class, Receiver))
2920 return false;
2921
2922 // If there's a consumed argument, we need a nil check.
2923 if (Method && Method->hasParamDestroyedInCallee()) {
2924 hasParamDestroyedInCallee = true;
2925 }
2926
2927 // If the return value isn't flagged as unused, and the result
2928 // type isn't in our narrow set where we assume compatibility,
2929 // we need a nil check to ensure a nil value.
2930 if (!Return.isUnused()) {
2931 if (ResultType->isVoidType()) {
2932 // void results are definitely okay.
2933 } else if (ResultType->hasPointerRepresentation() &&
2934 CGM.getTypes().isZeroInitializable(ResultType)) {
2935 // Pointer types should be fine as long as they have
2936 // bitwise-zero null pointers. But do we need to worry
2937 // about unusual address spaces?
2938 } else if (ResultType->isIntegralOrEnumerationType()) {
2939 // Bitwise zero should always be zero for integral types.
2940 // FIXME: we probably need a size limit here, but we've
2941 // never imposed one before
2942 } else {
2943 // Otherwise, use an explicit check just to be sure, unless we're
2944 // calling a direct method, where the implementation does this for us.
2945 requiresExplicitZeroResult = !isDirect;
2946 }
2947 }
2948
2949 return hasParamDestroyedInCallee || requiresExplicitZeroResult;
2950 }();
2951
2952 // We will need to explicitly zero-initialize an aggregate result slot
2953 // if we generally require explicit zeroing and we have an aggregate
2954 // result.
2955 bool requiresExplicitAggZeroing =
2956 requiresExplicitZeroResult && CGF.hasAggregateEvaluationKind(ResultType);
2957
2958 // The block we're going to end up in after any message send or nil path.
2959 llvm::BasicBlock *continueBB = nullptr;
2960 // The block that eventually branched to continueBB along the nil path.
2961 llvm::BasicBlock *nilPathBB = nullptr;
2962 // The block to do explicit work in along the nil path, if necessary.
2963 llvm::BasicBlock *nilCleanupBB = nullptr;
2964
2965 // Emit the nil-receiver check.
2966 if (requiresNilReceiverCheck) {
2967 llvm::BasicBlock *messageBB = CGF.createBasicBlock("msgSend");
2968 continueBB = CGF.createBasicBlock("continue");
2969
2970 // If we need to zero-initialize an aggregate result or destroy
2971 // consumed arguments, we'll need a separate cleanup block.
2972 // Otherwise we can just branch directly to the continuation block.
2973 if (requiresExplicitAggZeroing || hasParamDestroyedInCallee) {
2974 nilCleanupBB = CGF.createBasicBlock("nilReceiverCleanup");
2975 } else {
2976 nilPathBB = Builder.GetInsertBlock();
2977 }
2978
2979 llvm::Value *isNil = Builder.CreateICmpEQ(Receiver,
2980 llvm::Constant::getNullValue(Receiver->getType()));
2981 Builder.CreateCondBr(isNil, nilCleanupBB ? nilCleanupBB : continueBB,
2982 messageBB);
2983 CGF.EmitBlock(messageBB);
2984 }
2985
2986 // Get the IMP to call
2987 llvm::Value *imp;
2988
2989 // If this is a direct method, just emit it here.
2990 if (isDirect)
2991 imp = GenerateMethod(Method, Method->getClassInterface());
2992 else
2993 // If we have non-legacy dispatch specified, we try using the
2994 // objc_msgSend() functions. These are not supported on all platforms
2995 // (or all runtimes on a given platform), so we
2996 switch (CGM.getCodeGenOpts().getObjCDispatchMethod()) {
2998 imp = LookupIMP(CGF, Receiver, cmd, node, MSI);
2999 break;
3002 StringRef name = "objc_msgSend";
3003 if (CGM.ReturnTypeUsesFPRet(ResultType)) {
3004 name = "objc_msgSend_fpret";
3005 } else if (CGM.ReturnTypeUsesSRet(MSI.CallInfo)) {
3006 name = "objc_msgSend_stret";
3007
3008 // The address of the memory block is be passed in x8 for POD type,
3009 // or in x0 for non-POD type (marked as inreg).
3010 bool shouldCheckForInReg =
3011 CGM.getContext()
3012 .getTargetInfo()
3013 .getTriple()
3014 .isWindowsMSVCEnvironment() &&
3015 CGM.getContext().getTargetInfo().getTriple().isAArch64();
3016 if (shouldCheckForInReg && CGM.ReturnTypeHasInReg(MSI.CallInfo)) {
3017 name = "objc_msgSend_stret2";
3018 }
3019 }
3020 // The actual types here don't matter - we're going to bitcast the
3021 // function anyway
3022 imp = CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true),
3023 name)
3024 .getCallee();
3025 }
3026
3027 // Reset the receiver in case the lookup modified it
3028 ActualArgs[0] = CallArg(RValue::get(Receiver), ASTIdTy);
3029
3030 imp = EnforceType(Builder, imp, MSI.MessengerType);
3031
3032 llvm::CallBase *call;
3033 CGCallee callee(CGCalleeInfo(), imp);
3034 RValue msgRet = CGF.EmitCall(MSI.CallInfo, callee, Return, ActualArgs, &call);
3035 if (!isDirect)
3036 call->setMetadata(msgSendMDKind, node);
3037
3038 if (requiresNilReceiverCheck) {
3039 llvm::BasicBlock *nonNilPathBB = CGF.Builder.GetInsertBlock();
3040 CGF.Builder.CreateBr(continueBB);
3041
3042 // Emit the nil path if we decided it was necessary above.
3043 if (nilCleanupBB) {
3044 CGF.EmitBlock(nilCleanupBB);
3045
3046 if (hasParamDestroyedInCallee) {
3047 destroyCalleeDestroyedArguments(CGF, Method, CallArgs);
3048 }
3049
3050 if (requiresExplicitAggZeroing) {
3051 assert(msgRet.isAggregate());
3052 Address addr = msgRet.getAggregateAddress();
3053 CGF.EmitNullInitialization(addr, ResultType);
3054 }
3055
3056 nilPathBB = CGF.Builder.GetInsertBlock();
3057 CGF.Builder.CreateBr(continueBB);
3058 }
3059
3060 // Enter the continuation block and emit a phi if required.
3061 CGF.EmitBlock(continueBB);
3062 if (msgRet.isScalar()) {
3063 // If the return type is void, do nothing
3064 if (llvm::Value *v = msgRet.getScalarVal()) {
3065 llvm::PHINode *phi = Builder.CreatePHI(v->getType(), 2);
3066 phi->addIncoming(v, nonNilPathBB);
3067 phi->addIncoming(CGM.EmitNullConstant(ResultType), nilPathBB);
3068 msgRet = RValue::get(phi);
3069 }
3070 } else if (msgRet.isAggregate()) {
3071 // Aggregate zeroing is handled in nilCleanupBB when it's required.
3072 } else /* isComplex() */ {
3073 std::pair<llvm::Value*,llvm::Value*> v = msgRet.getComplexVal();
3074 llvm::PHINode *phi = Builder.CreatePHI(v.first->getType(), 2);
3075 phi->addIncoming(v.first, nonNilPathBB);
3076 phi->addIncoming(llvm::Constant::getNullValue(v.first->getType()),
3077 nilPathBB);
3078 llvm::PHINode *phi2 = Builder.CreatePHI(v.second->getType(), 2);
3079 phi2->addIncoming(v.second, nonNilPathBB);
3080 phi2->addIncoming(llvm::Constant::getNullValue(v.second->getType()),
3081 nilPathBB);
3082 msgRet = RValue::getComplex(phi, phi2);
3083 }
3084 }
3085 return msgRet;
3086}
3087
3088/// Generates a MethodList. Used in construction of a objc_class and
3089/// objc_category structures.
3090llvm::Constant *CGObjCGNU::
3091GenerateMethodList(StringRef ClassName,
3092 StringRef CategoryName,
3094 bool isClassMethodList) {
3095 if (Methods.empty())
3096 return NULLPtr;
3097
3098 ConstantInitBuilder Builder(CGM);
3099
3100 auto MethodList = Builder.beginStruct();
3101 MethodList.addNullPointer(CGM.Int8PtrTy);
3102 MethodList.addInt(Int32Ty, Methods.size());
3103
3104 // Get the method structure type.
3105 llvm::StructType *ObjCMethodTy =
3106 llvm::StructType::get(CGM.getLLVMContext(), {
3107 PtrToInt8Ty, // Really a selector, but the runtime creates it us.
3108 PtrToInt8Ty, // Method types
3109 IMPTy // Method pointer
3110 });
3111 bool isV2ABI = isRuntime(ObjCRuntime::GNUstep, 2);
3112 if (isV2ABI) {
3113 // size_t size;
3114 const llvm::DataLayout &DL = TheModule.getDataLayout();
3115 MethodList.addInt(SizeTy, DL.getTypeSizeInBits(ObjCMethodTy) /
3116 CGM.getContext().getCharWidth());
3117 ObjCMethodTy =
3118 llvm::StructType::get(CGM.getLLVMContext(), {
3119 IMPTy, // Method pointer
3120 PtrToInt8Ty, // Selector
3121 PtrToInt8Ty // Extended type encoding
3122 });
3123 } else {
3124 ObjCMethodTy =
3125 llvm::StructType::get(CGM.getLLVMContext(), {
3126 PtrToInt8Ty, // Really a selector, but the runtime creates it us.
3127 PtrToInt8Ty, // Method types
3128 IMPTy // Method pointer
3129 });
3130 }
3131 auto MethodArray = MethodList.beginArray();
3132 ASTContext &Context = CGM.getContext();
3133 for (const auto *OMD : Methods) {
3134 llvm::Constant *FnPtr =
3135 TheModule.getFunction(getSymbolNameForMethod(OMD));
3136 assert(FnPtr && "Can't generate metadata for method that doesn't exist");
3137 auto Method = MethodArray.beginStruct(ObjCMethodTy);
3138 if (isV2ABI) {
3139 Method.add(FnPtr);
3140 Method.add(GetConstantSelector(OMD->getSelector(),
3141 Context.getObjCEncodingForMethodDecl(OMD)));
3142 Method.add(MakeConstantString(Context.getObjCEncodingForMethodDecl(OMD, true)));
3143 } else {
3144 Method.add(MakeConstantString(OMD->getSelector().getAsString()));
3145 Method.add(MakeConstantString(Context.getObjCEncodingForMethodDecl(OMD)));
3146 Method.add(FnPtr);
3147 }
3148 Method.finishAndAddTo(MethodArray);
3149 }
3150 MethodArray.finishAndAddTo(MethodList);
3151
3152 // Create an instance of the structure
3153 return MethodList.finishAndCreateGlobal(".objc_method_list",
3154 CGM.getPointerAlign());
3155}
3156
3157/// Generates an IvarList. Used in construction of a objc_class.
3158llvm::Constant *CGObjCGNU::
3159GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames,
3161 ArrayRef<llvm::Constant *> IvarOffsets,
3163 ArrayRef<Qualifiers::ObjCLifetime> IvarOwnership) {
3164 if (IvarNames.empty())
3165 return NULLPtr;
3166
3167 ConstantInitBuilder Builder(CGM);
3168
3169 // Structure containing array count followed by array.
3170 auto IvarList = Builder.beginStruct();
3171 IvarList.addInt(IntTy, (int)IvarNames.size());
3172
3173 // Get the ivar structure type.
3174 llvm::StructType *ObjCIvarTy =
3175 llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty, IntTy);
3176
3177 // Array of ivar structures.
3178 auto Ivars = IvarList.beginArray(ObjCIvarTy);
3179 for (unsigned int i = 0, e = IvarNames.size() ; i < e ; i++) {
3180 auto Ivar = Ivars.beginStruct(ObjCIvarTy);
3181 Ivar.add(IvarNames[i]);
3182 Ivar.add(IvarTypes[i]);
3183 Ivar.add(IvarOffsets[i]);
3184 Ivar.finishAndAddTo(Ivars);
3185 }
3186 Ivars.finishAndAddTo(IvarList);
3187
3188 // Create an instance of the structure
3189 return IvarList.finishAndCreateGlobal(".objc_ivar_list",
3190 CGM.getPointerAlign());
3191}
3192
3193/// Generate a class structure
3194llvm::Constant *CGObjCGNU::GenerateClassStructure(
3195 llvm::Constant *MetaClass,
3196 llvm::Constant *SuperClass,
3197 unsigned info,
3198 const char *Name,
3199 llvm::Constant *Version,
3200 llvm::Constant *InstanceSize,
3201 llvm::Constant *IVars,
3202 llvm::Constant *Methods,
3203 llvm::Constant *Protocols,
3204 llvm::Constant *IvarOffsets,
3205 llvm::Constant *Properties,
3206 llvm::Constant *StrongIvarBitmap,
3207 llvm::Constant *WeakIvarBitmap,
3208 bool isMeta) {
3209 // Set up the class structure
3210 // Note: Several of these are char*s when they should be ids. This is
3211 // because the runtime performs this translation on load.
3212 //
3213 // Fields marked New ABI are part of the GNUstep runtime. We emit them
3214 // anyway; the classes will still work with the GNU runtime, they will just
3215 // be ignored.
3216 llvm::StructType *ClassTy = llvm::StructType::get(
3217 PtrToInt8Ty, // isa
3218 PtrToInt8Ty, // super_class
3219 PtrToInt8Ty, // name
3220 LongTy, // version
3221 LongTy, // info
3222 LongTy, // instance_size
3223 IVars->getType(), // ivars
3224 Methods->getType(), // methods
3225 // These are all filled in by the runtime, so we pretend
3226 PtrTy, // dtable
3227 PtrTy, // subclass_list
3228 PtrTy, // sibling_class
3229 PtrTy, // protocols
3230 PtrTy, // gc_object_type
3231 // New ABI:
3232 LongTy, // abi_version
3233 IvarOffsets->getType(), // ivar_offsets
3234 Properties->getType(), // properties
3235 IntPtrTy, // strong_pointers
3236 IntPtrTy // weak_pointers
3237 );
3238
3239 ConstantInitBuilder Builder(CGM);
3240 auto Elements = Builder.beginStruct(ClassTy);
3241
3242 // Fill in the structure
3243
3244 // isa
3245 Elements.add(MetaClass);
3246 // super_class
3247 Elements.add(SuperClass);
3248 // name
3249 Elements.add(MakeConstantString(Name, ".class_name"));
3250 // version
3251 Elements.addInt(LongTy, 0);
3252 // info
3253 Elements.addInt(LongTy, info);
3254 // instance_size
3255 if (isMeta) {
3256 const llvm::DataLayout &DL = TheModule.getDataLayout();
3257 Elements.addInt(LongTy, DL.getTypeSizeInBits(ClassTy) /
3258 CGM.getContext().getCharWidth());
3259 } else
3260 Elements.add(InstanceSize);
3261 // ivars
3262 Elements.add(IVars);
3263 // methods
3264 Elements.add(Methods);
3265 // These are all filled in by the runtime, so we pretend
3266 // dtable
3267 Elements.add(NULLPtr);
3268 // subclass_list
3269 Elements.add(NULLPtr);
3270 // sibling_class
3271 Elements.add(NULLPtr);
3272 // protocols
3273 Elements.add(Protocols);
3274 // gc_object_type
3275 Elements.add(NULLPtr);
3276 // abi_version
3277 Elements.addInt(LongTy, ClassABIVersion);
3278 // ivar_offsets
3279 Elements.add(IvarOffsets);
3280 // properties
3281 Elements.add(Properties);
3282 // strong_pointers
3283 Elements.add(StrongIvarBitmap);
3284 // weak_pointers
3285 Elements.add(WeakIvarBitmap);
3286 // Create an instance of the structure
3287 // This is now an externally visible symbol, so that we can speed up class
3288 // messages in the next ABI. We may already have some weak references to
3289 // this, so check and fix them properly.
3290 std::string ClassSym((isMeta ? "_OBJC_METACLASS_": "_OBJC_CLASS_") +
3291 std::string(Name));
3292 llvm::GlobalVariable *ClassRef = TheModule.getNamedGlobal(ClassSym);
3293 llvm::Constant *Class =
3294 Elements.finishAndCreateGlobal(ClassSym, CGM.getPointerAlign(), false,
3295 llvm::GlobalValue::ExternalLinkage);
3296 if (ClassRef) {
3297 ClassRef->replaceAllUsesWith(Class);
3298 ClassRef->removeFromParent();
3299 Class->setName(ClassSym);
3300 }
3301 return Class;
3302}
3303
3304llvm::Constant *CGObjCGNU::
3305GenerateProtocolMethodList(ArrayRef<const ObjCMethodDecl*> Methods) {
3306 // Get the method structure type.
3307 llvm::StructType *ObjCMethodDescTy =
3308 llvm::StructType::get(CGM.getLLVMContext(), { PtrToInt8Ty, PtrToInt8Ty });
3309 ASTContext &Context = CGM.getContext();
3310 ConstantInitBuilder Builder(CGM);
3311 auto MethodList = Builder.beginStruct();
3312 MethodList.addInt(IntTy, Methods.size());
3313 auto MethodArray = MethodList.beginArray(ObjCMethodDescTy);
3314 for (auto *M : Methods) {
3315 auto Method = MethodArray.beginStruct(ObjCMethodDescTy);
3316 Method.add(MakeConstantString(M->getSelector().getAsString()));
3317 Method.add(MakeConstantString(Context.getObjCEncodingForMethodDecl(M)));
3318 Method.finishAndAddTo(MethodArray);
3319 }
3320 MethodArray.finishAndAddTo(MethodList);
3321 return MethodList.finishAndCreateGlobal(".objc_method_list",
3322 CGM.getPointerAlign());
3323}
3324
3325// Create the protocol list structure used in classes, categories and so on
3326llvm::Constant *
3327CGObjCGNU::GenerateProtocolList(ArrayRef<std::string> Protocols) {
3328
3329 ConstantInitBuilder Builder(CGM);
3330 auto ProtocolList = Builder.beginStruct();
3331 ProtocolList.add(NULLPtr);
3332 ProtocolList.addInt(LongTy, Protocols.size());
3333
3334 auto Elements = ProtocolList.beginArray(PtrToInt8Ty);
3335 for (const std::string &Protocol : Protocols) {
3336 llvm::Constant *protocol = nullptr;
3337 llvm::StringMap<llvm::Constant *>::iterator value =
3338 ExistingProtocols.find(Protocol);
3339 if (value == ExistingProtocols.end()) {
3340 protocol = GenerateEmptyProtocol(Protocol);
3341 } else {
3342 protocol = value->getValue();
3343 }
3344 Elements.add(protocol);
3345 }
3346 Elements.finishAndAddTo(ProtocolList);
3347 return ProtocolList.finishAndCreateGlobal(".objc_protocol_list",
3348 CGM.getPointerAlign());
3349}
3350
3351llvm::Value *CGObjCGNU::GenerateProtocolRef(CodeGenFunction &CGF,
3352 const ObjCProtocolDecl *PD) {
3353 return GenerateProtocolRef(PD);
3354}
3355
3356llvm::Constant *CGObjCGNU::GenerateProtocolRef(const ObjCProtocolDecl *PD) {
3357 llvm::Constant *&protocol = ExistingProtocols[PD->getNameAsString()];
3358 if (!protocol)
3359 GenerateProtocol(PD);
3360 assert(protocol && "Unknown protocol");
3361 return protocol;
3362}
3363
3364llvm::Constant *
3365CGObjCGNU::GenerateEmptyProtocol(StringRef ProtocolName) {
3366 llvm::Constant *ProtocolList = GenerateProtocolList({});
3367 llvm::Constant *MethodList = GenerateProtocolMethodList({});
3368 // Protocols are objects containing lists of the methods implemented and
3369 // protocols adopted.
3370 ConstantInitBuilder Builder(CGM);
3371 auto Elements = Builder.beginStruct();
3372
3373 // The isa pointer must be set to a magic number so the runtime knows it's
3374 // the correct layout.
3375 Elements.add(llvm::ConstantExpr::getIntToPtr(
3376 llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy));
3377
3378 Elements.add(MakeConstantString(ProtocolName, ".objc_protocol_name"));
3379 Elements.add(ProtocolList); /* .protocol_list */
3380 Elements.add(MethodList); /* .instance_methods */
3381 Elements.add(MethodList); /* .class_methods */
3382 Elements.add(MethodList); /* .optional_instance_methods */
3383 Elements.add(MethodList); /* .optional_class_methods */
3384 Elements.add(NULLPtr); /* .properties */
3385 Elements.add(NULLPtr); /* .optional_properties */
3386 return Elements.finishAndCreateGlobal(SymbolForProtocol(ProtocolName),
3387 CGM.getPointerAlign());
3388}
3389
3390void CGObjCGNU::GenerateProtocol(const ObjCProtocolDecl *PD) {
3391 if (PD->isNonRuntimeProtocol())
3392 return;
3393
3394 std::string ProtocolName = PD->getNameAsString();
3395
3396 // Use the protocol definition, if there is one.
3397 if (const ObjCProtocolDecl *Def = PD->getDefinition())
3398 PD = Def;
3399
3401 for (const auto *PI : PD->protocols())
3402 Protocols.push_back(PI->getNameAsString());
3404 SmallVector<const ObjCMethodDecl*, 16> OptionalInstanceMethods;
3405 for (const auto *I : PD->instance_methods())
3406 if (I->isOptional())
3407 OptionalInstanceMethods.push_back(I);
3408 else
3409 InstanceMethods.push_back(I);
3410 // Collect information about class methods:
3412 SmallVector<const ObjCMethodDecl*, 16> OptionalClassMethods;
3413 for (const auto *I : PD->class_methods())
3414 if (I->isOptional())
3415 OptionalClassMethods.push_back(I);
3416 else
3417 ClassMethods.push_back(I);
3418
3419 llvm::Constant *ProtocolList = GenerateProtocolList(Protocols);
3420 llvm::Constant *InstanceMethodList =
3421 GenerateProtocolMethodList(InstanceMethods);
3422 llvm::Constant *ClassMethodList =
3423 GenerateProtocolMethodList(ClassMethods);
3424 llvm::Constant *OptionalInstanceMethodList =
3425 GenerateProtocolMethodList(OptionalInstanceMethods);
3426 llvm::Constant *OptionalClassMethodList =
3427 GenerateProtocolMethodList(OptionalClassMethods);
3428
3429 // Property metadata: name, attributes, isSynthesized, setter name, setter
3430 // types, getter name, getter types.
3431 // The isSynthesized value is always set to 0 in a protocol. It exists to
3432 // simplify the runtime library by allowing it to use the same data
3433 // structures for protocol metadata everywhere.
3434
3435 llvm::Constant *PropertyList =
3436 GeneratePropertyList(nullptr, PD, false, false);
3437 llvm::Constant *OptionalPropertyList =
3438 GeneratePropertyList(nullptr, PD, false, true);
3439
3440 // Protocols are objects containing lists of the methods implemented and
3441 // protocols adopted.
3442 // The isa pointer must be set to a magic number so the runtime knows it's
3443 // the correct layout.
3444 ConstantInitBuilder Builder(CGM);
3445 auto Elements = Builder.beginStruct();
3446 Elements.add(
3447 llvm::ConstantExpr::getIntToPtr(
3448 llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy));
3449 Elements.add(MakeConstantString(ProtocolName));
3450 Elements.add(ProtocolList);
3451 Elements.add(InstanceMethodList);
3452 Elements.add(ClassMethodList);
3453 Elements.add(OptionalInstanceMethodList);
3454 Elements.add(OptionalClassMethodList);
3455 Elements.add(PropertyList);
3456 Elements.add(OptionalPropertyList);
3457 ExistingProtocols[ProtocolName] =
3458 Elements.finishAndCreateGlobal(".objc_protocol", CGM.getPointerAlign());
3459}
3460void CGObjCGNU::GenerateProtocolHolderCategory() {
3461 // Collect information about instance methods
3462
3463 ConstantInitBuilder Builder(CGM);
3464 auto Elements = Builder.beginStruct();
3465
3466 const std::string ClassName = "__ObjC_Protocol_Holder_Ugly_Hack";
3467 const std::string CategoryName = "AnotherHack";
3468 Elements.add(MakeConstantString(CategoryName));
3469 Elements.add(MakeConstantString(ClassName));
3470 // Instance method list
3471 Elements.add(GenerateMethodList(ClassName, CategoryName, {}, false));
3472 // Class method list
3473 Elements.add(GenerateMethodList(ClassName, CategoryName, {}, true));
3474
3475 // Protocol list
3476 ConstantInitBuilder ProtocolListBuilder(CGM);
3477 auto ProtocolList = ProtocolListBuilder.beginStruct();
3478 ProtocolList.add(NULLPtr);
3479 ProtocolList.addInt(LongTy, ExistingProtocols.size());
3480 auto ProtocolElements = ProtocolList.beginArray(PtrTy);
3481 for (auto iter = ExistingProtocols.begin(), endIter = ExistingProtocols.end();
3482 iter != endIter ; iter++) {
3483 ProtocolElements.add(iter->getValue());
3484 }
3485 ProtocolElements.finishAndAddTo(ProtocolList);
3486 Elements.add(ProtocolList.finishAndCreateGlobal(".objc_protocol_list",
3487 CGM.getPointerAlign()));
3488 Categories.push_back(
3489 Elements.finishAndCreateGlobal("", CGM.getPointerAlign()));
3490}
3491
3492/// Libobjc2 uses a bitfield representation where small(ish) bitfields are
3493/// stored in a 64-bit value with the low bit set to 1 and the remaining 63
3494/// bits set to their values, LSB first, while larger ones are stored in a
3495/// structure of this / form:
3496///
3497/// struct { int32_t length; int32_t values[length]; };
3498///
3499/// The values in the array are stored in host-endian format, with the least
3500/// significant bit being assumed to come first in the bitfield. Therefore, a
3501/// bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] }, while a
3502/// bitfield / with the 63rd bit set will be 1<<64.
3503llvm::Constant *CGObjCGNU::MakeBitField(ArrayRef<bool> bits) {
3504 int bitCount = bits.size();
3505 int ptrBits = CGM.getDataLayout().getPointerSizeInBits();
3506 if (bitCount < ptrBits) {
3507 uint64_t val = 1;
3508 for (int i=0 ; i<bitCount ; ++i) {
3509 if (bits[i]) val |= 1ULL<<(i+1);
3510 }
3511 return llvm::ConstantInt::get(IntPtrTy, val);
3512 }
3514 int v=0;
3515 while (v < bitCount) {
3516 int32_t word = 0;
3517 for (int i=0 ; (i<32) && (v<bitCount) ; ++i) {
3518 if (bits[v]) word |= 1<<i;
3519 v++;
3520 }
3521 values.push_back(llvm::ConstantInt::get(Int32Ty, word));
3522 }
3523
3524 ConstantInitBuilder builder(CGM);
3525 auto fields = builder.beginStruct();
3526 fields.addInt(Int32Ty, values.size());
3527 auto array = fields.beginArray();
3528 for (auto *v : values) array.add(v);
3529 array.finishAndAddTo(fields);
3530
3531 llvm::Constant *GS =
3532 fields.finishAndCreateGlobal("", CharUnits::fromQuantity(4));
3533 llvm::Constant *ptr = llvm::ConstantExpr::getPtrToInt(GS, IntPtrTy);
3534 return ptr;
3535}
3536
3537llvm::Constant *CGObjCGNU::GenerateCategoryProtocolList(const
3538 ObjCCategoryDecl *OCD) {
3539 const auto &RefPro = OCD->getReferencedProtocols();
3540 const auto RuntimeProtos =
3541 GetRuntimeProtocolList(RefPro.begin(), RefPro.end());
3543 for (const auto *PD : RuntimeProtos)
3544 Protocols.push_back(PD->getNameAsString());
3545 return GenerateProtocolList(Protocols);
3546}
3547
3548void CGObjCGNU::GenerateCategory(const ObjCCategoryImplDecl *OCD) {
3550 std::string ClassName = Class->getNameAsString();
3551 std::string CategoryName = OCD->getNameAsString();
3552
3553 // Collect the names of referenced protocols
3554 const ObjCCategoryDecl *CatDecl = OCD->getCategoryDecl();
3555
3556 ConstantInitBuilder Builder(CGM);
3557 auto Elements = Builder.beginStruct();
3558 Elements.add(MakeConstantString(CategoryName));
3559 Elements.add(MakeConstantString(ClassName));
3560 // Instance method list
3561 SmallVector<ObjCMethodDecl*, 16> InstanceMethods;
3562 InstanceMethods.insert(InstanceMethods.begin(), OCD->instmeth_begin(),
3563 OCD->instmeth_end());
3564 Elements.add(
3565 GenerateMethodList(ClassName, CategoryName, InstanceMethods, false));
3566
3567 // Class method list
3568
3570 ClassMethods.insert(ClassMethods.begin(), OCD->classmeth_begin(),
3571 OCD->classmeth_end());
3572 Elements.add(GenerateMethodList(ClassName, CategoryName, ClassMethods, true));
3573
3574 // Protocol list
3575 Elements.add(GenerateCategoryProtocolList(CatDecl));
3576 if (isRuntime(ObjCRuntime::GNUstep, 2)) {
3577 const ObjCCategoryDecl *Category =
3578 Class->FindCategoryDeclaration(OCD->getIdentifier());
3579 if (Category) {
3580 // Instance properties
3581 Elements.add(GeneratePropertyList(OCD, Category, false));
3582 // Class properties
3583 Elements.add(GeneratePropertyList(OCD, Category, true));
3584 } else {
3585 Elements.addNullPointer(PtrTy);
3586 Elements.addNullPointer(PtrTy);
3587 }
3588 }
3589
3590 Categories.push_back(Elements.finishAndCreateGlobal(
3591 std::string(".objc_category_") + ClassName + CategoryName,
3592 CGM.getPointerAlign()));
3593}
3594
3595llvm::Constant *CGObjCGNU::GeneratePropertyList(const Decl *Container,
3596 const ObjCContainerDecl *OCD,
3597 bool isClassProperty,
3598 bool protocolOptionalProperties) {
3599
3602 bool isProtocol = isa<ObjCProtocolDecl>(OCD);
3603 ASTContext &Context = CGM.getContext();
3604
3605 std::function<void(const ObjCProtocolDecl *Proto)> collectProtocolProperties
3606 = [&](const ObjCProtocolDecl *Proto) {
3607 for (const auto *P : Proto->protocols())
3608 collectProtocolProperties(P);
3609 for (const auto *PD : Proto->properties()) {
3610 if (isClassProperty != PD->isClassProperty())
3611 continue;
3612 // Skip any properties that are declared in protocols that this class
3613 // conforms to but are not actually implemented by this class.
3614 if (!isProtocol && !Context.getObjCPropertyImplDeclForPropertyDecl(PD, Container))
3615 continue;
3616 if (!PropertySet.insert(PD->getIdentifier()).second)
3617 continue;
3618 Properties.push_back(PD);
3619 }
3620 };
3621
3622 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD))
3623 for (const ObjCCategoryDecl *ClassExt : OID->known_extensions())
3624 for (auto *PD : ClassExt->properties()) {
3625 if (isClassProperty != PD->isClassProperty())
3626 continue;
3627 PropertySet.insert(PD->getIdentifier());
3628 Properties.push_back(PD);
3629 }
3630
3631 for (const auto *PD : OCD->properties()) {
3632 if (isClassProperty != PD->isClassProperty())
3633 continue;
3634 // If we're generating a list for a protocol, skip optional / required ones
3635 // when generating the other list.
3636 if (isProtocol && (protocolOptionalProperties != PD->isOptional()))
3637 continue;
3638 // Don't emit duplicate metadata for properties that were already in a
3639 // class extension.
3640 if (!PropertySet.insert(PD->getIdentifier()).second)
3641 continue;
3642
3643 Properties.push_back(PD);
3644 }
3645
3646 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD))
3647 for (const auto *P : OID->all_referenced_protocols())
3648 collectProtocolProperties(P);
3649 else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(OCD))
3650 for (const auto *P : CD->protocols())
3651 collectProtocolProperties(P);
3652
3653 auto numProperties = Properties.size();
3654
3655 if (numProperties == 0)
3656 return NULLPtr;
3657
3658 ConstantInitBuilder builder(CGM);
3659 auto propertyList = builder.beginStruct();
3660 auto properties = PushPropertyListHeader(propertyList, numProperties);
3661
3662 // Add all of the property methods need adding to the method list and to the
3663 // property metadata list.
3664 for (auto *property : Properties) {
3665 bool isSynthesized = false;
3666 bool isDynamic = false;
3667 if (!isProtocol) {
3668 auto *propertyImpl = Context.getObjCPropertyImplDeclForPropertyDecl(property, Container);
3669 if (propertyImpl) {
3670 isSynthesized = (propertyImpl->getPropertyImplementation() ==
3672 isDynamic = (propertyImpl->getPropertyImplementation() ==
3674 }
3675 }
3676 PushProperty(properties, property, Container, isSynthesized, isDynamic);
3677 }
3678 properties.finishAndAddTo(propertyList);
3679
3680 return propertyList.finishAndCreateGlobal(".objc_property_list",
3681 CGM.getPointerAlign());
3682}
3683
3684void CGObjCGNU::RegisterAlias(const ObjCCompatibleAliasDecl *OAD) {
3685 // Get the class declaration for which the alias is specified.
3686 ObjCInterfaceDecl *ClassDecl =
3687 const_cast<ObjCInterfaceDecl *>(OAD->getClassInterface());
3688 ClassAliases.emplace_back(ClassDecl->getNameAsString(),
3689 OAD->getNameAsString());
3690}
3691
3692void CGObjCGNU::GenerateClass(const ObjCImplementationDecl *OID) {
3693 ASTContext &Context = CGM.getContext();
3694
3695 // Get the superclass name.
3696 const ObjCInterfaceDecl * SuperClassDecl =
3698 std::string SuperClassName;
3699 if (SuperClassDecl) {
3700 SuperClassName = SuperClassDecl->getNameAsString();
3701 EmitClassRef(SuperClassName);
3702 }
3703
3704 // Get the class name
3705 ObjCInterfaceDecl *ClassDecl =
3706 const_cast<ObjCInterfaceDecl *>(OID->getClassInterface());
3707 std::string ClassName = ClassDecl->getNameAsString();
3708
3709 // Emit the symbol that is used to generate linker errors if this class is
3710 // referenced in other modules but not declared.
3711 std::string classSymbolName = "__objc_class_name_" + ClassName;
3712 if (auto *symbol = TheModule.getGlobalVariable(classSymbolName)) {
3713 symbol->setInitializer(llvm::ConstantInt::get(LongTy, 0));
3714 } else {
3715 new llvm::GlobalVariable(TheModule, LongTy, false,
3716 llvm::GlobalValue::ExternalLinkage,
3717 llvm::ConstantInt::get(LongTy, 0),
3718 classSymbolName);
3719 }
3720
3721 // Get the size of instances.
3722 int instanceSize = Context.getASTObjCInterfaceLayout(OID->getClassInterface())
3723 .getSize()
3724 .getQuantity();
3725
3726 // Collect information about instance variables.
3732
3733 ConstantInitBuilder IvarOffsetBuilder(CGM);
3734 auto IvarOffsetValues = IvarOffsetBuilder.beginArray(PtrToIntTy);
3735 SmallVector<bool, 16> WeakIvars;
3736 SmallVector<bool, 16> StrongIvars;
3737
3738 int superInstanceSize = !SuperClassDecl ? 0 :
3739 Context.getASTObjCInterfaceLayout(SuperClassDecl).getSize().getQuantity();
3740 // For non-fragile ivars, set the instance size to 0 - {the size of just this
3741 // class}. The runtime will then set this to the correct value on load.
3742 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
3743 instanceSize = 0 - (instanceSize - superInstanceSize);
3744 }
3745
3746 for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD;
3747 IVD = IVD->getNextIvar()) {
3748 // Store the name
3749 IvarNames.push_back(MakeConstantString(IVD->getNameAsString()));
3750 // Get the type encoding for this ivar
3751 std::string TypeStr;
3752 Context.getObjCEncodingForType(IVD->getType(), TypeStr, IVD);
3753 IvarTypes.push_back(MakeConstantString(TypeStr));
3754 IvarAligns.push_back(llvm::ConstantInt::get(IntTy,
3755 Context.getTypeSize(IVD->getType())));
3756 // Get the offset
3757 uint64_t BaseOffset = ComputeIvarBaseOffset(CGM, OID, IVD);
3758 uint64_t Offset = BaseOffset;
3759 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
3760 Offset = BaseOffset - superInstanceSize;
3761 }
3762 llvm::Constant *OffsetValue = llvm::ConstantInt::get(IntTy, Offset);
3763 // Create the direct offset value
3764 std::string OffsetName = "__objc_ivar_offset_value_" + ClassName +"." +
3765 IVD->getNameAsString();
3766
3767 llvm::GlobalVariable *OffsetVar = TheModule.getGlobalVariable(OffsetName);
3768 if (OffsetVar) {
3769 OffsetVar->setInitializer(OffsetValue);
3770 // If this is the real definition, change its linkage type so that
3771 // different modules will use this one, rather than their private
3772 // copy.
3773 OffsetVar->setLinkage(llvm::GlobalValue::ExternalLinkage);
3774 } else
3775 OffsetVar = new llvm::GlobalVariable(TheModule, Int32Ty,
3776 false, llvm::GlobalValue::ExternalLinkage,
3777 OffsetValue, OffsetName);
3778 IvarOffsets.push_back(OffsetValue);
3779 IvarOffsetValues.add(OffsetVar);
3780 Qualifiers::ObjCLifetime lt = IVD->getType().getQualifiers().getObjCLifetime();
3781 IvarOwnership.push_back(lt);
3782 switch (lt) {
3784 StrongIvars.push_back(true);
3785 WeakIvars.push_back(false);
3786 break;
3788 StrongIvars.push_back(false);
3789 WeakIvars.push_back(true);
3790 break;
3791 default:
3792 StrongIvars.push_back(false);
3793 WeakIvars.push_back(false);
3794 }
3795 }
3796 llvm::Constant *StrongIvarBitmap = MakeBitField(StrongIvars);
3797 llvm::Constant *WeakIvarBitmap = MakeBitField(WeakIvars);
3798 llvm::GlobalVariable *IvarOffsetArray =
3799 IvarOffsetValues.finishAndCreateGlobal(".ivar.offsets",
3800 CGM.getPointerAlign());
3801
3802 // Collect information about instance methods
3804 InstanceMethods.insert(InstanceMethods.begin(), OID->instmeth_begin(),
3805 OID->instmeth_end());
3806
3808 ClassMethods.insert(ClassMethods.begin(), OID->classmeth_begin(),
3809 OID->classmeth_end());
3810
3811 llvm::Constant *Properties = GeneratePropertyList(OID, ClassDecl);
3812
3813 // Collect the names of referenced protocols
3814 auto RefProtocols = ClassDecl->protocols();
3815 auto RuntimeProtocols =
3816 GetRuntimeProtocolList(RefProtocols.begin(), RefProtocols.end());
3818 for (const auto *I : RuntimeProtocols)
3819 Protocols.push_back(I->getNameAsString());
3820
3821 // Get the superclass pointer.
3822 llvm::Constant *SuperClass;
3823 if (!SuperClassName.empty()) {
3824 SuperClass = MakeConstantString(SuperClassName, ".super_class_name");
3825 } else {
3826 SuperClass = llvm::ConstantPointerNull::get(PtrToInt8Ty);
3827 }
3828 // Generate the method and instance variable lists
3829 llvm::Constant *MethodList = GenerateMethodList(ClassName, "",
3830 InstanceMethods, false);
3831 llvm::Constant *ClassMethodList = GenerateMethodList(ClassName, "",
3832 ClassMethods, true);
3833 llvm::Constant *IvarList = GenerateIvarList(IvarNames, IvarTypes,
3834 IvarOffsets, IvarAligns, IvarOwnership);
3835 // Irrespective of whether we are compiling for a fragile or non-fragile ABI,
3836 // we emit a symbol containing the offset for each ivar in the class. This
3837 // allows code compiled for the non-Fragile ABI to inherit from code compiled
3838 // for the legacy ABI, without causing problems. The converse is also
3839 // possible, but causes all ivar accesses to be fragile.
3840
3841 // Offset pointer for getting at the correct field in the ivar list when
3842 // setting up the alias. These are: The base address for the global, the
3843 // ivar array (second field), the ivar in this list (set for each ivar), and
3844 // the offset (third field in ivar structure)
3845 llvm::Type *IndexTy = Int32Ty;
3846 llvm::Constant *offsetPointerIndexes[] = {Zeros[0],
3847 llvm::ConstantInt::get(IndexTy, ClassABIVersion > 1 ? 2 : 1), nullptr,
3848 llvm::ConstantInt::get(IndexTy, ClassABIVersion > 1 ? 3 : 2) };
3849
3850 unsigned ivarIndex = 0;
3851 for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD;
3852 IVD = IVD->getNextIvar()) {
3853 const std::string Name = GetIVarOffsetVariableName(ClassDecl, IVD);
3854 offsetPointerIndexes[2] = llvm::ConstantInt::get(IndexTy, ivarIndex);
3855 // Get the correct ivar field
3856 llvm::Constant *offsetValue = llvm::ConstantExpr::getGetElementPtr(
3857 cast<llvm::GlobalVariable>(IvarList)->getValueType(), IvarList,
3858 offsetPointerIndexes);
3859 // Get the existing variable, if one exists.
3860 llvm::GlobalVariable *offset = TheModule.getNamedGlobal(Name);
3861 if (offset) {
3862 offset->setInitializer(offsetValue);
3863 // If this is the real definition, change its linkage type so that
3864 // different modules will use this one, rather than their private
3865 // copy.
3866 offset->setLinkage(llvm::GlobalValue::ExternalLinkage);
3867 } else
3868 // Add a new alias if there isn't one already.
3869 new llvm::GlobalVariable(TheModule, offsetValue->getType(),
3870 false, llvm::GlobalValue::ExternalLinkage, offsetValue, Name);
3871 ++ivarIndex;
3872 }
3873 llvm::Constant *ZeroPtr = llvm::ConstantInt::get(IntPtrTy, 0);
3874
3875 //Generate metaclass for class methods
3876 llvm::Constant *MetaClassStruct = GenerateClassStructure(
3877 NULLPtr, NULLPtr, 0x12L, ClassName.c_str(), nullptr, Zeros[0],
3878 NULLPtr, ClassMethodList, NULLPtr, NULLPtr,
3879 GeneratePropertyList(OID, ClassDecl, true), ZeroPtr, ZeroPtr, true);
3880 CGM.setGVProperties(cast<llvm::GlobalValue>(MetaClassStruct),
3881 OID->getClassInterface());
3882
3883 // Generate the class structure
3884 llvm::Constant *ClassStruct = GenerateClassStructure(
3885 MetaClassStruct, SuperClass, 0x11L, ClassName.c_str(), nullptr,
3886 llvm::ConstantInt::get(LongTy, instanceSize), IvarList, MethodList,
3887 GenerateProtocolList(Protocols), IvarOffsetArray, Properties,
3888 StrongIvarBitmap, WeakIvarBitmap);
3889 CGM.setGVProperties(cast<llvm::GlobalValue>(ClassStruct),
3890 OID->getClassInterface());
3891
3892 // Resolve the class aliases, if they exist.
3893 if (ClassPtrAlias) {
3894 ClassPtrAlias->replaceAllUsesWith(ClassStruct);
3895 ClassPtrAlias->eraseFromParent();
3896 ClassPtrAlias = nullptr;
3897 }
3898 if (MetaClassPtrAlias) {
3899 MetaClassPtrAlias->replaceAllUsesWith(MetaClassStruct);
3900 MetaClassPtrAlias->eraseFromParent();
3901 MetaClassPtrAlias = nullptr;
3902 }
3903
3904 // Add class structure to list to be added to the symtab later
3905 Classes.push_back(ClassStruct);
3906}
3907
3908llvm::Function *CGObjCGNU::ModuleInitFunction() {
3909 // Only emit an ObjC load function if no Objective-C stuff has been called
3910 if (Classes.empty() && Categories.empty() && ConstantStrings.empty() &&
3911 ExistingProtocols.empty() && SelectorTable.empty())
3912 return nullptr;
3913
3914 // Add all referenced protocols to a category.
3915 GenerateProtocolHolderCategory();
3916
3917 llvm::StructType *selStructTy = dyn_cast<llvm::StructType>(SelectorElemTy);
3918 if (!selStructTy) {
3919 selStructTy = llvm::StructType::get(CGM.getLLVMContext(),
3920 { PtrToInt8Ty, PtrToInt8Ty });
3921 }
3922
3923 // Generate statics list:
3924 llvm::Constant *statics = NULLPtr;
3925 if (!ConstantStrings.empty()) {
3926 llvm::GlobalVariable *fileStatics = [&] {
3927 ConstantInitBuilder builder(CGM);
3928 auto staticsStruct = builder.beginStruct();
3929
3930 StringRef stringClass = CGM.getLangOpts().ObjCConstantStringClass;
3931 if (stringClass.empty()) stringClass = "NXConstantString";
3932 staticsStruct.add(MakeConstantString(stringClass,
3933 ".objc_static_class_name"));
3934
3935 auto array = staticsStruct.beginArray();
3936 array.addAll(ConstantStrings);
3937 array.add(NULLPtr);
3938 array.finishAndAddTo(staticsStruct);
3939
3940 return staticsStruct.finishAndCreateGlobal(".objc_statics",
3941 CGM.getPointerAlign());
3942 }();
3943
3944 ConstantInitBuilder builder(CGM);
3945 auto allStaticsArray = builder.beginArray(fileStatics->getType());
3946 allStaticsArray.add(fileStatics);
3947 allStaticsArray.addNullPointer(fileStatics->getType());
3948
3949 statics = allStaticsArray.finishAndCreateGlobal(".objc_statics_ptr",
3950 CGM.getPointerAlign());
3951 }
3952
3953 // Array of classes, categories, and constant objects.
3954
3956 unsigned selectorCount;
3957
3958 // Pointer to an array of selectors used in this module.
3959 llvm::GlobalVariable *selectorList = [&] {
3960 ConstantInitBuilder builder(CGM);
3961 auto selectors = builder.beginArray(selStructTy);
3962 auto &table = SelectorTable; // MSVC workaround
3963 std::vector<Selector> allSelectors;
3964 for (auto &entry : table)
3965 allSelectors.push_back(entry.first);
3966 llvm::sort(allSelectors);
3967
3968 for (auto &untypedSel : allSelectors) {
3969 std::string selNameStr = untypedSel.getAsString();
3970 llvm::Constant *selName = ExportUniqueString(selNameStr, ".objc_sel_name");
3971
3972 for (TypedSelector &sel : table[untypedSel]) {
3973 llvm::Constant *selectorTypeEncoding = NULLPtr;
3974 if (!sel.first.empty())
3975 selectorTypeEncoding =
3976 MakeConstantString(sel.first, ".objc_sel_types");
3977
3978 auto selStruct = selectors.beginStruct(selStructTy);
3979 selStruct.add(selName);
3980 selStruct.add(selectorTypeEncoding);
3981 selStruct.finishAndAddTo(selectors);
3982
3983 // Store the selector alias for later replacement
3984 selectorAliases.push_back(sel.second);
3985 }
3986 }
3987
3988 // Remember the number of entries in the selector table.
3989 selectorCount = selectors.size();
3990
3991 // NULL-terminate the selector list. This should not actually be required,
3992 // because the selector list has a length field. Unfortunately, the GCC
3993 // runtime decides to ignore the length field and expects a NULL terminator,
3994 // and GCC cooperates with this by always setting the length to 0.
3995 auto selStruct = selectors.beginStruct(selStructTy);
3996 selStruct.add(NULLPtr);
3997 selStruct.add(NULLPtr);
3998 selStruct.finishAndAddTo(selectors);
3999
4000 return selectors.finishAndCreateGlobal(".objc_selector_list",
4001 CGM.getPointerAlign());
4002 }();
4003
4004 // Now that all of the static selectors exist, create pointers to them.
4005 for (unsigned i = 0; i < selectorCount; ++i) {
4006 llvm::Constant *idxs[] = {
4007 Zeros[0],
4008 llvm::ConstantInt::get(Int32Ty, i)
4009 };
4010 // FIXME: We're generating redundant loads and stores here!
4011 llvm::Constant *selPtr = llvm::ConstantExpr::getGetElementPtr(
4012 selectorList->getValueType(), selectorList, idxs);
4013 selectorAliases[i]->replaceAllUsesWith(selPtr);
4014 selectorAliases[i]->eraseFromParent();
4015 }
4016
4017 llvm::GlobalVariable *symtab = [&] {
4018 ConstantInitBuilder builder(CGM);
4019 auto symtab = builder.beginStruct();
4020
4021 // Number of static selectors
4022 symtab.addInt(LongTy, selectorCount);
4023
4024 symtab.add(selectorList);
4025
4026 // Number of classes defined.
4027 symtab.addInt(CGM.Int16Ty, Classes.size());
4028 // Number of categories defined
4029 symtab.addInt(CGM.Int16Ty, Categories.size());
4030
4031 // Create an array of classes, then categories, then static object instances
4032 auto classList = symtab.beginArray(PtrToInt8Ty);
4033 classList.addAll(Classes);
4034 classList.addAll(Categories);
4035 // NULL-terminated list of static object instances (mainly constant strings)
4036 classList.add(statics);
4037 classList.add(NULLPtr);
4038 classList.finishAndAddTo(symtab);
4039
4040 // Construct the symbol table.
4041 return symtab.finishAndCreateGlobal("", CGM.getPointerAlign());
4042 }();
4043
4044 // The symbol table is contained in a module which has some version-checking
4045 // constants
4046 llvm::Constant *module = [&] {
4047 llvm::Type *moduleEltTys[] = {
4048 LongTy, LongTy, PtrToInt8Ty, symtab->getType(), IntTy
4049 };
4050 llvm::StructType *moduleTy = llvm::StructType::get(
4051 CGM.getLLVMContext(),
4052 ArrayRef(moduleEltTys).drop_back(unsigned(RuntimeVersion < 10)));
4053
4054 ConstantInitBuilder builder(CGM);
4055 auto module = builder.beginStruct(moduleTy);
4056 // Runtime version, used for ABI compatibility checking.
4057 module.addInt(LongTy, RuntimeVersion);
4058 // sizeof(ModuleTy)
4059 module.addInt(LongTy, CGM.getDataLayout().getTypeStoreSize(moduleTy));
4060
4061 // The path to the source file where this module was declared
4063 OptionalFileEntryRef mainFile = SM.getFileEntryRefForID(SM.getMainFileID());
4064 std::string path =
4065 (mainFile->getDir().getName() + "/" + mainFile->getName()).str();
4066 module.add(MakeConstantString(path, ".objc_source_file_name"));
4067 module.add(symtab);
4068
4069 if (RuntimeVersion >= 10) {
4070 switch (CGM.getLangOpts().getGC()) {
4071 case LangOptions::GCOnly:
4072 module.addInt(IntTy, 2);
4073 break;
4074 case LangOptions::NonGC:
4075 if (CGM.getLangOpts().ObjCAutoRefCount)
4076 module.addInt(IntTy, 1);
4077 else
4078 module.addInt(IntTy, 0);
4079 break;
4080 case LangOptions::HybridGC:
4081 module.addInt(IntTy, 1);
4082 break;
4083 }
4084 }
4085
4086 return module.finishAndCreateGlobal("", CGM.getPointerAlign());
4087 }();
4088
4089 // Create the load function calling the runtime entry point with the module
4090 // structure
4091 llvm::Function * LoadFunction = llvm::Function::Create(
4092 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false),
4093 llvm::GlobalValue::InternalLinkage, ".objc_load_function",
4094 &TheModule);
4095 llvm::BasicBlock *EntryBB =
4096 llvm::BasicBlock::Create(VMContext, "entry", LoadFunction);
4097 CGBuilderTy Builder(CGM, VMContext);
4098 Builder.SetInsertPoint(EntryBB);
4099
4100 llvm::FunctionType *FT =
4101 llvm::FunctionType::get(Builder.getVoidTy(), module->getType(), true);
4102 llvm::FunctionCallee Register =
4103 CGM.CreateRuntimeFunction(FT, "__objc_exec_class");
4104 Builder.CreateCall(Register, module);
4105
4106 if (!ClassAliases.empty()) {
4107 llvm::Type *ArgTypes[2] = {PtrTy, PtrToInt8Ty};
4108 llvm::FunctionType *RegisterAliasTy =
4109 llvm::FunctionType::get(Builder.getVoidTy(),
4110 ArgTypes, false);
4111 llvm::Function *RegisterAlias = llvm::Function::Create(
4112 RegisterAliasTy,
4113 llvm::GlobalValue::ExternalWeakLinkage, "class_registerAlias_np",
4114 &TheModule);
4115 llvm::BasicBlock *AliasBB =
4116 llvm::BasicBlock::Create(VMContext, "alias", LoadFunction);
4117 llvm::BasicBlock *NoAliasBB =
4118 llvm::BasicBlock::Create(VMContext, "no_alias", LoadFunction);
4119
4120 // Branch based on whether the runtime provided class_registerAlias_np()
4121 llvm::Value *HasRegisterAlias = Builder.CreateICmpNE(RegisterAlias,
4122 llvm::Constant::getNullValue(RegisterAlias->getType()));
4123 Builder.CreateCondBr(HasRegisterAlias, AliasBB, NoAliasBB);
4124
4125 // The true branch (has alias registration function):
4126 Builder.SetInsertPoint(AliasBB);
4127 // Emit alias registration calls:
4128 for (std::vector<ClassAliasPair>::iterator iter = ClassAliases.begin();
4129 iter != ClassAliases.end(); ++iter) {
4130 llvm::Constant *TheClass =
4131 TheModule.getGlobalVariable("_OBJC_CLASS_" + iter->first, true);
4132 if (TheClass) {
4133 Builder.CreateCall(RegisterAlias,
4134 {TheClass, MakeConstantString(iter->second)});
4135 }
4136 }
4137 // Jump to end:
4138 Builder.CreateBr(NoAliasBB);
4139
4140 // Missing alias registration function, just return from the function:
4141 Builder.SetInsertPoint(NoAliasBB);
4142 }
4143 Builder.CreateRetVoid();
4144
4145 return LoadFunction;
4146}
4147
4148llvm::Function *CGObjCGNU::GenerateMethod(const ObjCMethodDecl *OMD,
4149 const ObjCContainerDecl *CD) {
4150 CodeGenTypes &Types = CGM.getTypes();
4151 llvm::FunctionType *MethodTy =
4152 Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD));
4153
4154 bool isDirect = OMD->isDirectMethod();
4155 std::string FunctionName =
4156 getSymbolNameForMethod(OMD, /*include category*/ !isDirect);
4157
4158 if (!isDirect)
4159 return llvm::Function::Create(MethodTy,
4160 llvm::GlobalVariable::InternalLinkage,
4161 FunctionName, &TheModule);
4162
4163 auto *COMD = OMD->getCanonicalDecl();
4164 auto I = DirectMethodDefinitions.find(COMD);
4165 llvm::Function *OldFn = nullptr, *Fn = nullptr;
4166
4167 if (I == DirectMethodDefinitions.end()) {
4168 auto *F =
4169 llvm::Function::Create(MethodTy, llvm::GlobalVariable::ExternalLinkage,
4170 FunctionName, &TheModule);
4171 DirectMethodDefinitions.insert(std::make_pair(COMD, F));
4172 return F;
4173 }
4174
4175 // Objective-C allows for the declaration and implementation types
4176 // to differ slightly.
4177 //
4178 // If we're being asked for the Function associated for a method
4179 // implementation, a previous value might have been cached
4180 // based on the type of the canonical declaration.
4181 //
4182 // If these do not match, then we'll replace this function with
4183 // a new one that has the proper type below.
4184 if (!OMD->getBody() || COMD->getReturnType() == OMD->getReturnType())
4185 return I->second;
4186
4187 OldFn = I->second;
4188 Fn = llvm::Function::Create(MethodTy, llvm::GlobalValue::ExternalLinkage, "",
4189 &CGM.getModule());
4190 Fn->takeName(OldFn);
4191 OldFn->replaceAllUsesWith(Fn);
4192 OldFn->eraseFromParent();
4193
4194 // Replace the cached function in the map.
4195 I->second = Fn;
4196 return Fn;
4197}
4198
4199void CGObjCGNU::GenerateDirectMethodPrologue(CodeGenFunction &CGF,
4200 llvm::Function *Fn,
4201 const ObjCMethodDecl *OMD,
4202 const ObjCContainerDecl *CD) {
4203 // GNU runtime doesn't support direct calls at this time
4204}
4205
4206llvm::FunctionCallee CGObjCGNU::GetPropertyGetFunction() {
4207 return GetPropertyFn;
4208}
4209
4210llvm::FunctionCallee CGObjCGNU::GetPropertySetFunction() {
4211 return SetPropertyFn;
4212}
4213
4214llvm::FunctionCallee CGObjCGNU::GetOptimizedPropertySetFunction(bool atomic,
4215 bool copy) {
4216 return nullptr;
4217}
4218
4219llvm::FunctionCallee CGObjCGNU::GetGetStructFunction() {
4220 return GetStructPropertyFn;
4221}
4222
4223llvm::FunctionCallee CGObjCGNU::GetSetStructFunction() {
4224 return SetStructPropertyFn;
4225}
4226
4227llvm::FunctionCallee CGObjCGNU::GetCppAtomicObjectGetFunction() {
4228 return nullptr;
4229}
4230
4231llvm::FunctionCallee CGObjCGNU::GetCppAtomicObjectSetFunction() {
4232 return nullptr;
4233}
4234
4235llvm::FunctionCallee CGObjCGNU::EnumerationMutationFunction() {
4236 return EnumerationMutationFn;
4237}
4238
4239void CGObjCGNU::EmitSynchronizedStmt(CodeGenFunction &CGF,
4240 const ObjCAtSynchronizedStmt &S) {
4241 EmitAtSynchronizedStmt(CGF, S, SyncEnterFn, SyncExitFn);
4242}
4243
4244
4245void CGObjCGNU::EmitTryStmt(CodeGenFunction &CGF,
4246 const ObjCAtTryStmt &S) {
4247 // Unlike the Apple non-fragile runtimes, which also uses
4248 // unwind-based zero cost exceptions, the GNU Objective C runtime's
4249 // EH support isn't a veneer over C++ EH. Instead, exception
4250 // objects are created by objc_exception_throw and destroyed by
4251 // the personality function; this avoids the need for bracketing
4252 // catch handlers with calls to __blah_begin_catch/__blah_end_catch
4253 // (or even _Unwind_DeleteException), but probably doesn't
4254 // interoperate very well with foreign exceptions.
4255 //
4256 // In Objective-C++ mode, we actually emit something equivalent to the C++
4257 // exception handler.
4258 EmitTryCatchStmt(CGF, S, EnterCatchFn, ExitCatchFn, ExceptionReThrowFn);
4259}
4260
4261void CGObjCGNU::EmitThrowStmt(CodeGenFunction &CGF,
4262 const ObjCAtThrowStmt &S,
4263 bool ClearInsertionPoint) {
4264 llvm::Value *ExceptionAsObject;
4265 bool isRethrow = false;
4266
4267 if (const Expr *ThrowExpr = S.getThrowExpr()) {
4268 llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr);
4269 ExceptionAsObject = Exception;
4270 } else {
4271 assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) &&
4272 "Unexpected rethrow outside @catch block.");
4273 ExceptionAsObject = CGF.ObjCEHValueStack.back();
4274 isRethrow = true;
4275 }
4276 if (isRethrow && (usesSEHExceptions || usesCxxExceptions)) {
4277 // For SEH, ExceptionAsObject may be undef, because the catch handler is
4278 // not passed it for catchalls and so it is not visible to the catch
4279 // funclet. The real thrown object will still be live on the stack at this
4280 // point and will be rethrown. If we are explicitly rethrowing the object
4281 // that was passed into the `@catch` block, then this code path is not
4282 // reached and we will instead call `objc_exception_throw` with an explicit
4283 // argument.
4284 llvm::CallBase *Throw = CGF.EmitRuntimeCallOrInvoke(ExceptionReThrowFn);
4285 Throw->setDoesNotReturn();
4286 } else {
4287 ExceptionAsObject = CGF.Builder.CreateBitCast(ExceptionAsObject, IdTy);
4288 llvm::CallBase *Throw =
4289 CGF.EmitRuntimeCallOrInvoke(ExceptionThrowFn, ExceptionAsObject);
4290 Throw->setDoesNotReturn();
4291 }
4292 CGF.Builder.CreateUnreachable();
4293 if (ClearInsertionPoint)
4294 CGF.Builder.ClearInsertionPoint();
4295}
4296
4297llvm::Value * CGObjCGNU::EmitObjCWeakRead(CodeGenFunction &CGF,
4298 Address AddrWeakObj) {
4299 CGBuilderTy &B = CGF.Builder;
4300 return B.CreateCall(
4301 WeakReadFn, EnforceType(B, AddrWeakObj.emitRawPointer(CGF), PtrToIdTy));
4302}
4303
4304void CGObjCGNU::EmitObjCWeakAssign(CodeGenFunction &CGF,
4305 llvm::Value *src, Address dst) {
4306 CGBuilderTy &B = CGF.Builder;
4307 src = EnforceType(B, src, IdTy);
4308 llvm::Value *dstVal = EnforceType(B, dst.emitRawPointer(CGF), PtrToIdTy);
4309 B.CreateCall(WeakAssignFn, {src, dstVal});
4310}
4311
4312void CGObjCGNU::EmitObjCGlobalAssign(CodeGenFunction &CGF,
4313 llvm::Value *src, Address dst,
4314 bool threadlocal) {
4315 CGBuilderTy &B = CGF.Builder;
4316 src = EnforceType(B, src, IdTy);
4317 llvm::Value *dstVal = EnforceType(B, dst.emitRawPointer(CGF), PtrToIdTy);
4318 // FIXME. Add threadloca assign API
4319 assert(!threadlocal && "EmitObjCGlobalAssign - Threal Local API NYI");
4320 B.CreateCall(GlobalAssignFn, {src, dstVal});
4321}
4322
4323void CGObjCGNU::EmitObjCIvarAssign(CodeGenFunction &CGF,
4324 llvm::Value *src, Address dst,
4325 llvm::Value *ivarOffset) {
4326 CGBuilderTy &B = CGF.Builder;
4327 src = EnforceType(B, src, IdTy);
4328 llvm::Value *dstVal = EnforceType(B, dst.emitRawPointer(CGF), IdTy);
4329 B.CreateCall(IvarAssignFn, {src, dstVal, ivarOffset});
4330}
4331
4332void CGObjCGNU::EmitObjCStrongCastAssign(CodeGenFunction &CGF,
4333 llvm::Value *src, Address dst) {
4334 CGBuilderTy &B = CGF.Builder;
4335 src = EnforceType(B, src, IdTy);
4336 llvm::Value *dstVal = EnforceType(B, dst.emitRawPointer(CGF), PtrToIdTy);
4337 B.CreateCall(StrongCastAssignFn, {src, dstVal});
4338}
4339
4340void CGObjCGNU::EmitGCMemmoveCollectable(CodeGenFunction &CGF,
4341 Address DestPtr,
4342 Address SrcPtr,
4343 llvm::Value *Size) {
4344 CGBuilderTy &B = CGF.Builder;
4345 llvm::Value *DestPtrVal = EnforceType(B, DestPtr.emitRawPointer(CGF), PtrTy);
4346 llvm::Value *SrcPtrVal = EnforceType(B, SrcPtr.emitRawPointer(CGF), PtrTy);
4347
4348 B.CreateCall(MemMoveFn, {DestPtrVal, SrcPtrVal, Size});
4349}
4350
4351llvm::GlobalVariable *CGObjCGNU::ObjCIvarOffsetVariable(
4352 const ObjCInterfaceDecl *ID,
4353 const ObjCIvarDecl *Ivar) {
4354 const std::string Name = GetIVarOffsetVariableName(ID, Ivar);
4355 // Emit the variable and initialize it with what we think the correct value
4356 // is. This allows code compiled with non-fragile ivars to work correctly
4357 // when linked against code which isn't (most of the time).
4358 llvm::GlobalVariable *IvarOffsetPointer = TheModule.getNamedGlobal(Name);
4359 if (!IvarOffsetPointer)
4360 IvarOffsetPointer = new llvm::GlobalVariable(
4361 TheModule, llvm::PointerType::getUnqual(VMContext), false,
4362 llvm::GlobalValue::ExternalLinkage, nullptr, Name);
4363 return IvarOffsetPointer;
4364}
4365
4366LValue CGObjCGNU::EmitObjCValueForIvar(CodeGenFunction &CGF,
4367 QualType ObjectTy,
4368 llvm::Value *BaseValue,
4369 const ObjCIvarDecl *Ivar,
4370 unsigned CVRQualifiers) {
4371 const ObjCInterfaceDecl *ID =
4372 ObjectTy->castAs<ObjCObjectType>()->getInterface();
4373 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers,
4374 EmitIvarOffset(CGF, ID, Ivar));
4375}
4376
4378 const ObjCInterfaceDecl *OID,
4379 const ObjCIvarDecl *OIVD) {
4380 for (const ObjCIvarDecl *next = OID->all_declared_ivar_begin(); next;
4381 next = next->getNextIvar()) {
4382 if (OIVD == next)
4383 return OID;
4384 }
4385
4386 // Otherwise check in the super class.
4387 if (const ObjCInterfaceDecl *Super = OID->getSuperClass())
4388 return FindIvarInterface(Context, Super, OIVD);
4389
4390 return nullptr;
4391}
4392
4393llvm::Value *CGObjCGNU::EmitIvarOffset(CodeGenFunction &CGF,
4395 const ObjCIvarDecl *Ivar) {
4396 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
4398
4399 // The MSVC linker cannot have a single global defined as LinkOnceAnyLinkage
4400 // and ExternalLinkage, so create a reference to the ivar global and rely on
4401 // the definition being created as part of GenerateClass.
4402 if (RuntimeVersion < 10 ||
4403 CGF.CGM.getTarget().getTriple().isKnownWindowsMSVCEnvironment())
4404 return CGF.Builder.CreateZExtOrBitCast(
4406 Int32Ty,
4408 llvm::PointerType::getUnqual(VMContext),
4409 ObjCIvarOffsetVariable(Interface, Ivar),
4410 CGF.getPointerAlign(), "ivar"),
4412 PtrDiffTy);
4413 std::string name = "__objc_ivar_offset_value_" +
4414 Interface->getNameAsString() +"." + Ivar->getNameAsString();
4415 CharUnits Align = CGM.getIntAlign();
4416 llvm::Value *Offset = TheModule.getGlobalVariable(name);
4417 if (!Offset) {
4418 auto GV = new llvm::GlobalVariable(TheModule, IntTy,
4419 false, llvm::GlobalValue::LinkOnceAnyLinkage,
4420 llvm::Constant::getNullValue(IntTy), name);
4421 GV->setAlignment(Align.getAsAlign());
4422 Offset = GV;
4423 }
4424 Offset = CGF.Builder.CreateAlignedLoad(IntTy, Offset, Align);
4425 if (Offset->getType() != PtrDiffTy)
4426 Offset = CGF.Builder.CreateZExtOrBitCast(Offset, PtrDiffTy);
4427 return Offset;
4428 }
4429 uint64_t Offset = ComputeIvarBaseOffset(CGF.CGM, Interface, Ivar);
4430 return llvm::ConstantInt::get(PtrDiffTy, Offset, /*isSigned*/true);
4431}
4432
4435 auto Runtime = CGM.getLangOpts().ObjCRuntime;
4436 switch (Runtime.getKind()) {
4438 if (Runtime.getVersion() >= VersionTuple(2, 0))
4439 return new CGObjCGNUstep2(CGM);
4440 return new CGObjCGNUstep(CGM);
4441
4442 case ObjCRuntime::GCC:
4443 return new CGObjCGCC(CGM);
4444
4445 case ObjCRuntime::ObjFW:
4446 return new CGObjCObjFW(CGM);
4447
4450 case ObjCRuntime::iOS:
4452 llvm_unreachable("these runtimes are not GNU runtimes");
4453 }
4454 llvm_unreachable("bad runtime");
4455}
Defines the clang::ASTContext interface.
#define V(N, I)
Definition: ASTContext.h:3597
StringRef P
static const ObjCInterfaceDecl * FindIvarInterface(ASTContext &Context, const ObjCInterfaceDecl *OID, const ObjCIvarDecl *OIVD)
Definition: CGObjCGNU.cpp:4377
static bool isNamed(const NamedDecl *ND, const char(&Str)[Len])
Definition: Decl.cpp:3298
int Category
Definition: Format.cpp:3180
#define SM(sm)
Definition: OffloadArch.cpp:16
Defines the SourceManager interface.
Defines the Objective-C statement AST node classes.
__device__ __2f16 b
__device__ __2f16 float __ockl_bool s
__device__ __2f16 float c
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:188
SourceManager & getSourceManager()
Definition: ASTContext.h:801
TranslationUnitDecl * getTranslationUnitDecl() const
Definition: ASTContext.h:1201
CharUnits getTypeAlignInChars(QualType T) const
Return the ABI-specified alignment of a (complete) type T, in characters.
CanQualType LongTy
Definition: ASTContext.h:1231
void getObjCEncodingForType(QualType T, std::string &S, const FieldDecl *Field=nullptr, QualType *NotEncodedT=nullptr) const
Emit the Objective-CC type encoding for the given type T into S.
CanQualType getCanonicalType(QualType T) const
Return the canonical (structural) type corresponding to the specified potentially non-canonical type ...
Definition: ASTContext.h:2851
std::string getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, bool Extended=false) const
Emit the encoded type for the method declaration Decl into S.
std::string getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD, const Decl *Container) const
getObjCEncodingForPropertyDecl - Return the encoded type for this method declaration.
IdentifierTable & Idents
Definition: ASTContext.h:740
const ASTRecordLayout & getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const
Get or compute information about the layout of the specified Objective-C interface.
QualType getPointerDiffType() const
Return the unique type for "ptrdiff_t" (C99 7.17) defined in <stddef.h>.
ObjCPropertyImplDecl * getObjCPropertyImplDeclForPropertyDecl(const ObjCPropertyDecl *PD, const Decl *Container) const
CanQualType BoolTy
Definition: ASTContext.h:1223
QualType getObjCSelType() const
Retrieve the type that corresponds to the predefined Objective-C 'SEL' type.
Definition: ASTContext.h:2344
CanQualType IntTy
Definition: ASTContext.h:1231
QualType getObjCIdType() const
Represents the Objective-CC id type.
Definition: ASTContext.h:2333
uint64_t getTypeSize(QualType T) const
Return the size of the specified (complete) type T, in bits.
Definition: ASTContext.h:2625
CharUnits getTypeSizeInChars(QualType T) const
Return the size of the specified (complete) type T, in characters.
void getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT, QualType T, std::string &S, bool Extended) const
getObjCEncodingForMethodParameter - Return the encoded type for a single method parameter or return t...
QualType getSizeType() const
Return the unique type for "size_t" (C99 7.17), defined in <stddef.h>.
const TargetInfo & getTargetInfo() const
Definition: ASTContext.h:859
uint64_t getCharWidth() const
Return the size of the character type, in bits.
Definition: ASTContext.h:2629
CharUnits getSize() const
getSize - Get the record size in characters.
Definition: RecordLayout.h:194
const T * getTypePtr() const
Retrieve the underlying type pointer, which refers to a canonical type.
Definition: CanonicalType.h:84
CharUnits - This is an opaque type for sizes expressed in character units.
Definition: CharUnits.h:38
llvm::Align getAsAlign() const
getAsAlign - Returns Quantity as a valid llvm::Align, Beware llvm::Align assumes power of two 8-bit b...
Definition: CharUnits.h:189
QuantityType getQuantity() const
getQuantity - Get the raw integer representation of this quantity.
Definition: CharUnits.h:185
static CharUnits fromQuantity(QuantityType Quantity)
fromQuantity - Construct a CharUnits quantity from a raw integer type.
Definition: CharUnits.h:63
Like RawAddress, an abstract representation of an aligned address, but the pointer contained in this ...
Definition: Address.h:128
llvm::Value * emitRawPointer(CodeGenFunction &CGF) const
Return the pointer contained in this class after authenticating it and adding offset to it if necessa...
Definition: Address.h:253
CGBlockInfo - Information to generate a block literal.
Definition: CGBlocks.h:157
llvm::StoreInst * CreateStore(llvm::Value *Val, Address Addr, bool IsVolatile=false)
Definition: CGBuilder.h:140
llvm::LoadInst * CreateLoad(Address Addr, const llvm::Twine &Name="")
Definition: CGBuilder.h:112
llvm::LoadInst * CreateAlignedLoad(llvm::Type *Ty, llvm::Value *Addr, CharUnits Align, const llvm::Twine &Name="")
Definition: CGBuilder.h:132
virtual llvm::Constant * getAddrOfRTTIDescriptor(QualType Ty)=0
virtual CatchTypeInfo getCatchAllTypeInfo()
Definition: CGCXXABI.cpp:333
Abstract information about a function or function prototype.
Definition: CGCall.h:41
All available information about a concrete callee.
Definition: CGCall.h:63
Implements runtime-specific code generation functions.
Definition: CGObjCRuntime.h:65
virtual llvm::Constant * GetEHType(QualType T)=0
Get the type constant to catch for the given ObjC pointer type.
virtual void EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, llvm::Value *src, Address dest, llvm::Value *ivarOffset)=0
virtual llvm::FunctionCallee GetCppAtomicObjectGetFunction()=0
API for atomic copying of qualified aggregates with non-trivial copy assignment (c++) in getter.
virtual void EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, llvm::Value *src, Address dest)=0
virtual llvm::Constant * BuildByrefLayout(CodeGen::CodeGenModule &CGM, QualType T)=0
Returns an i8* which points to the byref layout information.
virtual void EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF, Address DestPtr, Address SrcPtr, llvm::Value *Size)=0
virtual llvm::FunctionCallee GetPropertySetFunction()=0
Return the runtime function for setting properties.
virtual llvm::FunctionCallee GetCppAtomicObjectSetFunction()=0
API for atomic copying of qualified aggregates with non-trivial copy assignment (c++) in setter.
virtual void EmitTryStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtTryStmt &S)=0
virtual CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF, ReturnValueSlot ReturnSlot, QualType ResultType, Selector Sel, llvm::Value *Receiver, const CallArgList &CallArgs, const ObjCInterfaceDecl *Class=nullptr, const ObjCMethodDecl *Method=nullptr)=0
Generate an Objective-C message send operation.
virtual LValue EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, QualType ObjectTy, llvm::Value *BaseValue, const ObjCIvarDecl *Ivar, unsigned CVRQualifiers)=0
virtual void RegisterAlias(const ObjCCompatibleAliasDecl *OAD)=0
Register an class alias.
virtual void GenerateCategory(const ObjCCategoryImplDecl *OCD)=0
Generate a category.
virtual void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtThrowStmt &S, bool ClearInsertionPoint=true)=0
virtual llvm::Value * EmitIvarOffset(CodeGen::CodeGenFunction &CGF, const ObjCInterfaceDecl *Interface, const ObjCIvarDecl *Ivar)=0
virtual llvm::Function * GenerateMethod(const ObjCMethodDecl *OMD, const ObjCContainerDecl *CD)=0
Generate a function preamble for a method with the specified types.
virtual llvm::Value * GenerateProtocolRef(CodeGenFunction &CGF, const ObjCProtocolDecl *OPD)=0
Emit the code to return the named protocol as an object, as in a @protocol expression.
virtual llvm::Value * EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF, Address AddrWeakObj)=0
virtual llvm::Function * ModuleInitFunction()=0
Generate the function required to register all Objective-C components in this compilation unit with t...
virtual CodeGen::RValue GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, ReturnValueSlot ReturnSlot, QualType ResultType, Selector Sel, const ObjCInterfaceDecl *Class, bool isCategoryImpl, llvm::Value *Self, bool IsClassMessage, const CallArgList &CallArgs, const ObjCMethodDecl *Method=nullptr)=0
Generate an Objective-C message send operation to the super class initiated in a method for Class and...
virtual void GenerateClass(const ObjCImplementationDecl *OID)=0
Generate a class structure for this class.
virtual llvm::FunctionCallee EnumerationMutationFunction()=0
EnumerationMutationFunction - Return the function that's called by the compiler when a mutation is de...
virtual llvm::Constant * BuildGCBlockLayout(CodeGen::CodeGenModule &CGM, const CodeGen::CGBlockInfo &blockInfo)=0
virtual llvm::FunctionCallee GetGetStructFunction()=0
virtual llvm::Constant * GetOrEmitProtocol(const ObjCProtocolDecl *PD)=0
GetOrEmitProtocol - Get the protocol object for the given declaration, emitting it if necessary.
virtual ConstantAddress GenerateConstantString(const StringLiteral *)=0
Generate a constant string object.
virtual llvm::Value * GetClass(CodeGenFunction &CGF, const ObjCInterfaceDecl *OID)=0
GetClass - Return a reference to the class for the given interface decl.
virtual void GenerateProtocol(const ObjCProtocolDecl *OPD)=0
Generate the named protocol.
virtual llvm::Constant * BuildRCBlockLayout(CodeGen::CodeGenModule &CGM, const CodeGen::CGBlockInfo &blockInfo)=0
virtual llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic, bool copy)=0
Return the runtime function for optimized setting properties.
virtual llvm::Value * GetSelector(CodeGenFunction &CGF, Selector Sel)=0
Get a selector for the specified name and type values.
virtual void GenerateDirectMethodPrologue(CodeGenFunction &CGF, llvm::Function *Fn, const ObjCMethodDecl *OMD, const ObjCContainerDecl *CD)=0
Generates prologue for direct Objective-C Methods.
virtual Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel)=0
Get the address of a selector for the specified name and type values.
virtual void EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF, llvm::Value *src, Address dest)=0
virtual llvm::Value * EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF)
virtual void EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, llvm::Value *src, Address dest, bool threadlocal=false)=0
virtual llvm::FunctionCallee GetPropertyGetFunction()=0
Return the runtime function for getting properties.
virtual llvm::FunctionCallee GetSetStructFunction()=0
virtual void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtSynchronizedStmt &S)=0
CallArgList - Type for representing both the value and type of arguments in a call.
Definition: CGCall.h:274
void add(RValue rvalue, QualType type)
Definition: CGCall.h:302
void addFrom(const CallArgList &other)
Add all the arguments from another CallArgList to this one.
Definition: CGCall.h:311
CodeGenFunction - This class organizes the per-function state that is used while generating LLVM code...
void EmitNullInitialization(Address DestPtr, QualType Ty)
EmitNullInitialization - Generate code to set a value of the given type to null, If the type contains...
llvm::CallBase * EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, ArrayRef< llvm::Value * > args, const Twine &name="")
Emits a call or invoke instruction to the given runtime function.
Definition: CGCall.cpp:5060
llvm::BasicBlock * createBasicBlock(const Twine &name="", llvm::Function *parent=nullptr, llvm::BasicBlock *before=nullptr)
createBasicBlock - Create an LLVM basic block.
llvm::Value * EmitObjCThrowOperand(const Expr *expr)
Definition: CGObjC.cpp:3542
void EmitBranchThroughCleanup(JumpDest Dest)
EmitBranchThroughCleanup - Emit a branch from the current insert block through the normal cleanup han...
Definition: CGCleanup.cpp:1112
const Decl * CurCodeDecl
CurCodeDecl - This is the inner-most code context, which includes blocks.
JumpDest ReturnBlock
ReturnBlock - Unified return block.
llvm::AllocaInst * CreateTempAlloca(llvm::Type *Ty, const Twine &Name="tmp", llvm::Value *ArraySize=nullptr)
CreateTempAlloca - This creates an alloca and inserts it into the entry block if ArraySize is nullptr...
Definition: CGExpr.cpp:151
RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, ReturnValueSlot ReturnValue, const CallArgList &Args, llvm::CallBase **CallOrInvoke, bool IsMustTail, SourceLocation Loc, bool IsVirtualFunctionPointerThunk=false)
EmitCall - Generate a call of the given function, expecting the given result type,...
Definition: CGCall.cpp:5216
llvm::Value * LoadObjCSelf()
LoadObjCSelf - Load the value of self.
Definition: CGObjC.cpp:1788
llvm::CallInst * EmitNounwindRuntimeCall(llvm::FunctionCallee callee, const Twine &name="")
llvm::CallInst * EmitRuntimeCall(llvm::FunctionCallee callee, const Twine &name="")
SmallVector< llvm::Value *, 8 > ObjCEHValueStack
ObjCEHValueStack - Stack of Objective-C exception values, used for rethrows.
void EmitVarDecl(const VarDecl &D)
EmitVarDecl - Emit a local variable declaration.
Definition: CGDecl.cpp:202
static bool hasAggregateEvaluationKind(QualType T)
Address GetAddrOfLocalVar(const VarDecl *VD)
GetAddrOfLocalVar - Return the address of a local variable.
Address ReturnValue
ReturnValue - The temporary alloca to hold the return value.
llvm::LLVMContext & getLLVMContext()
void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false)
EmitBlock - Emit the given block.
Definition: CGStmt.cpp:652
This class organizes the cross-function state that is used while generating LLVM code.
void setGVProperties(llvm::GlobalValue *GV, GlobalDecl GD) const
Set visibility, dllimport/dllexport and dso_local.
llvm::Module & getModule() const
llvm::FunctionCallee CreateRuntimeFunction(llvm::FunctionType *Ty, StringRef Name, llvm::AttributeList ExtraAttrs=llvm::AttributeList(), bool Local=false, bool AssumeConvergent=false)
Create or return a runtime function declaration with the specified type and name.
void addCompilerUsedGlobal(llvm::GlobalValue *GV)
Add a global to a list to be added to the llvm.compiler.used metadata.
bool ReturnTypeUsesFPRet(QualType ResultType)
Return true iff the given type uses 'fpret' when used as a return type.
Definition: CGCall.cpp:1669
const LangOptions & getLangOpts() const
const TargetInfo & getTarget() const
void addUsedGlobal(llvm::GlobalValue *GV)
Add a global to a list to be added to the llvm.used metadata.
const llvm::DataLayout & getDataLayout() const
CGCXXABI & getCXXABI() const
const llvm::Triple & getTriple() const
bool ReturnTypeHasInReg(const CGFunctionInfo &FI)
Return true iff the given type has inreg set.
Definition: CGCall.cpp:1659
ASTContext & getContext() const
bool ReturnTypeUsesSRet(const CGFunctionInfo &FI)
Return true iff the given type uses 'sret' when used as a return type.
Definition: CGCall.cpp:1654
const CodeGenOptions & getCodeGenOpts() const
llvm::LLVMContext & getLLVMContext()
llvm::Constant * EmitNullConstant(QualType T)
Return the result of value-initializing the given type, i.e.
ConstantAddress GetAddrOfConstantCString(const std::string &Str, const char *GlobalName=nullptr)
Returns a pointer to a character array containing the literal and a terminating '\0' character.
This class organizes the cross-module state that is used while lowering AST types to LLVM types.
Definition: CodeGenTypes.h:54
llvm::Type * ConvertType(QualType T)
ConvertType - Convert type T into a llvm::Type.
llvm::Type * ConvertTypeForMem(QualType T)
ConvertTypeForMem - Convert type T into a llvm::Type.
bool isZeroInitializable(QualType T)
IsZeroInitializable - Return whether a type can be zero-initialized (in the C++ sense) with an LLVM z...
A specialization of Address that requires the address to be an LLVM Constant.
Definition: Address.h:296
ArrayBuilder beginArray(llvm::Type *eltTy=nullptr)
llvm::GlobalVariable * finishAndCreateGlobal(As &&...args)
Given that this builder was created by beginning an array or struct directly on a ConstantInitBuilder...
StructBuilder beginStruct(llvm::StructType *ty=nullptr)
void finishAndAddTo(AggregateBuilderBase &parent)
Given that this builder was created by beginning an array or struct component on the given parent bui...
A helper class of ConstantInitBuilder, used for building constant array initializers.
The standard implementation of ConstantInitBuilder used in Clang.
A helper class of ConstantInitBuilder, used for building constant struct initializers.
LValue - This represents an lvalue references.
Definition: CGValue.h:182
RValue - This trivial value class is used to represent the result of an expression that is evaluated.
Definition: CGValue.h:42
bool isScalar() const
Definition: CGValue.h:64
static RValue get(llvm::Value *V)
Definition: CGValue.h:98
static RValue getComplex(llvm::Value *V1, llvm::Value *V2)
Definition: CGValue.h:108
bool isAggregate() const
Definition: CGValue.h:66
Address getAggregateAddress() const
getAggregateAddr() - Return the Value* of the address of the aggregate.
Definition: CGValue.h:83
llvm::Value * getScalarVal() const
getScalarVal() - Return the Value* of this scalar value.
Definition: CGValue.h:71
std::pair< llvm::Value *, llvm::Value * > getComplexVal() const
getComplexVal - Return the real/imag components of this complex value.
Definition: CGValue.h:78
An abstract representation of an aligned address.
Definition: Address.h:42
llvm::Value * getPointer() const
Definition: Address.h:66
ReturnValueSlot - Contains the address where the return value of a function can be stored,...
Definition: CGCall.h:379
DeclContext - This is used only as base class of specific decl types that can act as declaration cont...
Definition: DeclBase.h:1449
lookup_result lookup(DeclarationName Name) const
lookup - Find the declarations (if any) with the given Name in this context.
Definition: DeclBase.cpp:1879
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:86
static void add(Kind k)
Definition: DeclBase.cpp:226
bool isWeakImported() const
Determine whether this is a weak-imported symbol.
Definition: DeclBase.cpp:848
@ OBJC_TQ_None
Definition: DeclBase.h:199
bool isUsed(bool CheckUsedAttr=true) const
Whether any (re-)declaration of the entity was used, meaning that a definition is required.
Definition: DeclBase.cpp:553
bool hasAttr() const
Definition: DeclBase.h:577
StringRef getName() const
This represents one expression.
Definition: Expr.h:112
StringRef getName() const
The name of this FileEntry.
Definition: FileEntry.h:61
DirectoryEntryRef getDir() const
Definition: FileEntry.h:78
One of these records is kept for each identifier that is lexed.
StringRef getName() const
Return the actual identifier string.
IdentifierInfo & get(StringRef Name)
Return the identifier token info for the specified named identifier.
Keeps track of the various options that can be enabled, which controls the dialect of C or C++ that i...
Definition: LangOptions.h:434
clang::ObjCRuntime ObjCRuntime
Definition: LangOptions.h:469
std::string ObjCConstantStringClass
Definition: LangOptions.h:473
IdentifierInfo * getIdentifier() const
Get the identifier that names this declaration, if there is one.
Definition: Decl.h:294
Visibility getVisibility() const
Determines the visibility of this entity.
Definition: Decl.h:443
std::string getNameAsString() const
Get a human-readable name for the declaration, even if it is one of the special kinds of names (C++ c...
Definition: Decl.h:316
Represents Objective-C's @synchronized statement.
Definition: StmtObjC.h:303
Represents Objective-C's @throw statement.
Definition: StmtObjC.h:358
Represents Objective-C's @try ... @catch ... @finally statement.
Definition: StmtObjC.h:167
ObjCCategoryDecl - Represents a category declaration.
Definition: DeclObjC.h:2329
const ObjCProtocolList & getReferencedProtocols() const
Definition: DeclObjC.h:2396
ObjCCategoryImplDecl - An object of this class encapsulates a category @implementation declaration.
Definition: DeclObjC.h:2545
ObjCCategoryDecl * getCategoryDecl() const
Definition: DeclObjC.cpp:2196
ObjCCompatibleAliasDecl - Represents alias of a class.
Definition: DeclObjC.h:2775
const ObjCInterfaceDecl * getClassInterface() const
Definition: DeclObjC.h:2793
ObjCContainerDecl - Represents a container for method declarations.
Definition: DeclObjC.h:948
classmeth_iterator classmeth_end() const
Definition: DeclObjC.h:1058
classmeth_iterator classmeth_begin() const
Definition: DeclObjC.h:1054
instmeth_range instance_methods() const
Definition: DeclObjC.h:1033
instmeth_iterator instmeth_end() const
Definition: DeclObjC.h:1041
instmeth_iterator instmeth_begin() const
Definition: DeclObjC.h:1037
prop_range properties() const
Definition: DeclObjC.h:967
classmeth_range class_methods() const
Definition: DeclObjC.h:1050
propimpl_range property_impls() const
Definition: DeclObjC.h:2513
const ObjCInterfaceDecl * getClassInterface() const
Definition: DeclObjC.h:2486
ObjCImplementationDecl - Represents a class definition - this is where method definitions are specifi...
Definition: DeclObjC.h:2597
Represents an ObjC class declaration.
Definition: DeclObjC.h:1154
all_protocol_iterator all_referenced_protocol_end() const
Definition: DeclObjC.h:1435
all_protocol_range all_referenced_protocols() const
Definition: DeclObjC.h:1417
ObjCIvarDecl * all_declared_ivar_begin()
all_declared_ivar_begin - return first ivar declared in this class, its extensions and its implementa...
Definition: DeclObjC.cpp:1669
protocol_range protocols() const
Definition: DeclObjC.h:1359
all_protocol_iterator all_referenced_protocol_begin() const
Definition: DeclObjC.h:1422
ObjCInterfaceDecl * getSuperClass() const
Definition: DeclObjC.cpp:349
ObjCInterfaceDecl * getDefinition()
Retrieve the definition of this class, or NULL if this class has been forward-declared (with @class) ...
Definition: DeclObjC.h:1542
known_extensions_range known_extensions() const
Definition: DeclObjC.h:1762
Interfaces are the core concept in Objective-C for object oriented design.
Definition: TypeBase.h:7905
ObjCInterfaceDecl * getDecl() const
Get the declaration of this interface.
Definition: Type.cpp:951
ObjCIvarDecl - Represents an ObjC instance variable.
Definition: DeclObjC.h:1952
AccessControl getAccessControl() const
Definition: DeclObjC.h:2000
ObjCInterfaceDecl * getContainingInterface()
Return the class interface that this ivar is logically contained in; this is either the interface whe...
Definition: DeclObjC.cpp:1872
ObjCIvarDecl * getNextIvar()
Definition: DeclObjC.h:1987
ObjCMethodDecl - Represents an instance or class method declaration.
Definition: DeclObjC.h:140
ImplicitParamDecl * getSelfDecl() const
Definition: DeclObjC.h:418
Stmt * getBody() const override
Retrieve the body of this method, if it has one.
Definition: DeclObjC.cpp:906
ObjCMethodDecl * getCanonicalDecl() override
Retrieves the "canonical" declaration of the given declaration.
Definition: DeclObjC.cpp:1009
bool isDirectMethod() const
True if the method is tagged as objc_direct.
Definition: DeclObjC.cpp:868
Selector getSelector() const
Definition: DeclObjC.h:327
ImplicitParamDecl * getCmdDecl() const
Definition: DeclObjC.h:420
QualType getReturnType() const
Definition: DeclObjC.h:329
bool isClassMethod() const
Definition: DeclObjC.h:434
Represents a pointer to an Objective C object.
Definition: TypeBase.h:7961
const ObjCObjectType * getObjectType() const
Gets the type pointed to by this ObjC pointer.
Definition: TypeBase.h:7998
const ObjCInterfaceType * getInterfaceType() const
If this pointer points to an Objective C @interface type, gets the type for that interface.
Definition: Type.cpp:1840
Represents a class type in Objective C.
Definition: TypeBase.h:7707
ObjCInterfaceDecl * getInterface() const
Gets the interface declaration for this object type, if the base type really is an interface.
Definition: TypeBase.h:7940
Represents one property declaration in an Objective-C interface.
Definition: DeclObjC.h:731
ObjCMethodDecl * getGetterMethodDecl() const
Definition: DeclObjC.h:901
ObjCMethodDecl * getSetterMethodDecl() const
Definition: DeclObjC.h:904
QualType getType() const
Definition: DeclObjC.h:804
Represents an Objective-C protocol declaration.
Definition: DeclObjC.h:2084
ObjCProtocolDecl * getDefinition()
Retrieve the definition of this protocol, if any.
Definition: DeclObjC.h:2250
bool isNonRuntimeProtocol() const
This is true iff the protocol is tagged with the objc_non_runtime_protocol attribute.
Definition: DeclObjC.cpp:1958
protocol_iterator protocol_begin() const
Definition: DeclObjC.h:2165
protocol_range protocols() const
Definition: DeclObjC.h:2161
protocol_iterator protocol_end() const
Definition: DeclObjC.h:2172
The basic abstraction for the target Objective-C runtime.
Definition: ObjCRuntime.h:28
Kind getKind() const
Definition: ObjCRuntime.h:77
const VersionTuple & getVersion() const
Definition: ObjCRuntime.h:78
bool isNonFragile() const
Does this runtime follow the set of implied behaviors for a "non-fragile" ABI?
Definition: ObjCRuntime.h:82
Kind
The basic Objective-C runtimes that we know about.
Definition: ObjCRuntime.h:31
@ MacOSX
'macosx' is the Apple-provided NeXT-derived runtime on Mac OS X platforms that use the non-fragile AB...
Definition: ObjCRuntime.h:35
@ FragileMacOSX
'macosx-fragile' is the Apple-provided NeXT-derived runtime on Mac OS X platforms that use the fragil...
Definition: ObjCRuntime.h:40
@ GNUstep
'gnustep' is the modern non-fragile GNUstep runtime.
Definition: ObjCRuntime.h:56
@ ObjFW
'objfw' is the Objective-C runtime included in ObjFW
Definition: ObjCRuntime.h:59
@ iOS
'ios' is the Apple-provided NeXT-derived runtime on iOS or the iOS simulator; it is always non-fragil...
Definition: ObjCRuntime.h:45
@ GCC
'gcc' is the Objective-C runtime shipped with GCC, implementing a fragile Objective-C ABI
Definition: ObjCRuntime.h:53
@ WatchOS
'watchos' is a variant of iOS for Apple's watchOS.
Definition: ObjCRuntime.h:49
A (possibly-)qualified type.
Definition: TypeBase.h:937
@ OCL_Strong
Assigning into this object requires the old value to be released and the new value to be retained.
Definition: TypeBase.h:361
@ OCL_ExplicitNone
This object can be modified without requiring retains or releases.
Definition: TypeBase.h:354
@ OCL_None
There is no lifetime qualification on this type.
Definition: TypeBase.h:350
@ OCL_Weak
Reading or writing from this object requires a barrier call.
Definition: TypeBase.h:364
@ OCL_Autoreleasing
Assigning into this object requires a lifetime extension.
Definition: TypeBase.h:367
This table allows us to fully hide how we implement multi-keyword caching.
Smart pointer class that efficiently represents Objective-C method names.
std::string getAsString() const
Derive the full selector name (e.g.
This class handles loading and caching of source files into memory.
StringLiteral - This represents a string literal expression, e.g.
Definition: Expr.h:1801
bool containsNonAscii() const
Definition: Expr.h:1926
unsigned getLength() const
Definition: Expr.h:1911
uint32_t getCodeUnit(size_t i) const
Definition: Expr.h:1884
StringRef getString() const
Definition: Expr.h:1869
const llvm::Triple & getTriple() const
Returns the target triple of the primary target.
Definition: TargetInfo.h:1288
uint64_t getPointerWidth(LangAS AddrSpace) const
Return the width of pointers on this target, for the specified address space.
Definition: TargetInfo.h:486
The top declaration context.
Definition: Decl.h:104
static DeclContext * castToDeclContext(const TranslationUnitDecl *D)
Definition: Decl.h:150
The base class of the type hierarchy.
Definition: TypeBase.h:1833
bool isVoidType() const
Definition: TypeBase.h:8936
const T * castAs() const
Member-template castAs<specific type>.
Definition: TypeBase.h:9226
bool isObjCQualifiedIdType() const
Definition: TypeBase.h:8770
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee.
Definition: Type.cpp:752
bool isIntegralOrEnumerationType() const
Determine whether this type is an integral or enumeration type.
Definition: TypeBase.h:9054
bool isObjCIdType() const
Definition: TypeBase.h:8782
const T * getAs() const
Member-template getAs<specific type>'.
Definition: TypeBase.h:9159
bool hasPointerRepresentation() const
Whether this type is represented natively as a pointer.
Definition: TypeBase.h:9100
QualType getType() const
Definition: Decl.h:722
Represents a variable declaration or definition.
Definition: Decl.h:925
CGObjCRuntime * CreateGNUObjCRuntime(CodeGenModule &CGM)
Creates an instance of an Objective-C runtime class.
Definition: CGObjCGNU.cpp:4434
constexpr size_t align(size_t Size)
Aligns a size to the pointer alignment.
Definition: PrimType.h:185
RangeSelector node(std::string ID)
Selects a node, including trailing semicolon, if any (for declarations and non-expression statements)...
RangeSelector name(std::string ID)
Given a node with a "name", (like NamedDecl, DeclRefExpr, CxxCtorInitializer, and TypeLoc) selects th...
The JSON file list parser is used to communicate input to InstallAPI.
bool isa(CodeGen::Address addr)
Definition: Address.h:330
CanQual< Type > CanQualType
Represents a canonical, potentially-qualified type.
Selector GetNullarySelector(StringRef name, ASTContext &Ctx)
Utility function for constructing a nullary selector.
Definition: ASTContext.h:3745
const FunctionProtoType * T
@ Interface
The "__interface" keyword introduces the elaborated-type-specifier.
@ Class
The "class" keyword introduces the elaborated-type-specifier.
@ HiddenVisibility
Objects with "hidden" visibility are not seen by the dynamic linker.
Definition: Visibility.h:37
unsigned long uint64_t
int int32_t
unsigned int uint32_t
const half4 dst(half4 Src0, half4 Src1)
int const char * function
Definition: c++config.h:31
The MS C++ ABI needs a pointer to RTTI data plus some flags to describe the type of a catch handler,...
Definition: CGCleanup.h:39