clang 22.0.0git
Interp.cpp
Go to the documentation of this file.
1//===------- Interp.cpp - Interpreter for the constexpr VM ------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "Interp.h"
10#include "Compiler.h"
11#include "Function.h"
12#include "InterpFrame.h"
13#include "InterpShared.h"
14#include "InterpStack.h"
15#include "Opcode.h"
16#include "PrimType.h"
17#include "Program.h"
18#include "State.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/Expr.h"
23#include "clang/AST/ExprCXX.h"
26#include "llvm/ADT/StringExtras.h"
27
28using namespace clang;
29using namespace clang::interp;
30
31static bool RetValue(InterpState &S, CodePtr &Pt) {
32 llvm::report_fatal_error("Interpreter cannot return values");
33}
34
35//===----------------------------------------------------------------------===//
36// Jmp, Jt, Jf
37//===----------------------------------------------------------------------===//
38
39static bool Jmp(InterpState &S, CodePtr &PC, int32_t Offset) {
40 PC += Offset;
41 return true;
42}
43
44static bool Jt(InterpState &S, CodePtr &PC, int32_t Offset) {
45 if (S.Stk.pop<bool>()) {
46 PC += Offset;
47 }
48 return true;
49}
50
51static bool Jf(InterpState &S, CodePtr &PC, int32_t Offset) {
52 if (!S.Stk.pop<bool>()) {
53 PC += Offset;
54 }
55 return true;
56}
57
58// https://github.com/llvm/llvm-project/issues/102513
59#if defined(_MSC_VER) && !defined(__clang__) && !defined(NDEBUG)
60#pragma optimize("", off)
61#endif
62// FIXME: We have the large switch over all opcodes here again, and in
63// Interpret().
64static bool BCP(InterpState &S, CodePtr &RealPC, int32_t Offset, PrimType PT) {
65 [[maybe_unused]] CodePtr PCBefore = RealPC;
66 size_t StackSizeBefore = S.Stk.size();
67
68 auto SpeculativeInterp = [&S, RealPC]() -> bool {
69 const InterpFrame *StartFrame = S.Current;
70 CodePtr PC = RealPC;
71
72 for (;;) {
73 auto Op = PC.read<Opcode>();
74 if (Op == OP_EndSpeculation)
75 return true;
76 CodePtr OpPC = PC;
77
78 switch (Op) {
79#define GET_INTERP
80#include "Opcodes.inc"
81#undef GET_INTERP
82 }
83 }
84 llvm_unreachable("We didn't see an EndSpeculation op?");
85 };
86
87 if (SpeculativeInterp()) {
88 if (PT == PT_Ptr) {
89 const auto &Ptr = S.Stk.pop<Pointer>();
90 assert(S.Stk.size() == StackSizeBefore);
91 S.Stk.push<Integral<32, true>>(
93 } else {
94 // Pop the result from the stack and return success.
95 TYPE_SWITCH(PT, S.Stk.pop<T>(););
96 assert(S.Stk.size() == StackSizeBefore);
98 }
99 } else {
100 if (!S.inConstantContext())
101 return Invalid(S, RealPC);
102
103 S.Stk.clearTo(StackSizeBefore);
105 }
106
107 // RealPC should not have been modified.
108 assert(*RealPC == *PCBefore);
109
110 // Jump to end label. This is a little tricker than just RealPC += Offset
111 // because our usual jump instructions don't have any arguments, to the offset
112 // we get is a little too much and we need to subtract the size of the
113 // bool and PrimType arguments again.
114 int32_t ParamSize = align(sizeof(PrimType));
115 assert(Offset >= ParamSize);
116 RealPC += Offset - ParamSize;
117
118 [[maybe_unused]] CodePtr PCCopy = RealPC;
119 assert(PCCopy.read<Opcode>() == OP_EndSpeculation);
120
121 return true;
122}
123// https://github.com/llvm/llvm-project/issues/102513
124#if defined(_MSC_VER) && !defined(__clang__) && !defined(NDEBUG)
125#pragma optimize("", on)
126#endif
127
129 const ValueDecl *VD) {
130 const SourceInfo &E = S.Current->getSource(OpPC);
131 S.FFDiag(E, diag::note_constexpr_var_init_unknown, 1) << VD;
132 S.Note(VD->getLocation(), diag::note_declared_at) << VD->getSourceRange();
133}
134
135static void diagnoseNonConstVariable(InterpState &S, CodePtr OpPC,
136 const ValueDecl *VD);
138 const ValueDecl *D) {
139 // This function tries pretty hard to produce a good diagnostic. Just skip
140 // tha if nobody will see it anyway.
141 if (!S.diagnosing())
142 return false;
143
144 if (isa<ParmVarDecl>(D)) {
145 if (D->getType()->isReferenceType()) {
146 if (S.inConstantContext() && S.getLangOpts().CPlusPlus &&
147 !S.getLangOpts().CPlusPlus11)
148 diagnoseNonConstVariable(S, OpPC, D);
149 return false;
150 }
151
152 const SourceInfo &Loc = S.Current->getSource(OpPC);
153 if (S.getLangOpts().CPlusPlus11) {
154 S.FFDiag(Loc, diag::note_constexpr_function_param_value_unknown) << D;
155 S.Note(D->getLocation(), diag::note_declared_at) << D->getSourceRange();
156 } else {
157 S.FFDiag(Loc);
158 }
159 return false;
160 }
161
162 if (!D->getType().isConstQualified()) {
163 diagnoseNonConstVariable(S, OpPC, D);
164 } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
165 if (!VD->getAnyInitializer()) {
166 diagnoseMissingInitializer(S, OpPC, VD);
167 } else {
168 const SourceInfo &Loc = S.Current->getSource(OpPC);
169 S.FFDiag(Loc, diag::note_constexpr_var_init_non_constant, 1) << VD;
170 S.Note(VD->getLocation(), diag::note_declared_at);
171 }
172 }
173
174 return false;
175}
176
178 const ValueDecl *VD) {
179 if (!S.diagnosing())
180 return;
181
182 const SourceInfo &Loc = S.Current->getSource(OpPC);
183 if (!S.getLangOpts().CPlusPlus) {
184 S.FFDiag(Loc);
185 return;
186 }
187
188 if (const auto *VarD = dyn_cast<VarDecl>(VD);
189 VarD && VarD->getType().isConstQualified() &&
190 !VarD->getAnyInitializer()) {
191 diagnoseMissingInitializer(S, OpPC, VD);
192 return;
193 }
194
195 // Rather random, but this is to match the diagnostic output of the current
196 // interpreter.
197 if (isa<ObjCIvarDecl>(VD))
198 return;
199
201 S.FFDiag(Loc, diag::note_constexpr_ltor_non_const_int, 1) << VD;
202 S.Note(VD->getLocation(), diag::note_declared_at);
203 return;
204 }
205
206 S.FFDiag(Loc,
207 S.getLangOpts().CPlusPlus11 ? diag::note_constexpr_ltor_non_constexpr
208 : diag::note_constexpr_ltor_non_integral,
209 1)
210 << VD << VD->getType();
211 S.Note(VD->getLocation(), diag::note_declared_at);
212}
213
214static bool CheckTemporary(InterpState &S, CodePtr OpPC, const Block *B,
215 AccessKinds AK) {
216 if (B->getDeclID()) {
217 if (!(B->isStatic() && B->isTemporary()))
218 return true;
219
220 const auto *MTE = dyn_cast_if_present<MaterializeTemporaryExpr>(
221 B->getDescriptor()->asExpr());
222 if (!MTE)
223 return true;
224
225 // FIXME(perf): Since we do this check on every Load from a static
226 // temporary, it might make sense to cache the value of the
227 // isUsableInConstantExpressions call.
228 if (B->getEvalID() != S.Ctx.getEvalID() &&
229 !MTE->isUsableInConstantExpressions(S.getASTContext())) {
230 const SourceInfo &E = S.Current->getSource(OpPC);
231 S.FFDiag(E, diag::note_constexpr_access_static_temporary, 1) << AK;
232 S.Note(B->getDescriptor()->getLocation(),
233 diag::note_constexpr_temporary_here);
234 return false;
235 }
236 }
237 return true;
238}
239
240static bool CheckGlobal(InterpState &S, CodePtr OpPC, const Pointer &Ptr) {
241 if (auto ID = Ptr.getDeclID()) {
242 if (!Ptr.isStatic())
243 return true;
244
245 if (S.P.getCurrentDecl() == ID)
246 return true;
247
248 S.FFDiag(S.Current->getLocation(OpPC), diag::note_constexpr_modify_global);
249 return false;
250 }
251 return true;
252}
253
254namespace clang {
255namespace interp {
256static void popArg(InterpState &S, const Expr *Arg) {
257 PrimType Ty = S.getContext().classify(Arg).value_or(PT_Ptr);
258 TYPE_SWITCH(Ty, S.Stk.discard<T>());
259}
260
262 const Function *Func) {
263 assert(S.Current);
264 assert(Func);
265
266 if (S.Current->Caller && Func->isVariadic()) {
267 // CallExpr we're look for is at the return PC of the current function, i.e.
268 // in the caller.
269 // This code path should be executed very rarely.
270 unsigned NumVarArgs;
271 const Expr *const *Args = nullptr;
272 unsigned NumArgs = 0;
273 const Expr *CallSite = S.Current->Caller->getExpr(S.Current->getRetPC());
274 if (const auto *CE = dyn_cast<CallExpr>(CallSite)) {
275 Args = CE->getArgs();
276 NumArgs = CE->getNumArgs();
277 } else if (const auto *CE = dyn_cast<CXXConstructExpr>(CallSite)) {
278 Args = CE->getArgs();
279 NumArgs = CE->getNumArgs();
280 } else
281 assert(false && "Can't get arguments from that expression type");
282
283 assert(NumArgs >= Func->getNumWrittenParams());
284 NumVarArgs = NumArgs - (Func->getNumWrittenParams() +
285 isa<CXXOperatorCallExpr>(CallSite));
286 for (unsigned I = 0; I != NumVarArgs; ++I) {
287 const Expr *A = Args[NumArgs - 1 - I];
288 popArg(S, A);
289 }
290 }
291
292 // And in any case, remove the fixed parameters (the non-variadic ones)
293 // at the end.
294 for (PrimType Ty : Func->args_reverse())
295 TYPE_SWITCH(Ty, S.Stk.discard<T>());
296}
297
299 if (!P.isBlockPointer())
300 return false;
301
302 if (P.isDummy())
303 return isa_and_nonnull<ParmVarDecl>(P.getDeclDesc()->asValueDecl());
304
305 return P.getDeclDesc()->IsConstexprUnknown;
306}
307
308bool CheckBCPResult(InterpState &S, const Pointer &Ptr) {
309 if (Ptr.isDummy())
310 return false;
311 if (Ptr.isZero())
312 return true;
313 if (Ptr.isFunctionPointer())
314 return false;
315 if (Ptr.isIntegralPointer())
316 return true;
317 if (Ptr.isTypeidPointer())
318 return true;
319
320 if (Ptr.getType()->isAnyComplexType())
321 return true;
322
323 if (const Expr *Base = Ptr.getDeclDesc()->asExpr())
324 return isa<StringLiteral>(Base) && Ptr.getIndex() == 0;
325 return false;
326}
327
328bool CheckActive(InterpState &S, CodePtr OpPC, const Pointer &Ptr,
329 AccessKinds AK) {
330 if (Ptr.isActive())
331 return true;
332
333 assert(Ptr.inUnion());
334
335 Pointer U = Ptr.getBase();
336 Pointer C = Ptr;
337 while (!U.isRoot() && !U.isActive()) {
338 // A little arbitrary, but this is what the current interpreter does.
339 // See the AnonymousUnion test in test/AST/ByteCode/unions.cpp.
340 // GCC's output is more similar to what we would get without
341 // this condition.
342 if (U.getRecord() && U.getRecord()->isAnonymousUnion())
343 break;
344
345 C = U;
346 U = U.getBase();
347 }
348 assert(C.isField());
349
350 // Consider:
351 // union U {
352 // struct {
353 // int x;
354 // int y;
355 // } a;
356 // }
357 //
358 // When activating x, we will also activate a. If we now try to read
359 // from y, we will get to CheckActive, because y is not active. In that
360 // case, our U will be a (not a union). We return here and let later code
361 // handle this.
362 if (!U.getFieldDesc()->isUnion())
363 return true;
364
365 // Get the inactive field descriptor.
366 assert(!C.isActive());
367 const FieldDecl *InactiveField = C.getField();
368 assert(InactiveField);
369
370 // Find the active field of the union.
371 const Record *R = U.getRecord();
372 assert(R && R->isUnion() && "Not a union");
373
374 const FieldDecl *ActiveField = nullptr;
375 for (const Record::Field &F : R->fields()) {
376 const Pointer &Field = U.atField(F.Offset);
377 if (Field.isActive()) {
378 ActiveField = Field.getField();
379 break;
380 }
381 }
382
383 const SourceInfo &Loc = S.Current->getSource(OpPC);
384 S.FFDiag(Loc, diag::note_constexpr_access_inactive_union_member)
385 << AK << InactiveField << !ActiveField << ActiveField;
386 return false;
387}
388
389bool CheckExtern(InterpState &S, CodePtr OpPC, const Pointer &Ptr) {
390 if (!Ptr.isExtern())
391 return true;
392
393 if (Ptr.isInitialized() ||
394 (Ptr.getDeclDesc()->asVarDecl() == S.EvaluatingDecl))
395 return true;
396
397 if (S.checkingPotentialConstantExpression() && S.getLangOpts().CPlusPlus &&
398 Ptr.isConst())
399 return false;
400
401 const auto *VD = Ptr.getDeclDesc()->asValueDecl();
402 diagnoseNonConstVariable(S, OpPC, VD);
403 return false;
404}
405
406bool CheckArray(InterpState &S, CodePtr OpPC, const Pointer &Ptr) {
407 if (!Ptr.isUnknownSizeArray())
408 return true;
409 const SourceInfo &E = S.Current->getSource(OpPC);
410 S.FFDiag(E, diag::note_constexpr_unsized_array_indexed);
411 return false;
412}
413
414bool CheckLive(InterpState &S, CodePtr OpPC, const Pointer &Ptr,
415 AccessKinds AK) {
416 if (Ptr.isZero()) {
417 const auto &Src = S.Current->getSource(OpPC);
418
419 if (Ptr.isField())
420 S.FFDiag(Src, diag::note_constexpr_null_subobject) << CSK_Field;
421 else
422 S.FFDiag(Src, diag::note_constexpr_access_null) << AK;
423
424 return false;
425 }
426
427 if (!Ptr.isLive()) {
428 const auto &Src = S.Current->getSource(OpPC);
429
430 if (Ptr.isDynamic()) {
431 S.FFDiag(Src, diag::note_constexpr_access_deleted_object) << AK;
432 } else if (!S.checkingPotentialConstantExpression()) {
433 bool IsTemp = Ptr.isTemporary();
434 S.FFDiag(Src, diag::note_constexpr_lifetime_ended, 1) << AK << !IsTemp;
435
436 if (IsTemp)
437 S.Note(Ptr.getDeclLoc(), diag::note_constexpr_temporary_here);
438 else
439 S.Note(Ptr.getDeclLoc(), diag::note_declared_at);
440 }
441
442 return false;
443 }
444
445 return true;
446}
447
448bool CheckConstant(InterpState &S, CodePtr OpPC, const Descriptor *Desc) {
449 assert(Desc);
450
451 const auto *D = Desc->asVarDecl();
452 if (!D || D == S.EvaluatingDecl || D->isConstexpr())
453 return true;
454
455 // If we're evaluating the initializer for a constexpr variable in C23, we may
456 // only read other contexpr variables. Abort here since this one isn't
457 // constexpr.
458 if (const auto *VD = dyn_cast_if_present<VarDecl>(S.EvaluatingDecl);
459 VD && VD->isConstexpr() && S.getLangOpts().C23)
460 return Invalid(S, OpPC);
461
462 QualType T = D->getType();
463 bool IsConstant = T.isConstant(S.getASTContext());
465 if (!IsConstant) {
466 diagnoseNonConstVariable(S, OpPC, D);
467 return false;
468 }
469 return true;
470 }
471
472 if (IsConstant) {
473 if (S.getLangOpts().CPlusPlus) {
474 S.CCEDiag(S.Current->getLocation(OpPC),
475 S.getLangOpts().CPlusPlus11
476 ? diag::note_constexpr_ltor_non_constexpr
477 : diag::note_constexpr_ltor_non_integral,
478 1)
479 << D << T;
480 S.Note(D->getLocation(), diag::note_declared_at);
481 } else {
482 S.CCEDiag(S.Current->getLocation(OpPC));
483 }
484 return true;
485 }
486
489 !S.getLangOpts().CPlusPlus11) {
490 diagnoseNonConstVariable(S, OpPC, D);
491 return false;
492 }
493 return true;
494 }
495
496 diagnoseNonConstVariable(S, OpPC, D);
497 return false;
498}
499
500static bool CheckConstant(InterpState &S, CodePtr OpPC, const Pointer &Ptr) {
501 if (!Ptr.isStatic() || !Ptr.isBlockPointer())
502 return true;
503 if (!Ptr.getDeclID())
504 return true;
505 return CheckConstant(S, OpPC, Ptr.getDeclDesc());
506}
507
508bool CheckNull(InterpState &S, CodePtr OpPC, const Pointer &Ptr,
509 CheckSubobjectKind CSK) {
510 if (!Ptr.isZero())
511 return true;
512 const SourceInfo &Loc = S.Current->getSource(OpPC);
513 S.FFDiag(Loc, diag::note_constexpr_null_subobject)
514 << CSK << S.Current->getRange(OpPC);
515
516 return false;
517}
518
519bool CheckRange(InterpState &S, CodePtr OpPC, const Pointer &Ptr,
520 AccessKinds AK) {
521 if (!Ptr.isOnePastEnd() && !Ptr.isZeroSizeArray())
522 return true;
523 if (S.getLangOpts().CPlusPlus) {
524 const SourceInfo &Loc = S.Current->getSource(OpPC);
525 S.FFDiag(Loc, diag::note_constexpr_access_past_end)
526 << AK << S.Current->getRange(OpPC);
527 }
528 return false;
529}
530
531bool CheckRange(InterpState &S, CodePtr OpPC, const Pointer &Ptr,
532 CheckSubobjectKind CSK) {
533 if (!Ptr.isElementPastEnd() && !Ptr.isZeroSizeArray())
534 return true;
535 const SourceInfo &Loc = S.Current->getSource(OpPC);
536 S.FFDiag(Loc, diag::note_constexpr_past_end_subobject)
537 << CSK << S.Current->getRange(OpPC);
538 return false;
539}
540
541bool CheckSubobject(InterpState &S, CodePtr OpPC, const Pointer &Ptr,
542 CheckSubobjectKind CSK) {
543 if (!Ptr.isOnePastEnd())
544 return true;
545
546 const SourceInfo &Loc = S.Current->getSource(OpPC);
547 S.FFDiag(Loc, diag::note_constexpr_past_end_subobject)
548 << CSK << S.Current->getRange(OpPC);
549 return false;
550}
551
552bool CheckDowncast(InterpState &S, CodePtr OpPC, const Pointer &Ptr,
553 uint32_t Offset) {
554 uint32_t MinOffset = Ptr.getDeclDesc()->getMetadataSize();
555 uint32_t PtrOffset = Ptr.getByteOffset();
556
557 // We subtract Offset from PtrOffset. The result must be at least
558 // MinOffset.
559 if (Offset < PtrOffset && (PtrOffset - Offset) >= MinOffset)
560 return true;
561
562 const auto *E = cast<CastExpr>(S.Current->getExpr(OpPC));
563 QualType TargetQT = E->getType()->getPointeeType();
564 QualType MostDerivedQT = Ptr.getDeclPtr().getType();
565
566 S.CCEDiag(E, diag::note_constexpr_invalid_downcast)
567 << MostDerivedQT << TargetQT;
568
569 return false;
570}
571
572bool CheckConst(InterpState &S, CodePtr OpPC, const Pointer &Ptr) {
573 assert(Ptr.isLive() && "Pointer is not live");
574 if (!Ptr.isConst())
575 return true;
576
577 if (Ptr.isMutable() && !Ptr.isConstInMutable())
578 return true;
579
580 if (!Ptr.isBlockPointer())
581 return false;
582
583 // The This pointer is writable in constructors and destructors,
584 // even if isConst() returns true.
585 if (llvm::is_contained(S.InitializingBlocks, Ptr.block()))
586 return true;
587
588 const QualType Ty = Ptr.getType();
589 const SourceInfo &Loc = S.Current->getSource(OpPC);
590 S.FFDiag(Loc, diag::note_constexpr_modify_const_type) << Ty;
591 return false;
592}
593
594bool CheckMutable(InterpState &S, CodePtr OpPC, const Pointer &Ptr) {
595 assert(Ptr.isLive() && "Pointer is not live");
596 if (!Ptr.isMutable())
597 return true;
598
599 // In C++14 onwards, it is permitted to read a mutable member whose
600 // lifetime began within the evaluation.
601 if (S.getLangOpts().CPlusPlus14 &&
602 Ptr.block()->getEvalID() == S.Ctx.getEvalID()) {
603 // FIXME: This check is necessary because (of the way) we revisit
604 // variables in Compiler.cpp:visitDeclRef. Revisiting a so far
605 // unknown variable will get the same EvalID and we end up allowing
606 // reads from mutable members of it.
607 if (!S.inConstantContext() && isConstexprUnknown(Ptr))
608 return false;
609 return true;
610 }
611
612 const SourceInfo &Loc = S.Current->getSource(OpPC);
613 const FieldDecl *Field = Ptr.getField();
614 S.FFDiag(Loc, diag::note_constexpr_access_mutable, 1) << AK_Read << Field;
615 S.Note(Field->getLocation(), diag::note_declared_at);
616 return false;
617}
618
619static bool CheckVolatile(InterpState &S, CodePtr OpPC, const Pointer &Ptr,
620 AccessKinds AK) {
621 assert(Ptr.isLive());
622
623 if (!Ptr.isVolatile())
624 return true;
625
626 if (!S.getLangOpts().CPlusPlus)
627 return Invalid(S, OpPC);
628
629 // The reason why Ptr is volatile might be further up the hierarchy.
630 // Find that pointer.
631 Pointer P = Ptr;
632 while (!P.isRoot()) {
633 if (P.getType().isVolatileQualified())
634 break;
635 P = P.getBase();
636 }
637
638 const NamedDecl *ND = nullptr;
639 int DiagKind;
641 if (const auto *F = P.getField()) {
642 DiagKind = 2;
643 Loc = F->getLocation();
644 ND = F;
645 } else if (auto *VD = P.getFieldDesc()->asValueDecl()) {
646 DiagKind = 1;
647 Loc = VD->getLocation();
648 ND = VD;
649 } else {
650 DiagKind = 0;
651 if (const auto *E = P.getFieldDesc()->asExpr())
652 Loc = E->getExprLoc();
653 }
654
655 S.FFDiag(S.Current->getLocation(OpPC),
656 diag::note_constexpr_access_volatile_obj, 1)
657 << AK << DiagKind << ND;
658 S.Note(Loc, diag::note_constexpr_volatile_here) << DiagKind;
659 return false;
660}
661
663 AccessKinds AK) {
664 assert(Ptr.isLive());
665 assert(!Ptr.isInitialized());
666 return DiagnoseUninitialized(S, OpPC, Ptr.isExtern(), Ptr.getDeclDesc(), AK);
667}
668
669bool DiagnoseUninitialized(InterpState &S, CodePtr OpPC, bool Extern,
670 const Descriptor *Desc, AccessKinds AK) {
671 if (Extern && S.checkingPotentialConstantExpression())
672 return false;
673
674 if (const auto *VD = Desc->asVarDecl();
675 VD && (VD->isConstexpr() || VD->hasGlobalStorage())) {
676
677 if (VD == S.EvaluatingDecl &&
678 !(S.getLangOpts().CPlusPlus23 && VD->getType()->isReferenceType())) {
679 if (!S.getLangOpts().CPlusPlus14 &&
680 !VD->getType().isConstant(S.getASTContext())) {
681 // Diagnose as non-const read.
682 diagnoseNonConstVariable(S, OpPC, VD);
683 } else {
684 const SourceInfo &Loc = S.Current->getSource(OpPC);
685 // Diagnose as "read of object outside its lifetime".
686 S.FFDiag(Loc, diag::note_constexpr_access_uninit)
687 << AK << /*IsIndeterminate=*/false;
688 }
689 return false;
690 }
691
692 if (VD->getAnyInitializer()) {
693 const SourceInfo &Loc = S.Current->getSource(OpPC);
694 S.FFDiag(Loc, diag::note_constexpr_var_init_non_constant, 1) << VD;
695 S.Note(VD->getLocation(), diag::note_declared_at);
696 } else {
697 diagnoseMissingInitializer(S, OpPC, VD);
698 }
699 return false;
700 }
701
702 if (!S.checkingPotentialConstantExpression()) {
703 S.FFDiag(S.Current->getSource(OpPC), diag::note_constexpr_access_uninit)
704 << AK << /*uninitialized=*/true << S.Current->getRange(OpPC);
705 }
706 return false;
707}
708
710 AccessKinds AK) {
711 if (LT == Lifetime::Started)
712 return true;
713
714 if (!S.checkingPotentialConstantExpression()) {
715 S.FFDiag(S.Current->getSource(OpPC), diag::note_constexpr_access_uninit)
716 << AK << /*uninitialized=*/false << S.Current->getRange(OpPC);
717 }
718 return false;
719}
720
721static bool CheckWeak(InterpState &S, CodePtr OpPC, const Block *B) {
722 if (!B->isWeak())
723 return true;
724
725 const auto *VD = B->getDescriptor()->asVarDecl();
726 assert(VD);
727 S.FFDiag(S.Current->getLocation(OpPC), diag::note_constexpr_var_init_weak)
728 << VD;
729 S.Note(VD->getLocation(), diag::note_declared_at);
730
731 return false;
732}
733
734// The list of checks here is just the one from CheckLoad, but with the
735// ones removed that are impossible on primitive global values.
736// For example, since those can't be members of structs, they also can't
737// be mutable.
738bool CheckGlobalLoad(InterpState &S, CodePtr OpPC, const Block *B) {
739 const auto &Desc =
740 *reinterpret_cast<const GlobalInlineDescriptor *>(B->rawData());
741 if (!B->isAccessible()) {
742 if (!CheckExtern(S, OpPC, Pointer(const_cast<Block *>(B))))
743 return false;
744 if (!CheckDummy(S, OpPC, B, AK_Read))
745 return false;
746 return CheckWeak(S, OpPC, B);
747 }
748
749 if (!CheckConstant(S, OpPC, B->getDescriptor()))
750 return false;
751 if (Desc.InitState != GlobalInitState::Initialized)
752 return DiagnoseUninitialized(S, OpPC, B->isExtern(), B->getDescriptor(),
753 AK_Read);
754 if (!CheckTemporary(S, OpPC, B, AK_Read))
755 return false;
756 if (B->getDescriptor()->IsVolatile) {
757 if (!S.getLangOpts().CPlusPlus)
758 return Invalid(S, OpPC);
759
760 const ValueDecl *D = B->getDescriptor()->asValueDecl();
761 S.FFDiag(S.Current->getLocation(OpPC),
762 diag::note_constexpr_access_volatile_obj, 1)
763 << AK_Read << 1 << D;
764 S.Note(D->getLocation(), diag::note_constexpr_volatile_here) << 1;
765 return false;
766 }
767 return true;
768}
769
770// Similarly, for local loads.
771bool CheckLocalLoad(InterpState &S, CodePtr OpPC, const Block *B) {
772 assert(!B->isExtern());
773 const auto &Desc = *reinterpret_cast<const InlineDescriptor *>(B->rawData());
774 if (!CheckLifetime(S, OpPC, Desc.LifeState, AK_Read))
775 return false;
776 if (!Desc.IsInitialized)
777 return DiagnoseUninitialized(S, OpPC, /*Extern=*/false, B->getDescriptor(),
778 AK_Read);
779 if (B->getDescriptor()->IsVolatile) {
780 if (!S.getLangOpts().CPlusPlus)
781 return Invalid(S, OpPC);
782
783 const ValueDecl *D = B->getDescriptor()->asValueDecl();
784 S.FFDiag(S.Current->getLocation(OpPC),
785 diag::note_constexpr_access_volatile_obj, 1)
786 << AK_Read << 1 << D;
787 S.Note(D->getLocation(), diag::note_constexpr_volatile_here) << 1;
788 return false;
789 }
790 return true;
791}
792
793bool CheckLoad(InterpState &S, CodePtr OpPC, const Pointer &Ptr,
794 AccessKinds AK) {
795 if (!Ptr.isBlockPointer()) {
796 if (Ptr.isZero()) {
797 const auto &Src = S.Current->getSource(OpPC);
798
799 if (Ptr.isField())
800 S.FFDiag(Src, diag::note_constexpr_null_subobject) << CSK_Field;
801 else
802 S.FFDiag(Src, diag::note_constexpr_access_null) << AK;
803 }
804 return false;
805 }
806
807 // Block pointers are the only ones we can actually read from.
808 if (!Ptr.block()->isAccessible()) {
809 if (!CheckLive(S, OpPC, Ptr, AK))
810 return false;
811 if (!CheckExtern(S, OpPC, Ptr))
812 return false;
813 if (!CheckDummy(S, OpPC, Ptr.block(), AK))
814 return false;
815 if (!CheckWeak(S, OpPC, Ptr.block()))
816 return false;
817 }
818
819 if (!CheckConstant(S, OpPC, Ptr))
820 return false;
821 if (!CheckRange(S, OpPC, Ptr, AK))
822 return false;
823 if (!CheckActive(S, OpPC, Ptr, AK))
824 return false;
825 if (!CheckLifetime(S, OpPC, Ptr.getLifetime(), AK))
826 return false;
827 if (!Ptr.isInitialized())
828 return DiagnoseUninitialized(S, OpPC, Ptr, AK);
829 if (!CheckTemporary(S, OpPC, Ptr.block(), AK))
830 return false;
831
832 if (!CheckMutable(S, OpPC, Ptr))
833 return false;
834 if (!CheckVolatile(S, OpPC, Ptr, AK))
835 return false;
836 return true;
837}
838
839/// This is not used by any of the opcodes directly. It's used by
840/// EvalEmitter to do the final lvalue-to-rvalue conversion.
841bool CheckFinalLoad(InterpState &S, CodePtr OpPC, const Pointer &Ptr) {
842 assert(!Ptr.isZero());
843 if (!Ptr.isBlockPointer())
844 return false;
845
846 if (!Ptr.block()->isAccessible()) {
847 if (!CheckLive(S, OpPC, Ptr, AK_Read))
848 return false;
849 if (!CheckExtern(S, OpPC, Ptr))
850 return false;
851 if (!CheckDummy(S, OpPC, Ptr.block(), AK_Read))
852 return false;
853 return CheckWeak(S, OpPC, Ptr.block());
854 }
855
856 if (!CheckConstant(S, OpPC, Ptr))
857 return false;
858
859 if (!CheckActive(S, OpPC, Ptr, AK_Read))
860 return false;
861 if (!CheckLifetime(S, OpPC, Ptr.getLifetime(), AK_Read))
862 return false;
863 if (!Ptr.isInitialized())
864 return DiagnoseUninitialized(S, OpPC, Ptr, AK_Read);
865 if (!CheckTemporary(S, OpPC, Ptr.block(), AK_Read))
866 return false;
867 if (!CheckMutable(S, OpPC, Ptr))
868 return false;
869 return true;
870}
871
872bool CheckStore(InterpState &S, CodePtr OpPC, const Pointer &Ptr) {
873 if (!Ptr.isBlockPointer())
874 return false;
875
876 if (!Ptr.block()->isAccessible()) {
877 if (!CheckLive(S, OpPC, Ptr, AK_Assign))
878 return false;
879 if (!CheckExtern(S, OpPC, Ptr))
880 return false;
881 return CheckDummy(S, OpPC, Ptr.block(), AK_Assign);
882 }
883 if (!CheckLifetime(S, OpPC, Ptr.getLifetime(), AK_Assign))
884 return false;
885 if (!CheckRange(S, OpPC, Ptr, AK_Assign))
886 return false;
887 if (!CheckActive(S, OpPC, Ptr, AK_Assign))
888 return false;
889 if (!CheckGlobal(S, OpPC, Ptr))
890 return false;
891 if (!CheckConst(S, OpPC, Ptr))
892 return false;
893 if (!S.inConstantContext() && isConstexprUnknown(Ptr))
894 return false;
895 return true;
896}
897
898static bool CheckInvoke(InterpState &S, CodePtr OpPC, const Pointer &Ptr) {
899 if (!CheckLive(S, OpPC, Ptr, AK_MemberCall))
900 return false;
901 if (!Ptr.isDummy()) {
902 if (!CheckExtern(S, OpPC, Ptr))
903 return false;
904 if (!CheckRange(S, OpPC, Ptr, AK_MemberCall))
905 return false;
906 }
907 return true;
908}
909
910bool CheckInit(InterpState &S, CodePtr OpPC, const Pointer &Ptr) {
911 if (!CheckLive(S, OpPC, Ptr, AK_Assign))
912 return false;
913 if (!CheckRange(S, OpPC, Ptr, AK_Assign))
914 return false;
915 return true;
916}
917
918static bool CheckCallable(InterpState &S, CodePtr OpPC, const Function *F) {
919
920 if (F->isVirtual() && !S.getLangOpts().CPlusPlus20) {
921 const SourceLocation &Loc = S.Current->getLocation(OpPC);
922 S.CCEDiag(Loc, diag::note_constexpr_virtual_call);
923 return false;
924 }
925
926 if (S.checkingPotentialConstantExpression() && S.Current->getDepth() != 0)
927 return false;
928
929 if (F->isValid() && F->hasBody() && F->isConstexpr())
930 return true;
931
932 // Implicitly constexpr.
933 if (F->isLambdaStaticInvoker())
934 return true;
935
936 // Bail out if the function declaration itself is invalid. We will
937 // have produced a relevant diagnostic while parsing it, so just
938 // note the problematic sub-expression.
939 if (F->getDecl()->isInvalidDecl())
940 return Invalid(S, OpPC);
941
942 // Diagnose failed assertions specially.
943 if (S.Current->getLocation(OpPC).isMacroID() &&
944 F->getDecl()->getIdentifier()) {
945 // FIXME: Instead of checking for an implementation-defined function,
946 // check and evaluate the assert() macro.
947 StringRef Name = F->getDecl()->getName();
948 bool AssertFailed =
949 Name == "__assert_rtn" || Name == "__assert_fail" || Name == "_wassert";
950 if (AssertFailed) {
951 S.FFDiag(S.Current->getLocation(OpPC),
952 diag::note_constexpr_assert_failed);
953 return false;
954 }
955 }
956
957 if (S.getLangOpts().CPlusPlus11) {
958 const FunctionDecl *DiagDecl = F->getDecl();
959
960 // Invalid decls have been diagnosed before.
961 if (DiagDecl->isInvalidDecl())
962 return false;
963
964 // If this function is not constexpr because it is an inherited
965 // non-constexpr constructor, diagnose that directly.
966 const auto *CD = dyn_cast<CXXConstructorDecl>(DiagDecl);
967 if (CD && CD->isInheritingConstructor()) {
968 const auto *Inherited = CD->getInheritedConstructor().getConstructor();
969 if (!Inherited->isConstexpr())
970 DiagDecl = CD = Inherited;
971 }
972
973 // Silently reject constructors of invalid classes. The invalid class
974 // has been rejected elsewhere before.
975 if (CD && CD->getParent()->isInvalidDecl())
976 return false;
977
978 // FIXME: If DiagDecl is an implicitly-declared special member function
979 // or an inheriting constructor, we should be much more explicit about why
980 // it's not constexpr.
981 if (CD && CD->isInheritingConstructor()) {
982 S.FFDiag(S.Current->getLocation(OpPC),
983 diag::note_constexpr_invalid_inhctor, 1)
984 << CD->getInheritedConstructor().getConstructor()->getParent();
985 S.Note(DiagDecl->getLocation(), diag::note_declared_at);
986 } else {
987 // Don't emit anything if the function isn't defined and we're checking
988 // for a constant expression. It might be defined at the point we're
989 // actually calling it.
990 bool IsExtern = DiagDecl->getStorageClass() == SC_Extern;
991 bool IsDefined = F->isDefined();
992 if (!IsDefined && !IsExtern && DiagDecl->isConstexpr() &&
993 S.checkingPotentialConstantExpression())
994 return false;
995
996 // If the declaration is defined, declared 'constexpr' _and_ has a body,
997 // the below diagnostic doesn't add anything useful.
998 if (DiagDecl->isDefined() && DiagDecl->isConstexpr() &&
999 DiagDecl->hasBody())
1000 return false;
1001
1002 S.FFDiag(S.Current->getLocation(OpPC),
1003 diag::note_constexpr_invalid_function, 1)
1004 << DiagDecl->isConstexpr() << (bool)CD << DiagDecl;
1005
1006 if (DiagDecl->getDefinition())
1007 S.Note(DiagDecl->getDefinition()->getLocation(),
1008 diag::note_declared_at);
1009 else
1010 S.Note(DiagDecl->getLocation(), diag::note_declared_at);
1011 }
1012 } else {
1013 S.FFDiag(S.Current->getLocation(OpPC),
1014 diag::note_invalid_subexpr_in_const_expr);
1015 }
1016
1017 return false;
1018}
1019
1020static bool CheckCallDepth(InterpState &S, CodePtr OpPC) {
1021 if ((S.Current->getDepth() + 1) > S.getLangOpts().ConstexprCallDepth) {
1022 S.FFDiag(S.Current->getSource(OpPC),
1023 diag::note_constexpr_depth_limit_exceeded)
1024 << S.getLangOpts().ConstexprCallDepth;
1025 return false;
1026 }
1027
1028 return true;
1029}
1030
1031bool CheckThis(InterpState &S, CodePtr OpPC, const Pointer &This) {
1032 if (!This.isZero())
1033 return true;
1034
1035 const Expr *E = S.Current->getExpr(OpPC);
1036 if (S.getLangOpts().CPlusPlus11) {
1037 bool IsImplicit = false;
1038 if (const auto *TE = dyn_cast<CXXThisExpr>(E))
1039 IsImplicit = TE->isImplicit();
1040 S.FFDiag(E, diag::note_constexpr_this) << IsImplicit;
1041 } else {
1042 S.FFDiag(E);
1043 }
1044
1045 return false;
1046}
1047
1049 APFloat::opStatus Status, FPOptions FPO) {
1050 // [expr.pre]p4:
1051 // If during the evaluation of an expression, the result is not
1052 // mathematically defined [...], the behavior is undefined.
1053 // FIXME: C++ rules require us to not conform to IEEE 754 here.
1054 if (Result.isNan()) {
1055 const SourceInfo &E = S.Current->getSource(OpPC);
1056 S.CCEDiag(E, diag::note_constexpr_float_arithmetic)
1057 << /*NaN=*/true << S.Current->getRange(OpPC);
1058 return S.noteUndefinedBehavior();
1059 }
1060
1061 // In a constant context, assume that any dynamic rounding mode or FP
1062 // exception state matches the default floating-point environment.
1063 if (S.inConstantContext())
1064 return true;
1065
1066 if ((Status & APFloat::opInexact) &&
1067 FPO.getRoundingMode() == llvm::RoundingMode::Dynamic) {
1068 // Inexact result means that it depends on rounding mode. If the requested
1069 // mode is dynamic, the evaluation cannot be made in compile time.
1070 const SourceInfo &E = S.Current->getSource(OpPC);
1071 S.FFDiag(E, diag::note_constexpr_dynamic_rounding);
1072 return false;
1073 }
1074
1075 if ((Status != APFloat::opOK) &&
1076 (FPO.getRoundingMode() == llvm::RoundingMode::Dynamic ||
1078 FPO.getAllowFEnvAccess())) {
1079 const SourceInfo &E = S.Current->getSource(OpPC);
1080 S.FFDiag(E, diag::note_constexpr_float_arithmetic_strict);
1081 return false;
1082 }
1083
1084 if ((Status & APFloat::opStatus::opInvalidOp) &&
1086 const SourceInfo &E = S.Current->getSource(OpPC);
1087 // There is no usefully definable result.
1088 S.FFDiag(E);
1089 return false;
1090 }
1091
1092 return true;
1093}
1094
1096 if (S.getLangOpts().CPlusPlus20)
1097 return true;
1098
1099 const SourceInfo &E = S.Current->getSource(OpPC);
1100 S.CCEDiag(E, diag::note_constexpr_new);
1101 return true;
1102}
1103
1105 DynamicAllocator::Form AllocForm,
1106 DynamicAllocator::Form DeleteForm, const Descriptor *D,
1107 const Expr *NewExpr) {
1108 if (AllocForm == DeleteForm)
1109 return true;
1110
1111 QualType TypeToDiagnose = D->getDataType(S.getASTContext());
1112
1113 const SourceInfo &E = S.Current->getSource(OpPC);
1114 S.FFDiag(E, diag::note_constexpr_new_delete_mismatch)
1115 << static_cast<int>(DeleteForm) << static_cast<int>(AllocForm)
1116 << TypeToDiagnose;
1117 S.Note(NewExpr->getExprLoc(), diag::note_constexpr_dynamic_alloc_here)
1118 << NewExpr->getSourceRange();
1119 return false;
1120}
1121
1122bool CheckDeleteSource(InterpState &S, CodePtr OpPC, const Expr *Source,
1123 const Pointer &Ptr) {
1124 // Regular new type(...) call.
1125 if (isa_and_nonnull<CXXNewExpr>(Source))
1126 return true;
1127 // operator new.
1128 if (const auto *CE = dyn_cast_if_present<CallExpr>(Source);
1129 CE && CE->getBuiltinCallee() == Builtin::BI__builtin_operator_new)
1130 return true;
1131 // std::allocator.allocate() call
1132 if (const auto *MCE = dyn_cast_if_present<CXXMemberCallExpr>(Source);
1133 MCE && MCE->getMethodDecl()->getIdentifier()->isStr("allocate"))
1134 return true;
1135
1136 // Whatever this is, we didn't heap allocate it.
1137 const SourceInfo &Loc = S.Current->getSource(OpPC);
1138 S.FFDiag(Loc, diag::note_constexpr_delete_not_heap_alloc)
1140
1141 if (Ptr.isTemporary())
1142 S.Note(Ptr.getDeclLoc(), diag::note_constexpr_temporary_here);
1143 else
1144 S.Note(Ptr.getDeclLoc(), diag::note_declared_at);
1145 return false;
1146}
1147
1148/// We aleady know the given DeclRefExpr is invalid for some reason,
1149/// now figure out why and print appropriate diagnostics.
1150bool CheckDeclRef(InterpState &S, CodePtr OpPC, const DeclRefExpr *DR) {
1151 const ValueDecl *D = DR->getDecl();
1152 return diagnoseUnknownDecl(S, OpPC, D);
1153}
1154
1155bool CheckDummy(InterpState &S, CodePtr OpPC, const Block *B, AccessKinds AK) {
1156 if (!B->isDummy())
1157 return true;
1158
1159 const ValueDecl *D = B->getDescriptor()->asValueDecl();
1160 if (!D)
1161 return false;
1162
1163 if (AK == AK_Read || AK == AK_Increment || AK == AK_Decrement)
1164 return diagnoseUnknownDecl(S, OpPC, D);
1165
1166 if (AK == AK_Destroy || S.getLangOpts().CPlusPlus14) {
1167 const SourceInfo &E = S.Current->getSource(OpPC);
1168 S.FFDiag(E, diag::note_constexpr_modify_global);
1169 }
1170 return false;
1171}
1172
1173static bool CheckNonNullArgs(InterpState &S, CodePtr OpPC, const Function *F,
1174 const CallExpr *CE, unsigned ArgSize) {
1175 auto Args = ArrayRef(CE->getArgs(), CE->getNumArgs());
1176 auto NonNullArgs = collectNonNullArgs(F->getDecl(), Args);
1177 unsigned Offset = 0;
1178 unsigned Index = 0;
1179 for (const Expr *Arg : Args) {
1180 if (NonNullArgs[Index] && Arg->getType()->isPointerType()) {
1181 const Pointer &ArgPtr = S.Stk.peek<Pointer>(ArgSize - Offset);
1182 if (ArgPtr.isZero()) {
1183 const SourceLocation &Loc = S.Current->getLocation(OpPC);
1184 S.CCEDiag(Loc, diag::note_non_null_attribute_failed);
1185 return false;
1186 }
1187 }
1188
1189 Offset += align(primSize(S.Ctx.classify(Arg).value_or(PT_Ptr)));
1190 ++Index;
1191 }
1192 return true;
1193}
1194
1196 const Pointer &BasePtr,
1197 const Descriptor *Desc) {
1198 assert(Desc->isRecord());
1199 const Record *R = Desc->ElemRecord;
1200 assert(R);
1201
1202 if (Pointer::pointToSameBlock(BasePtr, S.Current->getThis()) &&
1203 S.Current->getFunction()->isDestructor()) {
1204 const SourceInfo &Loc = S.Current->getSource(OpPC);
1205 S.FFDiag(Loc, diag::note_constexpr_double_destroy);
1206 return false;
1207 }
1208
1209 // Destructor of this record.
1210 const CXXDestructorDecl *Dtor = R->getDestructor();
1211 assert(Dtor);
1212 assert(!Dtor->isTrivial());
1213 const Function *DtorFunc = S.getContext().getOrCreateFunction(Dtor);
1214 if (!DtorFunc)
1215 return false;
1216
1217 S.Stk.push<Pointer>(BasePtr);
1218 return Call(S, OpPC, DtorFunc, 0);
1219}
1220
1221static bool RunDestructors(InterpState &S, CodePtr OpPC, const Block *B) {
1222 assert(B);
1223 const Descriptor *Desc = B->getDescriptor();
1224
1225 if (Desc->isPrimitive() || Desc->isPrimitiveArray())
1226 return true;
1227
1228 assert(Desc->isRecord() || Desc->isCompositeArray());
1229
1230 if (Desc->hasTrivialDtor())
1231 return true;
1232
1233 if (Desc->isCompositeArray()) {
1234 unsigned N = Desc->getNumElems();
1235 if (N == 0)
1236 return true;
1237 const Descriptor *ElemDesc = Desc->ElemDesc;
1238 assert(ElemDesc->isRecord());
1239
1240 Pointer RP(const_cast<Block *>(B));
1241 for (int I = static_cast<int>(N) - 1; I >= 0; --I) {
1242 if (!runRecordDestructor(S, OpPC, RP.atIndex(I).narrow(), ElemDesc))
1243 return false;
1244 }
1245 return true;
1246 }
1247
1248 assert(Desc->isRecord());
1249 return runRecordDestructor(S, OpPC, Pointer(const_cast<Block *>(B)), Desc);
1250}
1251
1253 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
1254 if (const CXXDestructorDecl *DD = RD->getDestructor())
1255 return DD->isVirtual();
1256 return false;
1257}
1258
1259bool Free(InterpState &S, CodePtr OpPC, bool DeleteIsArrayForm,
1260 bool IsGlobalDelete) {
1261 if (!CheckDynamicMemoryAllocation(S, OpPC))
1262 return false;
1263
1264 DynamicAllocator &Allocator = S.getAllocator();
1265
1266 const Expr *Source = nullptr;
1267 const Block *BlockToDelete = nullptr;
1268 {
1269 // Extra scope for this so the block doesn't have this pointer
1270 // pointing to it when we destroy it.
1271 Pointer Ptr = S.Stk.pop<Pointer>();
1272
1273 // Deleteing nullptr is always fine.
1274 if (Ptr.isZero())
1275 return true;
1276
1277 // Remove base casts.
1278 QualType InitialType = Ptr.getType();
1279 while (Ptr.isBaseClass())
1280 Ptr = Ptr.getBase();
1281
1282 Source = Ptr.getDeclDesc()->asExpr();
1283 BlockToDelete = Ptr.block();
1284
1285 // Check that new[]/delete[] or new/delete were used, not a mixture.
1286 const Descriptor *BlockDesc = BlockToDelete->getDescriptor();
1287 if (std::optional<DynamicAllocator::Form> AllocForm =
1288 Allocator.getAllocationForm(Source)) {
1289 DynamicAllocator::Form DeleteForm =
1290 DeleteIsArrayForm ? DynamicAllocator::Form::Array
1292 if (!CheckNewDeleteForms(S, OpPC, *AllocForm, DeleteForm, BlockDesc,
1293 Source))
1294 return false;
1295 }
1296
1297 // For the non-array case, the types must match if the static type
1298 // does not have a virtual destructor.
1299 if (!DeleteIsArrayForm && Ptr.getType() != InitialType &&
1300 !hasVirtualDestructor(InitialType)) {
1301 S.FFDiag(S.Current->getSource(OpPC),
1302 diag::note_constexpr_delete_base_nonvirt_dtor)
1303 << InitialType << Ptr.getType();
1304 return false;
1305 }
1306
1307 if (!Ptr.isRoot() || (Ptr.isOnePastEnd() && !Ptr.isZeroSizeArray()) ||
1308 (Ptr.isArrayElement() && Ptr.getIndex() != 0)) {
1309 const SourceInfo &Loc = S.Current->getSource(OpPC);
1310 S.FFDiag(Loc, diag::note_constexpr_delete_subobject)
1311 << Ptr.toDiagnosticString(S.getASTContext()) << Ptr.isOnePastEnd();
1312 return false;
1313 }
1314
1315 if (!CheckDeleteSource(S, OpPC, Source, Ptr))
1316 return false;
1317
1318 // For a class type with a virtual destructor, the selected operator delete
1319 // is the one looked up when building the destructor.
1320 if (!DeleteIsArrayForm && !IsGlobalDelete) {
1321 QualType AllocType = Ptr.getType();
1322 auto getVirtualOperatorDelete = [](QualType T) -> const FunctionDecl * {
1323 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
1324 if (const CXXDestructorDecl *DD = RD->getDestructor())
1325 return DD->isVirtual() ? DD->getOperatorDelete() : nullptr;
1326 return nullptr;
1327 };
1328
1329 if (const FunctionDecl *VirtualDelete =
1330 getVirtualOperatorDelete(AllocType);
1331 VirtualDelete &&
1332 !VirtualDelete
1334 S.FFDiag(S.Current->getSource(OpPC),
1335 diag::note_constexpr_new_non_replaceable)
1336 << isa<CXXMethodDecl>(VirtualDelete) << VirtualDelete;
1337 return false;
1338 }
1339 }
1340 }
1341 assert(Source);
1342 assert(BlockToDelete);
1343
1344 // Invoke destructors before deallocating the memory.
1345 if (!RunDestructors(S, OpPC, BlockToDelete))
1346 return false;
1347
1348 if (!Allocator.deallocate(Source, BlockToDelete, S)) {
1349 // Nothing has been deallocated, this must be a double-delete.
1350 const SourceInfo &Loc = S.Current->getSource(OpPC);
1351 S.FFDiag(Loc, diag::note_constexpr_double_delete);
1352 return false;
1353 }
1354
1355 return true;
1356}
1357
1359 const APSInt &Value) {
1360 if (S.EvaluatingDecl && !S.EvaluatingDecl->isConstexpr())
1361 return;
1362
1363 llvm::APInt Min;
1364 llvm::APInt Max;
1365 ED->getValueRange(Max, Min);
1366 --Max;
1367
1368 if (ED->getNumNegativeBits() &&
1369 (Max.slt(Value.getSExtValue()) || Min.sgt(Value.getSExtValue()))) {
1370 const SourceLocation &Loc = S.Current->getLocation(OpPC);
1371 S.CCEDiag(Loc, diag::note_constexpr_unscoped_enum_out_of_range)
1372 << llvm::toString(Value, 10) << Min.getSExtValue() << Max.getSExtValue()
1373 << ED;
1374 } else if (!ED->getNumNegativeBits() && Max.ult(Value.getZExtValue())) {
1375 const SourceLocation &Loc = S.Current->getLocation(OpPC);
1376 S.CCEDiag(Loc, diag::note_constexpr_unscoped_enum_out_of_range)
1377 << llvm::toString(Value, 10) << Min.getZExtValue() << Max.getZExtValue()
1378 << ED;
1379 }
1380}
1381
1383 assert(T);
1384 assert(!S.getLangOpts().CPlusPlus23);
1385
1386 // C++1y: A constant initializer for an object o [...] may also invoke
1387 // constexpr constructors for o and its subobjects even if those objects
1388 // are of non-literal class types.
1389 //
1390 // C++11 missed this detail for aggregates, so classes like this:
1391 // struct foo_t { union { int i; volatile int j; } u; };
1392 // are not (obviously) initializable like so:
1393 // __attribute__((__require_constant_initialization__))
1394 // static const foo_t x = {{0}};
1395 // because "i" is a subobject with non-literal initialization (due to the
1396 // volatile member of the union). See:
1397 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1677
1398 // Therefore, we use the C++1y behavior.
1399
1400 if (S.Current->getFunction() && S.Current->getFunction()->isConstructor() &&
1401 S.Current->getThis().getDeclDesc()->asDecl() == S.EvaluatingDecl) {
1402 return true;
1403 }
1404
1405 const Expr *E = S.Current->getExpr(OpPC);
1406 if (S.getLangOpts().CPlusPlus11)
1407 S.FFDiag(E, diag::note_constexpr_nonliteral) << E->getType();
1408 else
1409 S.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
1410 return false;
1411}
1412
1413static bool getField(InterpState &S, CodePtr OpPC, const Pointer &Ptr,
1414 uint32_t Off) {
1415 if (S.getLangOpts().CPlusPlus && S.inConstantContext() &&
1416 !CheckNull(S, OpPC, Ptr, CSK_Field))
1417 return false;
1418
1419 if (!CheckRange(S, OpPC, Ptr, CSK_Field))
1420 return false;
1421 if (!CheckArray(S, OpPC, Ptr))
1422 return false;
1423 if (!CheckSubobject(S, OpPC, Ptr, CSK_Field))
1424 return false;
1425
1426 if (Ptr.isIntegralPointer()) {
1427 S.Stk.push<Pointer>(Ptr.asIntPointer().atOffset(S.getASTContext(), Off));
1428 return true;
1429 }
1430
1431 if (!Ptr.isBlockPointer()) {
1432 // FIXME: The only time we (seem to) get here is when trying to access a
1433 // field of a typeid pointer. In that case, we're supposed to diagnose e.g.
1434 // `typeid(int).name`, but we currently diagnose `&typeid(int)`.
1435 S.FFDiag(S.Current->getSource(OpPC),
1436 diag::note_constexpr_access_unreadable_object)
1438 return false;
1439 }
1440
1441 if ((Ptr.getByteOffset() + Off) >= Ptr.block()->getSize())
1442 return false;
1443
1444 S.Stk.push<Pointer>(Ptr.atField(Off));
1445 return true;
1446}
1447
1448bool GetPtrField(InterpState &S, CodePtr OpPC, uint32_t Off) {
1449 const auto &Ptr = S.Stk.peek<Pointer>();
1450 return getField(S, OpPC, Ptr, Off);
1451}
1452
1453bool GetPtrFieldPop(InterpState &S, CodePtr OpPC, uint32_t Off) {
1454 const auto &Ptr = S.Stk.pop<Pointer>();
1455 return getField(S, OpPC, Ptr, Off);
1456}
1457
1458static bool checkConstructor(InterpState &S, CodePtr OpPC, const Function *Func,
1459 const Pointer &ThisPtr) {
1460 assert(Func->isConstructor());
1461
1462 if (Func->getParentDecl()->isInvalidDecl())
1463 return false;
1464
1465 const Descriptor *D = ThisPtr.getFieldDesc();
1466 // FIXME: I think this case is not 100% correct. E.g. a pointer into a
1467 // subobject of a composite array.
1468 if (!D->ElemRecord)
1469 return true;
1470
1471 if (D->ElemRecord->getNumVirtualBases() == 0)
1472 return true;
1473
1474 S.FFDiag(S.Current->getLocation(OpPC), diag::note_constexpr_virtual_base)
1475 << Func->getParentDecl();
1476 return false;
1477}
1478
1479bool CheckDestructor(InterpState &S, CodePtr OpPC, const Pointer &Ptr) {
1480 if (!CheckLive(S, OpPC, Ptr, AK_Destroy))
1481 return false;
1482 if (!CheckTemporary(S, OpPC, Ptr.block(), AK_Destroy))
1483 return false;
1484 if (!CheckRange(S, OpPC, Ptr, AK_Destroy))
1485 return false;
1486
1487 // Can't call a dtor on a global variable.
1488 if (Ptr.block()->isStatic()) {
1489 const SourceInfo &E = S.Current->getSource(OpPC);
1490 S.FFDiag(E, diag::note_constexpr_modify_global);
1491 return false;
1492 }
1493 return CheckActive(S, OpPC, Ptr, AK_Destroy);
1494}
1495
1496static void compileFunction(InterpState &S, const Function *Func) {
1497 Compiler<ByteCodeEmitter>(S.getContext(), S.P)
1498 .compileFunc(Func->getDecl()->getMostRecentDecl(),
1499 const_cast<Function *>(Func));
1500}
1501
1503 uint32_t VarArgSize) {
1504 if (Func->hasThisPointer()) {
1505 size_t ArgSize = Func->getArgSize() + VarArgSize;
1506 size_t ThisOffset = ArgSize - (Func->hasRVO() ? primSize(PT_Ptr) : 0);
1507 const Pointer &ThisPtr = S.Stk.peek<Pointer>(ThisOffset);
1508
1509 // If the current function is a lambda static invoker and
1510 // the function we're about to call is a lambda call operator,
1511 // skip the CheckInvoke, since the ThisPtr is a null pointer
1512 // anyway.
1513 if (!(S.Current->getFunction() &&
1514 S.Current->getFunction()->isLambdaStaticInvoker() &&
1515 Func->isLambdaCallOperator())) {
1516 if (!CheckInvoke(S, OpPC, ThisPtr))
1517 return false;
1518 }
1519
1520 if (S.checkingPotentialConstantExpression())
1521 return false;
1522 }
1523
1524 if (!Func->isFullyCompiled())
1526
1527 if (!CheckCallable(S, OpPC, Func))
1528 return false;
1529
1530 if (!CheckCallDepth(S, OpPC))
1531 return false;
1532
1533 auto NewFrame = std::make_unique<InterpFrame>(S, Func, OpPC, VarArgSize);
1534 InterpFrame *FrameBefore = S.Current;
1535 S.Current = NewFrame.get();
1536
1537 // Note that we cannot assert(CallResult.hasValue()) here since
1538 // Ret() above only sets the APValue if the curent frame doesn't
1539 // have a caller set.
1540 if (Interpret(S)) {
1541 NewFrame.release(); // Frame was delete'd already.
1542 assert(S.Current == FrameBefore);
1543 return true;
1544 }
1545
1546 // Interpreting the function failed somehow. Reset to
1547 // previous state.
1548 S.Current = FrameBefore;
1549 return false;
1550}
1551bool Call(InterpState &S, CodePtr OpPC, const Function *Func,
1552 uint32_t VarArgSize) {
1553 assert(Func);
1554 auto cleanup = [&]() -> bool {
1556 return false;
1557 };
1558
1559 if (Func->hasThisPointer()) {
1560 size_t ArgSize = Func->getArgSize() + VarArgSize;
1561 size_t ThisOffset = ArgSize - (Func->hasRVO() ? primSize(PT_Ptr) : 0);
1562
1563 const Pointer &ThisPtr = S.Stk.peek<Pointer>(ThisOffset);
1564
1565 // C++23 [expr.const]p5.6
1566 // an invocation of a virtual function ([class.virtual]) for an object whose
1567 // dynamic type is constexpr-unknown;
1568 if (ThisPtr.isDummy() && Func->isVirtual())
1569 return false;
1570
1571 // If the current function is a lambda static invoker and
1572 // the function we're about to call is a lambda call operator,
1573 // skip the CheckInvoke, since the ThisPtr is a null pointer
1574 // anyway.
1575 if (S.Current->getFunction() &&
1576 S.Current->getFunction()->isLambdaStaticInvoker() &&
1577 Func->isLambdaCallOperator()) {
1578 assert(ThisPtr.isZero());
1579 } else {
1580 if (!CheckInvoke(S, OpPC, ThisPtr))
1581 return cleanup();
1582 if (!Func->isConstructor() && !Func->isDestructor() &&
1583 !CheckActive(S, OpPC, ThisPtr, AK_MemberCall))
1584 return false;
1585 }
1586
1587 if (Func->isConstructor() && !checkConstructor(S, OpPC, Func, ThisPtr))
1588 return false;
1589 if (Func->isDestructor() && !CheckDestructor(S, OpPC, ThisPtr))
1590 return false;
1591
1592 if (Func->isConstructor() || Func->isDestructor())
1593 S.InitializingBlocks.push_back(ThisPtr.block());
1594 }
1595
1596 if (!Func->isFullyCompiled())
1598
1599 if (!CheckCallable(S, OpPC, Func))
1600 return cleanup();
1601
1602 // FIXME: The isConstructor() check here is not always right. The current
1603 // constant evaluator is somewhat inconsistent in when it allows a function
1604 // call when checking for a constant expression.
1605 if (Func->hasThisPointer() && S.checkingPotentialConstantExpression() &&
1606 !Func->isConstructor())
1607 return cleanup();
1608
1609 if (!CheckCallDepth(S, OpPC))
1610 return cleanup();
1611
1612 auto NewFrame = std::make_unique<InterpFrame>(S, Func, OpPC, VarArgSize);
1613 InterpFrame *FrameBefore = S.Current;
1614 S.Current = NewFrame.get();
1615
1616 InterpStateCCOverride CCOverride(S, Func->isImmediate());
1617 // Note that we cannot assert(CallResult.hasValue()) here since
1618 // Ret() above only sets the APValue if the curent frame doesn't
1619 // have a caller set.
1620 bool Success = Interpret(S);
1621 // Remove initializing block again.
1622 if (Func->isConstructor() || Func->isDestructor())
1623 S.InitializingBlocks.pop_back();
1624
1625 if (!Success) {
1626 // Interpreting the function failed somehow. Reset to
1627 // previous state.
1628 S.Current = FrameBefore;
1629 return false;
1630 }
1631
1632 NewFrame.release(); // Frame was delete'd already.
1633 assert(S.Current == FrameBefore);
1634 return true;
1635}
1636
1638 uint32_t VarArgSize) {
1639 assert(Func->hasThisPointer());
1640 assert(Func->isVirtual());
1641 size_t ArgSize = Func->getArgSize() + VarArgSize;
1642 size_t ThisOffset = ArgSize - (Func->hasRVO() ? primSize(PT_Ptr) : 0);
1643 Pointer &ThisPtr = S.Stk.peek<Pointer>(ThisOffset);
1644 const FunctionDecl *Callee = Func->getDecl();
1645
1646 if (!Func->isFullyCompiled())
1648
1649 // C++2a [class.abstract]p6:
1650 // the effect of making a virtual call to a pure virtual function [...] is
1651 // undefined
1652 if (Callee->isPureVirtual()) {
1653 S.FFDiag(S.Current->getSource(OpPC), diag::note_constexpr_pure_virtual_call,
1654 1)
1655 << Callee;
1656 S.Note(Callee->getLocation(), diag::note_declared_at);
1657 return false;
1658 }
1659
1660 const CXXRecordDecl *DynamicDecl = nullptr;
1661 {
1662 Pointer TypePtr = ThisPtr;
1663 while (TypePtr.isBaseClass())
1664 TypePtr = TypePtr.getBase();
1665
1666 QualType DynamicType = TypePtr.getType();
1667 if (DynamicType->isPointerType() || DynamicType->isReferenceType())
1668 DynamicDecl = DynamicType->getPointeeCXXRecordDecl();
1669 else
1670 DynamicDecl = DynamicType->getAsCXXRecordDecl();
1671 }
1672 assert(DynamicDecl);
1673
1674 const auto *StaticDecl = cast<CXXRecordDecl>(Func->getParentDecl());
1675 const auto *InitialFunction = cast<CXXMethodDecl>(Callee);
1676 const CXXMethodDecl *Overrider;
1677
1678 if (StaticDecl != DynamicDecl) {
1679 if (!DynamicDecl->isDerivedFrom(StaticDecl))
1680 return false;
1681 Overrider = S.getContext().getOverridingFunction(DynamicDecl, StaticDecl,
1682 InitialFunction);
1683
1684 } else {
1685 Overrider = InitialFunction;
1686 }
1687
1688 if (Overrider != InitialFunction) {
1689 // DR1872: An instantiated virtual constexpr function can't be called in a
1690 // constant expression (prior to C++20). We can still constant-fold such a
1691 // call.
1692 if (!S.getLangOpts().CPlusPlus20 && Overrider->isVirtual()) {
1693 const Expr *E = S.Current->getExpr(OpPC);
1694 S.CCEDiag(E, diag::note_constexpr_virtual_call) << E->getSourceRange();
1695 }
1696
1697 Func = S.getContext().getOrCreateFunction(Overrider);
1698
1699 const CXXRecordDecl *ThisFieldDecl =
1700 ThisPtr.getFieldDesc()->getType()->getAsCXXRecordDecl();
1701 if (Func->getParentDecl()->isDerivedFrom(ThisFieldDecl)) {
1702 // If the function we call is further DOWN the hierarchy than the
1703 // FieldDesc of our pointer, just go up the hierarchy of this field
1704 // the furthest we can go.
1705 while (ThisPtr.isBaseClass())
1706 ThisPtr = ThisPtr.getBase();
1707 }
1708 }
1709
1710 if (!Call(S, OpPC, Func, VarArgSize))
1711 return false;
1712
1713 // Covariant return types. The return type of Overrider is a pointer
1714 // or reference to a class type.
1715 if (Overrider != InitialFunction &&
1716 Overrider->getReturnType()->isPointerOrReferenceType() &&
1717 InitialFunction->getReturnType()->isPointerOrReferenceType()) {
1718 QualType OverriderPointeeType =
1719 Overrider->getReturnType()->getPointeeType();
1720 QualType InitialPointeeType =
1721 InitialFunction->getReturnType()->getPointeeType();
1722 // We've called Overrider above, but calling code expects us to return what
1723 // InitialFunction returned. According to the rules for covariant return
1724 // types, what InitialFunction returns needs to be a base class of what
1725 // Overrider returns. So, we need to do an upcast here.
1726 unsigned Offset = S.getContext().collectBaseOffset(
1727 InitialPointeeType->getAsRecordDecl(),
1728 OverriderPointeeType->getAsRecordDecl());
1729 return GetPtrBasePop(S, OpPC, Offset, /*IsNullOK=*/true);
1730 }
1731
1732 return true;
1733}
1734
1735bool CallBI(InterpState &S, CodePtr OpPC, const CallExpr *CE,
1736 uint32_t BuiltinID) {
1737 // A little arbitrary, but the current interpreter allows evaluation
1738 // of builtin functions in this mode, with some exceptions.
1739 if (BuiltinID == Builtin::BI__builtin_operator_new &&
1740 S.checkingPotentialConstantExpression())
1741 return false;
1742
1743 return InterpretBuiltin(S, OpPC, CE, BuiltinID);
1744}
1745
1746bool CallPtr(InterpState &S, CodePtr OpPC, uint32_t ArgSize,
1747 const CallExpr *CE) {
1748 const Pointer &Ptr = S.Stk.pop<Pointer>();
1749
1750 if (Ptr.isZero()) {
1751 const auto *E = cast<CallExpr>(S.Current->getExpr(OpPC));
1752 S.FFDiag(E, diag::note_constexpr_null_callee)
1753 << const_cast<Expr *>(E->getCallee()) << E->getSourceRange();
1754 return false;
1755 }
1756
1757 if (!Ptr.isFunctionPointer())
1758 return Invalid(S, OpPC);
1759
1760 const FunctionPointer &FuncPtr = Ptr.asFunctionPointer();
1761 const Function *F = FuncPtr.getFunction();
1762 assert(F);
1763 // Don't allow calling block pointers.
1764 if (!F->getDecl())
1765 return Invalid(S, OpPC);
1766
1767 // This happens when the call expression has been cast to
1768 // something else, but we don't support that.
1769 if (S.Ctx.classify(F->getDecl()->getReturnType()) !=
1770 S.Ctx.classify(CE->getCallReturnType(S.getASTContext())))
1771 return false;
1772
1773 // Check argument nullability state.
1774 if (F->hasNonNullAttr()) {
1775 if (!CheckNonNullArgs(S, OpPC, F, CE, ArgSize))
1776 return false;
1777 }
1778
1779 assert(ArgSize >= F->getWrittenArgSize());
1780 uint32_t VarArgSize = ArgSize - F->getWrittenArgSize();
1781
1782 // We need to do this explicitly here since we don't have the necessary
1783 // information to do it automatically.
1784 if (F->isThisPointerExplicit())
1785 VarArgSize -= align(primSize(PT_Ptr));
1786
1787 if (F->isVirtual())
1788 return CallVirt(S, OpPC, F, VarArgSize);
1789
1790 return Call(S, OpPC, F, VarArgSize);
1791}
1792
1793static void startLifetimeRecurse(const Pointer &Ptr) {
1794 if (const Record *R = Ptr.getRecord()) {
1795 Ptr.startLifetime();
1796 for (const Record::Field &Fi : R->fields())
1797 startLifetimeRecurse(Ptr.atField(Fi.Offset));
1798 return;
1799 }
1800
1801 if (const Descriptor *FieldDesc = Ptr.getFieldDesc();
1802 FieldDesc->isCompositeArray()) {
1803 assert(Ptr.getLifetime() == Lifetime::Started);
1804 for (unsigned I = 0; I != FieldDesc->getNumElems(); ++I)
1806 return;
1807 }
1808
1809 Ptr.startLifetime();
1810}
1811
1813 const auto &Ptr = S.Stk.peek<Pointer>();
1814 if (Ptr.isBlockPointer() && !CheckDummy(S, OpPC, Ptr.block(), AK_Destroy))
1815 return false;
1816 startLifetimeRecurse(Ptr.narrow());
1817 return true;
1818}
1819
1820// FIXME: It might be better to the recursing as part of the generated code for
1821// a destructor?
1822static void endLifetimeRecurse(const Pointer &Ptr) {
1823 if (const Record *R = Ptr.getRecord()) {
1824 Ptr.endLifetime();
1825 for (const Record::Field &Fi : R->fields())
1826 endLifetimeRecurse(Ptr.atField(Fi.Offset));
1827 return;
1828 }
1829
1830 if (const Descriptor *FieldDesc = Ptr.getFieldDesc();
1831 FieldDesc->isCompositeArray()) {
1832 // No endLifetime() for array roots.
1833 assert(Ptr.getLifetime() == Lifetime::Started);
1834 for (unsigned I = 0; I != FieldDesc->getNumElems(); ++I)
1836 return;
1837 }
1838
1839 Ptr.endLifetime();
1840}
1841
1842/// Ends the lifetime of the peek'd pointer.
1844 const auto &Ptr = S.Stk.peek<Pointer>();
1845 if (Ptr.isBlockPointer() && !CheckDummy(S, OpPC, Ptr.block(), AK_Destroy))
1846 return false;
1847
1848 // FIXME: We need per-element lifetime information for primitive arrays.
1849 if (Ptr.isArrayElement())
1850 return true;
1851
1852 endLifetimeRecurse(Ptr.narrow());
1853 return true;
1854}
1855
1856/// Ends the lifetime of the pop'd pointer.
1858 const auto &Ptr = S.Stk.pop<Pointer>();
1859 if (Ptr.isBlockPointer() && !CheckDummy(S, OpPC, Ptr.block(), AK_Destroy))
1860 return false;
1861
1862 // FIXME: We need per-element lifetime information for primitive arrays.
1863 if (Ptr.isArrayElement())
1864 return true;
1865
1866 endLifetimeRecurse(Ptr.narrow());
1867 return true;
1868}
1869
1871 std::optional<uint64_t> ArraySize) {
1872 const Pointer &Ptr = S.Stk.peek<Pointer>();
1873
1874 if (Ptr.inUnion() && Ptr.getBase().getRecord()->isUnion())
1875 Ptr.activate();
1876
1877 if (!Ptr.isBlockPointer())
1878 return false;
1879
1880 // Similar to CheckStore(), but with the additional CheckTemporary() call and
1881 // the AccessKinds are different.
1882
1883 if (!Ptr.block()->isAccessible()) {
1884 if (!CheckExtern(S, OpPC, Ptr))
1885 return false;
1886 if (!CheckLive(S, OpPC, Ptr, AK_Construct))
1887 return false;
1888 return CheckDummy(S, OpPC, Ptr.block(), AK_Construct);
1889 }
1890 if (!CheckTemporary(S, OpPC, Ptr.block(), AK_Construct))
1891 return false;
1892
1893 // CheckLifetime for this and all base pointers.
1894 for (Pointer P = Ptr;;) {
1895 if (!CheckLifetime(S, OpPC, P.getLifetime(), AK_Construct))
1896 return false;
1897
1898 if (P.isRoot())
1899 break;
1900 P = P.getBase();
1901 }
1902
1903 if (!CheckRange(S, OpPC, Ptr, AK_Construct))
1904 return false;
1905 if (!CheckGlobal(S, OpPC, Ptr))
1906 return false;
1907 if (!CheckConst(S, OpPC, Ptr))
1908 return false;
1909 if (!S.inConstantContext() && isConstexprUnknown(Ptr))
1910 return false;
1911
1912 if (!InvalidNewDeleteExpr(S, OpPC, E))
1913 return false;
1914
1915 const auto *NewExpr = cast<CXXNewExpr>(E);
1916 QualType StorageType = Ptr.getFieldDesc()->getDataType(S.getASTContext());
1917 const ASTContext &ASTCtx = S.getASTContext();
1918 QualType AllocType;
1919 if (ArraySize) {
1920 AllocType = ASTCtx.getConstantArrayType(
1921 NewExpr->getAllocatedType(),
1922 APInt(64, static_cast<uint64_t>(*ArraySize), false), nullptr,
1924 } else {
1925 AllocType = NewExpr->getAllocatedType();
1926 }
1927
1928 unsigned StorageSize = 1;
1929 unsigned AllocSize = 1;
1930 if (const auto *CAT = dyn_cast<ConstantArrayType>(AllocType))
1931 AllocSize = CAT->getZExtSize();
1932 if (const auto *CAT = dyn_cast<ConstantArrayType>(StorageType))
1933 StorageSize = CAT->getZExtSize();
1934
1935 if (AllocSize > StorageSize ||
1936 !ASTCtx.hasSimilarType(ASTCtx.getBaseElementType(AllocType),
1937 ASTCtx.getBaseElementType(StorageType))) {
1938 S.FFDiag(S.Current->getLocation(OpPC),
1939 diag::note_constexpr_placement_new_wrong_type)
1940 << StorageType << AllocType;
1941 return false;
1942 }
1943
1944 // Can't activate fields in a union, unless the direct base is the union.
1945 if (Ptr.inUnion() && !Ptr.isActive() && !Ptr.getBase().getRecord()->isUnion())
1946 return CheckActive(S, OpPC, Ptr, AK_Construct);
1947
1948 return true;
1949}
1950
1952 assert(E);
1953
1954 if (const auto *NewExpr = dyn_cast<CXXNewExpr>(E)) {
1955 const FunctionDecl *OperatorNew = NewExpr->getOperatorNew();
1956
1957 if (NewExpr->getNumPlacementArgs() > 0) {
1958 // This is allowed pre-C++26, but only an std function.
1959 if (S.getLangOpts().CPlusPlus26 || S.Current->isStdFunction())
1960 return true;
1961 S.FFDiag(S.Current->getSource(OpPC), diag::note_constexpr_new_placement)
1962 << /*C++26 feature*/ 1 << E->getSourceRange();
1963 } else if (
1964 !OperatorNew
1965 ->isUsableAsGlobalAllocationFunctionInConstantEvaluation()) {
1966 S.FFDiag(S.Current->getSource(OpPC),
1967 diag::note_constexpr_new_non_replaceable)
1968 << isa<CXXMethodDecl>(OperatorNew) << OperatorNew;
1969 return false;
1970 } else if (!S.getLangOpts().CPlusPlus26 &&
1971 NewExpr->getNumPlacementArgs() == 1 &&
1972 !OperatorNew->isReservedGlobalPlacementOperator()) {
1973 if (!S.getLangOpts().CPlusPlus26) {
1974 S.FFDiag(S.Current->getSource(OpPC), diag::note_constexpr_new_placement)
1975 << /*Unsupported*/ 0 << E->getSourceRange();
1976 return false;
1977 }
1978 return true;
1979 }
1980 } else {
1981 const auto *DeleteExpr = cast<CXXDeleteExpr>(E);
1982 const FunctionDecl *OperatorDelete = DeleteExpr->getOperatorDelete();
1983 if (!OperatorDelete
1984 ->isUsableAsGlobalAllocationFunctionInConstantEvaluation()) {
1985 S.FFDiag(S.Current->getSource(OpPC),
1986 diag::note_constexpr_new_non_replaceable)
1987 << isa<CXXMethodDecl>(OperatorDelete) << OperatorDelete;
1988 return false;
1989 }
1990 }
1991
1992 return false;
1993}
1994
1996 const FixedPoint &FP) {
1997 const Expr *E = S.Current->getExpr(OpPC);
1998 if (S.checkingForUndefinedBehavior()) {
2000 E->getExprLoc(), diag::warn_fixedpoint_constant_overflow)
2001 << FP.toDiagnosticString(S.getASTContext()) << E->getType();
2002 }
2003 S.CCEDiag(E, diag::note_constexpr_overflow)
2004 << FP.toDiagnosticString(S.getASTContext()) << E->getType();
2005 return S.noteUndefinedBehavior();
2006}
2007
2008bool InvalidShuffleVectorIndex(InterpState &S, CodePtr OpPC, uint32_t Index) {
2009 const SourceInfo &Loc = S.Current->getSource(OpPC);
2010 S.FFDiag(Loc,
2011 diag::err_shufflevector_minus_one_is_undefined_behavior_constexpr)
2012 << Index;
2013 return false;
2014}
2015
2017 const Pointer &Ptr, unsigned BitWidth) {
2018 if (Ptr.isDummy())
2019 return false;
2020 if (Ptr.isFunctionPointer())
2021 return true;
2022
2023 const SourceInfo &E = S.Current->getSource(OpPC);
2024 S.CCEDiag(E, diag::note_constexpr_invalid_cast)
2025 << 2 << S.getLangOpts().CPlusPlus << S.Current->getRange(OpPC);
2026
2027 if (Ptr.isBlockPointer() && !Ptr.isZero()) {
2028 // Only allow based lvalue casts if they are lossless.
2030 BitWidth)
2031 return Invalid(S, OpPC);
2032 }
2033 return true;
2034}
2035
2036bool CastPointerIntegralAP(InterpState &S, CodePtr OpPC, uint32_t BitWidth) {
2037 const Pointer &Ptr = S.Stk.pop<Pointer>();
2038
2039 if (!CheckPointerToIntegralCast(S, OpPC, Ptr, BitWidth))
2040 return false;
2041
2042 auto Result = S.allocAP<IntegralAP<false>>(BitWidth);
2043 Result.copy(APInt(BitWidth, Ptr.getIntegerRepresentation()));
2044
2045 S.Stk.push<IntegralAP<false>>(Result);
2046 return true;
2047}
2048
2049bool CastPointerIntegralAPS(InterpState &S, CodePtr OpPC, uint32_t BitWidth) {
2050 const Pointer &Ptr = S.Stk.pop<Pointer>();
2051
2052 if (!CheckPointerToIntegralCast(S, OpPC, Ptr, BitWidth))
2053 return false;
2054
2055 auto Result = S.allocAP<IntegralAP<true>>(BitWidth);
2056 Result.copy(APInt(BitWidth, Ptr.getIntegerRepresentation()));
2057
2058 S.Stk.push<IntegralAP<true>>(Result);
2059 return true;
2060}
2061
2062bool CheckBitCast(InterpState &S, CodePtr OpPC, bool HasIndeterminateBits,
2063 bool TargetIsUCharOrByte) {
2064 // This is always fine.
2065 if (!HasIndeterminateBits)
2066 return true;
2067
2068 // Indeterminate bits can only be bitcast to unsigned char or std::byte.
2069 if (TargetIsUCharOrByte)
2070 return true;
2071
2072 const Expr *E = S.Current->getExpr(OpPC);
2073 QualType ExprType = E->getType();
2074 S.FFDiag(E, diag::note_constexpr_bit_cast_indet_dest)
2075 << ExprType << S.getLangOpts().CharIsSigned << E->getSourceRange();
2076 return false;
2077}
2078
2079bool GetTypeid(InterpState &S, CodePtr OpPC, const Type *TypePtr,
2080 const Type *TypeInfoType) {
2081 S.Stk.push<Pointer>(TypePtr, TypeInfoType);
2082 return true;
2083}
2084
2085bool GetTypeidPtr(InterpState &S, CodePtr OpPC, const Type *TypeInfoType) {
2086 const auto &P = S.Stk.pop<Pointer>();
2087
2088 if (!P.isBlockPointer())
2089 return false;
2090
2091 // Pick the most-derived type.
2092 CanQualType T = P.getDeclPtr().getType()->getCanonicalTypeUnqualified();
2093 // ... unless we're currently constructing this object.
2094 // FIXME: We have a similar check to this in more places.
2095 if (S.Current->getFunction()) {
2096 for (const InterpFrame *Frame = S.Current; Frame; Frame = Frame->Caller) {
2097 if (const Function *Func = Frame->getFunction();
2098 Func && (Func->isConstructor() || Func->isDestructor()) &&
2099 P.block() == Frame->getThis().block()) {
2100 T = S.getContext().getASTContext().getCanonicalTagType(
2101 Func->getParentDecl());
2102 break;
2103 }
2104 }
2105 }
2106
2107 S.Stk.push<Pointer>(T->getTypePtr(), TypeInfoType);
2108 return true;
2109}
2110
2112 const auto *E = cast<CXXTypeidExpr>(S.Current->getExpr(OpPC));
2113 S.CCEDiag(E, diag::note_constexpr_typeid_polymorphic)
2114 << E->getExprOperand()->getType()
2115 << E->getExprOperand()->getSourceRange();
2116 return false;
2117}
2118
2120 const Pointer &RHS) {
2121 unsigned LHSOffset = LHS.isOnePastEnd() ? LHS.getNumElems() : LHS.getIndex();
2122 unsigned RHSOffset = RHS.isOnePastEnd() ? RHS.getNumElems() : RHS.getIndex();
2123 unsigned LHSLength = (LHS.getNumElems() - 1) * LHS.elemSize();
2124 unsigned RHSLength = (RHS.getNumElems() - 1) * RHS.elemSize();
2125
2126 StringRef LHSStr((const char *)LHS.atIndex(0).getRawAddress(), LHSLength);
2127 StringRef RHSStr((const char *)RHS.atIndex(0).getRawAddress(), RHSLength);
2128 int32_t IndexDiff = RHSOffset - LHSOffset;
2129 if (IndexDiff < 0) {
2130 if (static_cast<int32_t>(LHSLength) < -IndexDiff)
2131 return false;
2132 LHSStr = LHSStr.drop_front(-IndexDiff);
2133 } else {
2134 if (static_cast<int32_t>(RHSLength) < IndexDiff)
2135 return false;
2136 RHSStr = RHSStr.drop_front(IndexDiff);
2137 }
2138
2139 unsigned ShorterCharWidth;
2140 StringRef Shorter;
2141 StringRef Longer;
2142 if (LHSLength < RHSLength) {
2143 ShorterCharWidth = LHS.elemSize();
2144 Shorter = LHSStr;
2145 Longer = RHSStr;
2146 } else {
2147 ShorterCharWidth = RHS.elemSize();
2148 Shorter = RHSStr;
2149 Longer = LHSStr;
2150 }
2151
2152 // The null terminator isn't included in the string data, so check for it
2153 // manually. If the longer string doesn't have a null terminator where the
2154 // shorter string ends, they aren't potentially overlapping.
2155 for (unsigned NullByte : llvm::seq(ShorterCharWidth)) {
2156 if (Shorter.size() + NullByte >= Longer.size())
2157 break;
2158 if (Longer[Shorter.size() + NullByte])
2159 return false;
2160 }
2161 return Shorter == Longer.take_front(Shorter.size());
2162}
2163
2164static void copyPrimitiveMemory(InterpState &S, const Pointer &Ptr,
2165 PrimType T) {
2166
2167 if (T == PT_IntAPS) {
2168 auto &Val = Ptr.deref<IntegralAP<true>>();
2169 if (!Val.singleWord()) {
2170 uint64_t *NewMemory = new (S.P) uint64_t[Val.numWords()];
2171 Val.take(NewMemory);
2172 }
2173 } else if (T == PT_IntAP) {
2174 auto &Val = Ptr.deref<IntegralAP<false>>();
2175 if (!Val.singleWord()) {
2176 uint64_t *NewMemory = new (S.P) uint64_t[Val.numWords()];
2177 Val.take(NewMemory);
2178 }
2179 } else if (T == PT_Float) {
2180 auto &Val = Ptr.deref<Floating>();
2181 if (!Val.singleWord()) {
2182 uint64_t *NewMemory = new (S.P) uint64_t[Val.numWords()];
2183 Val.take(NewMemory);
2184 }
2185 }
2186}
2187
2188template <typename T>
2189static void copyPrimitiveMemory(InterpState &S, const Pointer &Ptr) {
2190 assert(needsAlloc<T>());
2191 auto &Val = Ptr.deref<T>();
2192 if (!Val.singleWord()) {
2193 uint64_t *NewMemory = new (S.P) uint64_t[Val.numWords()];
2194 Val.take(NewMemory);
2195 }
2196}
2197
2198static void finishGlobalRecurse(InterpState &S, const Pointer &Ptr) {
2199 if (const Record *R = Ptr.getRecord()) {
2200 for (const Record::Field &Fi : R->fields()) {
2201 if (Fi.Desc->isPrimitive()) {
2202 TYPE_SWITCH_ALLOC(Fi.Desc->getPrimType(), {
2203 copyPrimitiveMemory<T>(S, Ptr.atField(Fi.Offset));
2204 });
2205 copyPrimitiveMemory(S, Ptr.atField(Fi.Offset), Fi.Desc->getPrimType());
2206 } else
2207 finishGlobalRecurse(S, Ptr.atField(Fi.Offset));
2208 }
2209 return;
2210 }
2211
2212 if (const Descriptor *D = Ptr.getFieldDesc(); D && D->isArray()) {
2213 unsigned NumElems = D->getNumElems();
2214 if (NumElems == 0)
2215 return;
2216
2217 if (D->isPrimitiveArray()) {
2218 PrimType PT = D->getPrimType();
2219 if (!needsAlloc(PT))
2220 return;
2221 assert(NumElems >= 1);
2222 const Pointer EP = Ptr.atIndex(0);
2223 bool AllSingleWord = true;
2224 TYPE_SWITCH_ALLOC(PT, {
2225 if (!EP.deref<T>().singleWord()) {
2226 copyPrimitiveMemory<T>(S, EP);
2227 AllSingleWord = false;
2228 }
2229 });
2230 if (AllSingleWord)
2231 return;
2232 for (unsigned I = 1; I != D->getNumElems(); ++I) {
2233 const Pointer EP = Ptr.atIndex(I);
2234 copyPrimitiveMemory(S, EP, PT);
2235 }
2236 } else {
2237 assert(D->isCompositeArray());
2238 for (unsigned I = 0; I != D->getNumElems(); ++I) {
2239 const Pointer EP = Ptr.atIndex(I).narrow();
2240 finishGlobalRecurse(S, EP);
2241 }
2242 }
2243 }
2244}
2245
2247 const Pointer &Ptr = S.Stk.pop<Pointer>();
2248
2249 finishGlobalRecurse(S, Ptr);
2250 if (Ptr.canBeInitialized()) {
2251 Ptr.initialize();
2252 Ptr.activate();
2253 }
2254
2255 return true;
2256}
2257
2258// https://github.com/llvm/llvm-project/issues/102513
2259#if defined(_MSC_VER) && !defined(__clang__) && !defined(NDEBUG)
2260#pragma optimize("", off)
2261#endif
2263 // The current stack frame when we started Interpret().
2264 // This is being used by the ops to determine wheter
2265 // to return from this function and thus terminate
2266 // interpretation.
2267 const InterpFrame *StartFrame = S.Current;
2268 assert(!S.Current->isRoot());
2269 CodePtr PC = S.Current->getPC();
2270
2271 // Empty program.
2272 if (!PC)
2273 return true;
2274
2275 for (;;) {
2276 auto Op = PC.read<Opcode>();
2277 CodePtr OpPC = PC;
2278
2279 switch (Op) {
2280#define GET_INTERP
2281#include "Opcodes.inc"
2282#undef GET_INTERP
2283 }
2284 }
2285}
2286// https://github.com/llvm/llvm-project/issues/102513
2287#if defined(_MSC_VER) && !defined(__clang__) && !defined(NDEBUG)
2288#pragma optimize("", on)
2289#endif
2290
2291} // namespace interp
2292} // namespace clang
Defines the clang::ASTContext interface.
ASTImporterLookupTable & LT
StringRef P
const Decl * D
Expr * E
Defines the clang::Expr interface and subclasses for C++ expressions.
static const FunctionDecl * getVirtualOperatorDelete(QualType T)
static bool Jmp(InterpState &S, CodePtr &PC, int32_t Offset)
Definition: Interp.cpp:39
static bool CheckTemporary(InterpState &S, CodePtr OpPC, const Block *B, AccessKinds AK)
Definition: Interp.cpp:214
static bool BCP(InterpState &S, CodePtr &RealPC, int32_t Offset, PrimType PT)
Definition: Interp.cpp:64
static bool CheckGlobal(InterpState &S, CodePtr OpPC, const Pointer &Ptr)
Definition: Interp.cpp:240
static bool Jt(InterpState &S, CodePtr &PC, int32_t Offset)
Definition: Interp.cpp:44
static void diagnoseNonConstVariable(InterpState &S, CodePtr OpPC, const ValueDecl *VD)
Definition: Interp.cpp:177
static bool diagnoseUnknownDecl(InterpState &S, CodePtr OpPC, const ValueDecl *D)
Definition: Interp.cpp:137
static bool Jf(InterpState &S, CodePtr &PC, int32_t Offset)
Definition: Interp.cpp:51
static void diagnoseMissingInitializer(InterpState &S, CodePtr OpPC, const ValueDecl *VD)
Definition: Interp.cpp:128
static bool RetValue(InterpState &S, CodePtr &Pt)
Definition: Interp.cpp:31
static StringRef getIdentifier(const Token &Tok)
#define TYPE_SWITCH_ALLOC(Expr, B)
Definition: PrimType.h:265
#define TYPE_SWITCH(Expr, B)
Definition: PrimType.h:207
SourceLocation Loc
Definition: SemaObjC.cpp:754
a trap message and trap category.
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:188
QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize, const Expr *SizeExpr, ArraySizeModifier ASM, unsigned IndexTypeQuals) const
Return the unique reference to the type for a constant array of the specified element type.
QualType getBaseElementType(const ArrayType *VAT) const
Return the innermost element type of an array type.
bool hasSimilarType(QualType T1, QualType T2) const
Determine if two types are similar, according to the C++ rules.
DiagnosticsEngine & getDiagnostics() const
const TargetInfo & getTargetInfo() const
Definition: ASTContext.h:859
CanQualType getCanonicalTagType(const TagDecl *TD) const
Represents a C++ destructor within a class.
Definition: DeclCXX.h:2869
Represents a static or instance method of a struct/union/class.
Definition: DeclCXX.h:2129
bool isVirtual() const
Definition: DeclCXX.h:2184
Represents a C++ struct/union/class.
Definition: DeclCXX.h:258
bool isDerivedFrom(const CXXRecordDecl *Base) const
Determine whether this class is derived from the class Base.
CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
Definition: Expr.h:2879
unsigned getNumArgs() const
getNumArgs - Return the number of actual arguments to this call.
Definition: Expr.h:3070
Expr ** getArgs()
Retrieve the call arguments.
Definition: Expr.h:3073
QualType getCallReturnType(const ASTContext &Ctx) const
getCallReturnType - Get the return type of the call expr.
Definition: Expr.cpp:1599
A reference to a declared variable, function, enum, etc.
Definition: Expr.h:1272
ValueDecl * getDecl()
Definition: Expr.h:1340
bool isInvalidDecl() const
Definition: DeclBase.h:588
SourceLocation getLocation() const
Definition: DeclBase.h:439
virtual SourceRange getSourceRange() const LLVM_READONLY
Source range that this declaration covers.
Definition: DeclBase.h:427
DiagnosticBuilder Report(SourceLocation Loc, unsigned DiagID)
Issue the message to the client.
Definition: Diagnostic.h:1529
Represents an enum.
Definition: Decl.h:4004
unsigned getNumNegativeBits() const
Returns the width in bits required to store all the negative enumerators of this enum.
Definition: Decl.h:4205
void getValueRange(llvm::APInt &Max, llvm::APInt &Min) const
Calculates the [Min,Max) values the enum can store based on the NumPositiveBits and NumNegativeBits.
Definition: Decl.cpp:5068
This represents one expression.
Definition: Expr.h:112
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Definition: Expr.cpp:273
QualType getType() const
Definition: Expr.h:144
LangOptions::FPExceptionModeKind getExceptionMode() const
Definition: LangOptions.h:862
RoundingMode getRoundingMode() const
Definition: LangOptions.h:850
Represents a member of a struct/union/class.
Definition: Decl.h:3157
Represents a function declaration or definition.
Definition: Decl.h:1999
QualType getReturnType() const
Definition: Decl.h:2842
bool isTrivial() const
Whether this function is "trivial" in some specialized C++ senses.
Definition: Decl.h:2376
StorageClass getStorageClass() const
Returns the storage class as written in the source.
Definition: Decl.h:2885
bool isConstexpr() const
Whether this is a (C++11) constexpr function or constexpr constructor.
Definition: Decl.h:2469
bool isUsableAsGlobalAllocationFunctionInConstantEvaluation(UnsignedOrNone *AlignmentParam=nullptr, bool *IsNothrow=nullptr) const
Determines whether this function is one of the replaceable global allocation functions described in i...
Definition: Decl.cpp:3414
FunctionDecl * getDefinition()
Get the definition for this declaration.
Definition: Decl.h:2281
bool hasBody(const FunctionDecl *&Definition) const
Returns true if the function has a body.
Definition: Decl.cpp:3191
bool isDefined(const FunctionDecl *&Definition, bool CheckForPendingFriendDefinition=false) const
Returns true if the function has a definition that does not need to be instantiated.
Definition: Decl.cpp:3238
@ FPE_Ignore
Assume that floating-point exceptions are masked.
Definition: LangOptions.h:229
This represents a decl that may have a name.
Definition: Decl.h:273
IdentifierInfo * getIdentifier() const
Get the identifier that names this declaration, if there is one.
Definition: Decl.h:294
StringRef getName() const
Get the name of identifier for this declaration as a StringRef.
Definition: Decl.h:300
A (possibly-)qualified type.
Definition: TypeBase.h:937
bool isConstant(const ASTContext &Ctx) const
Definition: TypeBase.h:1097
ASTContext & getASTContext() const
Definition: Sema.h:918
const LangOptions & getLangOpts() const
Definition: Sema.h:911
Encodes a location in the source.
SourceRange getSourceRange() const LLVM_READONLY
SourceLocation tokens are not useful in isolation - they are low level value objects created/interpre...
Definition: Stmt.cpp:334
uint64_t getPointerWidth(LangAS AddrSpace) const
Return the width of pointers on this target, for the specified address space.
Definition: TargetInfo.h:486
The base class of the type hierarchy.
Definition: TypeBase.h:1833
CXXRecordDecl * getAsCXXRecordDecl() const
Retrieves the CXXRecordDecl that this type refers to, either because the type is a RecordType or beca...
Definition: Type.h:26
RecordDecl * getAsRecordDecl() const
Retrieves the RecordDecl this type refers to.
Definition: Type.h:41
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee.
Definition: Type.cpp:752
bool isIntegralOrEnumerationType() const
Determine whether this type is an integral or enumeration type.
Definition: TypeBase.h:9054
bool isAnyComplexType() const
Definition: TypeBase.h:8715
bool isPointerOrReferenceType() const
Definition: TypeBase.h:8584
Represent the declaration of a variable (in which case it is an lvalue) a function (in which case it ...
Definition: Decl.h:711
QualType getType() const
Definition: Decl.h:722
A memory block, either on the stack or in the heap.
Definition: InterpBlock.h:44
unsigned getSize() const
Returns the size of the block.
Definition: InterpBlock.h:87
bool isExtern() const
Checks if the block is extern.
Definition: InterpBlock.h:77
const Descriptor * getDescriptor() const
Returns the block's descriptor.
Definition: InterpBlock.h:73
bool isStatic() const
Checks if the block has static storage duration.
Definition: InterpBlock.h:79
bool isTemporary() const
Checks if the block is temporary.
Definition: InterpBlock.h:81
std::byte * rawData()
Returns a pointer to the raw data, including metadata.
Definition: InterpBlock.h:111
UnsignedOrNone getDeclID() const
Returns the declaration ID.
Definition: InterpBlock.h:89
bool isDummy() const
Definition: InterpBlock.h:84
unsigned getEvalID() const
The Evaluation ID this block was created in.
Definition: InterpBlock.h:94
bool isWeak() const
Definition: InterpBlock.h:82
bool isAccessible() const
Definition: InterpBlock.h:145
Pointer into the code segment.
Definition: Source.h:30
std::enable_if_t<!std::is_pointer< T >::value, T > read()
Reads data and advances the pointer.
Definition: Source.h:56
Compilation context for expressions.
Definition: Compiler.h:110
Manages dynamic memory allocations done during bytecode interpretation.
Wrapper around fixed point types.
Definition: FixedPoint.h:23
std::string toDiagnosticString(const ASTContext &Ctx) const
Definition: FixedPoint.h:81
If a Floating is constructed from Memory, it DOES NOT OWN THAT MEMORY.
Definition: Floating.h:35
Base class for stack frames, shared between VM and walker.
Definition: Frame.h:25
const Function * getFunction() const
Bytecode function.
Definition: Function.h:86
bool isVirtual() const
Checks if the function is virtual.
Definition: Function.h:157
bool isDefined() const
Checks if the function is defined.
Definition: Function.h:199
bool hasNonNullAttr() const
Definition: Function.h:131
const FunctionDecl * getDecl() const
Returns the original FunctionDecl.
Definition: Function.h:109
bool hasBody() const
Checks if the function already has a body attached.
Definition: Function.h:196
bool isConstexpr() const
Definition: Function.h:159
bool isThisPointerExplicit() const
Definition: Function.h:215
unsigned getWrittenArgSize() const
Definition: Function.h:211
bool isLambdaStaticInvoker() const
Returns whether this function is a lambda static invoker, which we generate custom byte code for.
Definition: Function.h:172
bool isValid() const
Checks if the function is valid to call.
Definition: Function.h:154
If an IntegralAP is constructed from Memory, it DOES NOT OWN THAT MEMORY.
Definition: IntegralAP.h:36
Wrapper around numeric types.
Definition: Integral.h:66
static Integral from(ValT Value)
Definition: Integral.h:206
Frame storing local variables.
Definition: InterpFrame.h:26
Interpreter context.
Definition: InterpState.h:43
A pointer to a memory block, live or dead.
Definition: Pointer.h:90
Pointer narrow() const
Restricts the scope of an array element pointer.
Definition: Pointer.h:187
UnsignedOrNone getDeclID() const
Returns the declaration ID.
Definition: Pointer.h:572
bool isVolatile() const
Checks if an object or a subfield is volatile.
Definition: Pointer.h:565
bool isInitialized() const
Checks if an object was initialized.
Definition: Pointer.cpp:432
bool isStatic() const
Checks if the storage is static.
Definition: Pointer.h:490
bool isDynamic() const
Checks if the storage has been dynamically allocated.
Definition: Pointer.h:505
bool inUnion() const
Definition: Pointer.h:398
bool isZeroSizeArray() const
Checks if the pointer is pointing to a zero-size array.
Definition: Pointer.h:650
Pointer atIndex(uint64_t Idx) const
Offsets a pointer inside an array.
Definition: Pointer.h:155
bool isDummy() const
Checks if the pointer points to a dummy value.
Definition: Pointer.h:543
bool isExtern() const
Checks if the storage is extern.
Definition: Pointer.h:484
int64_t getIndex() const
Returns the index into an array.
Definition: Pointer.h:608
bool isActive() const
Checks if the object is active.
Definition: Pointer.h:532
bool isConst() const
Checks if an object or a subfield is mutable.
Definition: Pointer.h:553
Pointer atField(unsigned Off) const
Creates a pointer to a field.
Definition: Pointer.h:172
T & deref() const
Dereferences the pointer, if it's live.
Definition: Pointer.h:659
bool isMutable() const
Checks if the field is mutable.
Definition: Pointer.h:516
bool isConstInMutable() const
Definition: Pointer.h:558
unsigned getNumElems() const
Returns the number of elements.
Definition: Pointer.h:592
bool isUnknownSizeArray() const
Checks if the structure is an array of unknown size.
Definition: Pointer.h:411
void activate() const
Activats a field.
Definition: Pointer.cpp:560
bool isIntegralPointer() const
Definition: Pointer.h:465
QualType getType() const
Returns the type of the innermost field.
Definition: Pointer.h:332
bool isArrayElement() const
Checks if the pointer points to an array.
Definition: Pointer.h:417
bool isLive() const
Checks if the pointer is live.
Definition: Pointer.h:264
Pointer getBase() const
Returns a pointer to the object of which this pointer is a field.
Definition: Pointer.h:303
uint64_t getByteOffset() const
Returns the byte offset from the start.
Definition: Pointer.h:581
bool isTypeidPointer() const
Definition: Pointer.h:467
std::string toDiagnosticString(const ASTContext &Ctx) const
Converts the pointer to a string usable in diagnostics.
Definition: Pointer.cpp:419
bool isZero() const
Checks if the pointer is null.
Definition: Pointer.h:253
const IntPointer & asIntPointer() const
Definition: Pointer.h:451
bool isRoot() const
Pointer points directly to a block.
Definition: Pointer.h:433
const Descriptor * getDeclDesc() const
Accessor for information about the declaration site.
Definition: Pointer.h:278
static bool pointToSameBlock(const Pointer &A, const Pointer &B)
Checks if both given pointers point to the same block.
Definition: Pointer.cpp:636
void endLifetime() const
Definition: Pointer.h:726
bool isOnePastEnd() const
Checks if the index is one past end.
Definition: Pointer.h:625
uint64_t getIntegerRepresentation() const
Definition: Pointer.h:142
const FieldDecl * getField() const
Returns the field information.
Definition: Pointer.h:477
bool isElementPastEnd() const
Checks if the pointer is an out-of-bounds element pointer.
Definition: Pointer.h:647
void startLifetime() const
Definition: Pointer.h:734
bool isBlockPointer() const
Definition: Pointer.h:464
bool isTemporary() const
Checks if the storage is temporary.
Definition: Pointer.h:497
const FunctionPointer & asFunctionPointer() const
Definition: Pointer.h:455
SourceLocation getDeclLoc() const
Definition: Pointer.h:288
const Block * block() const
Definition: Pointer.h:598
bool isFunctionPointer() const
Definition: Pointer.h:466
Pointer getDeclPtr() const
Definition: Pointer.h:351
const Descriptor * getFieldDesc() const
Accessors for information about the innermost field.
Definition: Pointer.h:322
bool isBaseClass() const
Checks if a structure is a base class.
Definition: Pointer.h:538
size_t elemSize() const
Returns the element size of the innermost field.
Definition: Pointer.h:354
bool canBeInitialized() const
If this pointer has an InlineDescriptor we can use to initialize.
Definition: Pointer.h:440
Lifetime getLifetime() const
Definition: Pointer.h:718
void initialize() const
Initializes a field.
Definition: Pointer.cpp:483
const std::byte * getRawAddress() const
If backed by actual data (i.e.
Definition: Pointer.h:602
bool isField() const
Checks if the item is a field in an object.
Definition: Pointer.h:270
const Record * getRecord() const
Returns the record descriptor of a class.
Definition: Pointer.h:470
Structure/Class descriptor.
Definition: Record.h:25
bool isUnion() const
Checks if the record is a union.
Definition: Record.h:57
const CXXDestructorDecl * getDestructor() const
Returns the destructor of the record, if any.
Definition: Record.h:73
llvm::iterator_range< const_field_iter > fields() const
Definition: Record.h:80
Describes the statement/declaration an opcode was generated from.
Definition: Source.h:73
#define bool
Definition: gpuintrin.h:32
Defines the clang::TargetInfo interface.
bool arePotentiallyOverlappingStringLiterals(const Pointer &LHS, const Pointer &RHS)
Definition: Interp.cpp:2119
bool GetPtrFieldPop(InterpState &S, CodePtr OpPC, uint32_t Off)
Definition: Interp.cpp:1453
static bool CheckCallDepth(InterpState &S, CodePtr OpPC)
Definition: Interp.cpp:1020
static void startLifetimeRecurse(const Pointer &Ptr)
Definition: Interp.cpp:1793
bool CastPointerIntegralAPS(InterpState &S, CodePtr OpPC, uint32_t BitWidth)
Definition: Interp.cpp:2049
static bool CheckLifetime(InterpState &S, CodePtr OpPC, Lifetime LT, AccessKinds AK)
Definition: Interp.cpp:709
static bool CheckVolatile(InterpState &S, CodePtr OpPC, const Pointer &Ptr, AccessKinds AK)
Definition: Interp.cpp:619
bool CastPointerIntegralAP(InterpState &S, CodePtr OpPC, uint32_t BitWidth)
Definition: Interp.cpp:2036
bool CheckInit(InterpState &S, CodePtr OpPC, const Pointer &Ptr)
Checks if a value can be initialized.
Definition: Interp.cpp:910
llvm::APInt APInt
Definition: FixedPoint.h:19
bool EndLifetimePop(InterpState &S, CodePtr OpPC)
Ends the lifetime of the pop'd pointer.
Definition: Interp.cpp:1857
static bool CheckCallable(InterpState &S, CodePtr OpPC, const Function *F)
Definition: Interp.cpp:918
static bool runRecordDestructor(InterpState &S, CodePtr OpPC, const Pointer &BasePtr, const Descriptor *Desc)
Definition: Interp.cpp:1195
bool GetTypeidPtr(InterpState &S, CodePtr OpPC, const Type *TypeInfoType)
Definition: Interp.cpp:2085
bool CheckDowncast(InterpState &S, CodePtr OpPC, const Pointer &Ptr, uint32_t Offset)
Checks if the dowcast using the given offset is possible with the given pointer.
Definition: Interp.cpp:552
bool CheckNewDeleteForms(InterpState &S, CodePtr OpPC, DynamicAllocator::Form AllocForm, DynamicAllocator::Form DeleteForm, const Descriptor *D, const Expr *NewExpr)
Diagnose mismatched new[]/delete or new/delete[] pairs.
Definition: Interp.cpp:1104
bool CheckGlobalLoad(InterpState &S, CodePtr OpPC, const Block *B)
Checks a direct load of a primitive value from a global or local variable.
Definition: Interp.cpp:738
bool CheckDeclRef(InterpState &S, CodePtr OpPC, const DeclRefExpr *DR)
We aleady know the given DeclRefExpr is invalid for some reason, now figure out why and print appropr...
Definition: Interp.cpp:1150
bool EndLifetime(InterpState &S, CodePtr OpPC)
Ends the lifetime of the peek'd pointer.
Definition: Interp.cpp:1843
bool GetTypeid(InterpState &S, CodePtr OpPC, const Type *TypePtr, const Type *TypeInfoType)
Typeid support.
Definition: Interp.cpp:2079
bool CheckThis(InterpState &S, CodePtr OpPC, const Pointer &This)
Checks the 'this' pointer.
Definition: Interp.cpp:1031
static bool CheckWeak(InterpState &S, CodePtr OpPC, const Block *B)
Definition: Interp.cpp:721
bool CheckConstant(InterpState &S, CodePtr OpPC, const Descriptor *Desc)
Checks if the Descriptor is of a constexpr or const global variable.
Definition: Interp.cpp:448
bool CheckPointerToIntegralCast(InterpState &S, CodePtr OpPC, const Pointer &Ptr, unsigned BitWidth)
Definition: Interp.cpp:2016
static bool RunDestructors(InterpState &S, CodePtr OpPC, const Block *B)
Definition: Interp.cpp:1221
bool GetPtrField(InterpState &S, CodePtr OpPC, uint32_t Off)
1) Peeks a Pointer 2) Pushes Pointer.atField(Off) on the stack
Definition: Interp.cpp:1448
static bool CheckNonNullArgs(InterpState &S, CodePtr OpPC, const Function *F, const CallExpr *CE, unsigned ArgSize)
Definition: Interp.cpp:1173
bool CheckMutable(InterpState &S, CodePtr OpPC, const Pointer &Ptr)
Checks if a pointer points to a mutable field.
Definition: Interp.cpp:594
static void finishGlobalRecurse(InterpState &S, const Pointer &Ptr)
Definition: Interp.cpp:2198
bool CheckSubobject(InterpState &S, CodePtr OpPC, const Pointer &Ptr, CheckSubobjectKind CSK)
Checks if Ptr is a one-past-the-end pointer.
Definition: Interp.cpp:541
bool handleFixedPointOverflow(InterpState &S, CodePtr OpPC, const FixedPoint &FP)
Definition: Interp.cpp:1995
static bool getField(InterpState &S, CodePtr OpPC, const Pointer &Ptr, uint32_t Off)
Definition: Interp.cpp:1413
static bool hasVirtualDestructor(QualType T)
Definition: Interp.cpp:1252
bool CheckLoad(InterpState &S, CodePtr OpPC, const Pointer &Ptr, AccessKinds AK)
Checks if a value can be loaded from a block.
Definition: Interp.cpp:793
constexpr size_t align(size_t Size)
Aligns a size to the pointer alignment.
Definition: PrimType.h:185
bool CheckBCPResult(InterpState &S, const Pointer &Ptr)
Definition: Interp.cpp:308
bool CheckRange(InterpState &S, CodePtr OpPC, const Pointer &Ptr, AccessKinds AK)
Checks if a pointer is in range.
Definition: Interp.cpp:519
bool CheckDynamicMemoryAllocation(InterpState &S, CodePtr OpPC)
Checks if dynamic memory allocation is available in the current language mode.
Definition: Interp.cpp:1095
bool CheckLive(InterpState &S, CodePtr OpPC, const Pointer &Ptr, AccessKinds AK)
Checks if a pointer is live and accessible.
Definition: Interp.cpp:414
bool DiagTypeid(InterpState &S, CodePtr OpPC)
Definition: Interp.cpp:2111
bool CheckFinalLoad(InterpState &S, CodePtr OpPC, const Pointer &Ptr)
This is not used by any of the opcodes directly.
Definition: Interp.cpp:841
bool CheckBitCast(InterpState &S, CodePtr OpPC, bool HasIndeterminateBits, bool TargetIsUCharOrByte)
Definition: Interp.cpp:2062
static void popArg(InterpState &S, const Expr *Arg)
Definition: Interp.cpp:256
static bool checkConstructor(InterpState &S, CodePtr OpPC, const Function *Func, const Pointer &ThisPtr)
Definition: Interp.cpp:1458
void diagnoseEnumValue(InterpState &S, CodePtr OpPC, const EnumDecl *ED, const APSInt &Value)
Definition: Interp.cpp:1358
bool StartLifetime(InterpState &S, CodePtr OpPC)
Definition: Interp.cpp:1812
bool CheckStore(InterpState &S, CodePtr OpPC, const Pointer &Ptr)
Checks if a value can be stored in a block.
Definition: Interp.cpp:872
bool CheckNull(InterpState &S, CodePtr OpPC, const Pointer &Ptr, CheckSubobjectKind CSK)
Checks if a pointer is null.
Definition: Interp.cpp:508
bool CheckDeleteSource(InterpState &S, CodePtr OpPC, const Expr *Source, const Pointer &Ptr)
Check the source of the pointer passed to delete/delete[] has actually been heap allocated by us.
Definition: Interp.cpp:1122
bool CheckFloatResult(InterpState &S, CodePtr OpPC, const Floating &Result, APFloat::opStatus Status, FPOptions FPO)
Checks if the result of a floating-point operation is valid in the current context.
Definition: Interp.cpp:1048
PrimType
Enumeration of the primitive types of the VM.
Definition: PrimType.h:34
bool InterpretBuiltin(InterpState &S, CodePtr OpPC, const CallExpr *Call, uint32_t BuiltinID)
Interpret a builtin function.
bool CallVar(InterpState &S, CodePtr OpPC, const Function *Func, uint32_t VarArgSize)
Definition: Interp.cpp:1502
constexpr bool needsAlloc()
Definition: PrimType.h:125
bool InvalidShuffleVectorIndex(InterpState &S, CodePtr OpPC, uint32_t Index)
Definition: Interp.cpp:2008
bool CheckDummy(InterpState &S, CodePtr OpPC, const Block *B, AccessKinds AK)
Checks if a pointer is a dummy pointer.
Definition: Interp.cpp:1155
bool CheckNewTypeMismatch(InterpState &S, CodePtr OpPC, const Expr *E, std::optional< uint64_t > ArraySize)
Check if the initializer and storage types of a placement-new expression match.
Definition: Interp.cpp:1870
bool CheckLiteralType(InterpState &S, CodePtr OpPC, const Type *T)
Definition: Interp.cpp:1382
bool CheckArray(InterpState &S, CodePtr OpPC, const Pointer &Ptr)
Checks if the array is offsetable.
Definition: Interp.cpp:406
static void compileFunction(InterpState &S, const Function *Func)
Definition: Interp.cpp:1496
bool FinishInitGlobal(InterpState &S, CodePtr OpPC)
Definition: Interp.cpp:2246
bool CheckActive(InterpState &S, CodePtr OpPC, const Pointer &Ptr, AccessKinds AK)
Definition: Interp.cpp:328
void cleanupAfterFunctionCall(InterpState &S, CodePtr OpPC, const Function *Func)
Definition: Interp.cpp:261
static void copyPrimitiveMemory(InterpState &S, const Pointer &Ptr, PrimType T)
Definition: Interp.cpp:2164
size_t primSize(PrimType Type)
Returns the size of a primitive type in bytes.
Definition: PrimType.cpp:23
bool Free(InterpState &S, CodePtr OpPC, bool DeleteIsArrayForm, bool IsGlobalDelete)
Definition: Interp.cpp:1259
bool InvalidNewDeleteExpr(InterpState &S, CodePtr OpPC, const Expr *E)
Definition: Interp.cpp:1951
bool CallBI(InterpState &S, CodePtr OpPC, const CallExpr *CE, uint32_t BuiltinID)
Definition: Interp.cpp:1735
bool CheckLocalLoad(InterpState &S, CodePtr OpPC, const Block *B)
Definition: Interp.cpp:771
static bool CheckInvoke(InterpState &S, CodePtr OpPC, const Pointer &Ptr)
Definition: Interp.cpp:898
llvm::APSInt APSInt
Definition: FixedPoint.h:20
bool CheckExtern(InterpState &S, CodePtr OpPC, const Pointer &Ptr)
Checks if the variable has externally defined storage.
Definition: Interp.cpp:389
bool isConstexprUnknown(const Pointer &P)
Definition: Interp.cpp:298
bool GetPtrBasePop(InterpState &S, CodePtr OpPC, uint32_t Off, bool NullOK)
Definition: Interp.h:1824
bool DiagnoseUninitialized(InterpState &S, CodePtr OpPC, const Pointer &Ptr, AccessKinds AK)
Definition: Interp.cpp:662
llvm::BitVector collectNonNullArgs(const FunctionDecl *F, ArrayRef< const Expr * > Args)
bool CallPtr(InterpState &S, CodePtr OpPC, uint32_t ArgSize, const CallExpr *CE)
Definition: Interp.cpp:1746
bool CallVirt(InterpState &S, CodePtr OpPC, const Function *Func, uint32_t VarArgSize)
Definition: Interp.cpp:1637
static void endLifetimeRecurse(const Pointer &Ptr)
Definition: Interp.cpp:1822
bool CheckConst(InterpState &S, CodePtr OpPC, const Pointer &Ptr)
Checks if a pointer points to const storage.
Definition: Interp.cpp:572
bool Interpret(InterpState &S)
Interpreter entry point.
Definition: Interp.cpp:2262
bool CheckDestructor(InterpState &S, CodePtr OpPC, const Pointer &Ptr)
Definition: Interp.cpp:1479
The JSON file list parser is used to communicate input to InstallAPI.
@ Success
Annotation was successful.
@ SC_Extern
Definition: Specifiers.h:251
CheckSubobjectKind
The order of this enum is important for diagnostics.
Definition: State.h:42
@ CSK_Field
Definition: State.h:45
@ Result
The result type of a method or function.
AccessKinds
Kinds of access we can perform on an object, for diagnostics.
Definition: State.h:26
@ AK_Construct
Definition: State.h:35
@ AK_Increment
Definition: State.h:30
@ AK_Read
Definition: State.h:27
@ AK_Assign
Definition: State.h:29
@ AK_MemberCall
Definition: State.h:32
@ AK_Destroy
Definition: State.h:36
@ AK_Decrement
Definition: State.h:31
const FunctionProtoType * T
Describes a memory block created by an allocation site.
Definition: Descriptor.h:122
unsigned getNumElems() const
Returns the number of elements stored in the block.
Definition: Descriptor.h:249
bool isPrimitive() const
Checks if the descriptor is of a primitive.
Definition: Descriptor.h:263
bool hasTrivialDtor() const
Whether variables of this descriptor need their destructor called or not.
Definition: Descriptor.cpp:454
bool isCompositeArray() const
Checks if the descriptor is of an array of composites.
Definition: Descriptor.h:256
const ValueDecl * asValueDecl() const
Definition: Descriptor.h:214
const Descriptor *const ElemDesc
Descriptor of the array element.
Definition: Descriptor.h:155
unsigned getMetadataSize() const
Returns the size of the metadata.
Definition: Descriptor.h:246
SourceLocation getLocation() const
Definition: Descriptor.cpp:438
QualType getDataType(const ASTContext &Ctx) const
Definition: Descriptor.cpp:414
bool isPrimitiveArray() const
Checks if the descriptor is of an array of primitives.
Definition: Descriptor.h:254
const VarDecl * asVarDecl() const
Definition: Descriptor.h:218
bool isRecord() const
Checks if the descriptor is of a record.
Definition: Descriptor.h:268
const Record *const ElemRecord
Pointer to the record, if block contains records.
Definition: Descriptor.h:153
const Expr * asExpr() const
Definition: Descriptor.h:211
Descriptor used for global variables.
Definition: Descriptor.h:51
Inline descriptor embedded in structures and arrays.
Definition: Descriptor.h:67
IntPointer atOffset(const ASTContext &ASTCtx, unsigned Offset) const
Definition: Pointer.cpp:881