Thermische Energie

aus Wikipedia, der freien Enzyklopädie
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 14. April 2014 um 14:35 Uhr durch 12zqw4 (Diskussion | Beiträge). Sie kann sich erheblich von der aktuellen Version unterscheiden.
Zur Navigation springen Zur Suche springen
Teilchenbewegung in einem Teilchengas mit Wechselwirkung

Thermische Energie (auch Wärmeenergie) ist die Energie, die in der ungeordneten Bewegung der Atome oder Moleküle eines Stoffes gespeichert ist. Sie ist eine Zustandsgröße und ist Teil der inneren Energie. Die thermische Energie wird im SI-Einheitensystem in Joule (Einheitenzeichen: J) gemessen.

Die thermische Energie Eth eines Stoffes ist definiert als

mit

Eine Wärmezufuhr steigert die mittlere kinetische Energie der Moleküle und damit die thermische Energie, eine Wärmeabfuhr verringert sie. Thermische Energie ist also kinetische Energie, aber mit dem Merkmal der ungeordneten Bewegung vieler Körper, siehe auch Gitterschwingung und Phonon. Ist die kinetische Energie aller Moleküle eines Stoffes gleich Null, so ist, da m und c stets größer als Null sind, seine Temperatur am absoluten Nullpunkt. Die Kelvin-Temperaturskala verwendet diesen als Bezugspunkt.

Kommen zwei Systeme mit unterschiedlichen Temperaturen zusammen, so gleichen sich ihre Temperaturen durch Wärmeaustausch an. Dabei geht jedoch ohne zusätzliche Hilfe niemals thermische Energie vom System niedrigerer Temperatur in das System höherer Temperatur über. Diese Erfahrungstatsache ist im zweiten Hauptsatz der Thermodynamik ausgedrückt. Die Angleichung erfolgt so lange, bis keine Temperaturdifferenz zwischen den Systemen mehr auftritt und sich die Systeme demnach in einem thermischen Gleichgewicht befinden. Dieser Vorgang wird Wärmeübertragung genannt.

Zusammenhang mit der Temperatur

Umgangssprachlich wird die thermische Energie etwas ungenau als „Wärme“ oder „Wärmeenergie“ bezeichnet oder auch mit der Temperatur verwechselt.

Tatsächlich ist für freie Teilchen die thermische Energie proportional zur Temperatur:

mit der Teilchenanzahl und der Boltzmann-Konstante .

Im Allgemeinen ist aber auch die spezifische Wärmekapazität eine Funktion der Temperatur:

,

sodass die thermische Energie nicht in einfacher proportionaler Weise von der Temperatur abhängt:

.

Bei einem Phasenübergang kann sich sogar die thermische Energie eines Körpers ändern, ohne dass es zu einer Temperaturänderung kommt. Ein Beispiel, das die Zusammenhänge zwischen Wärme und Temperatur verdeutlicht, ist ein Schmelzvorgang. Hat Eis eine Temperatur von 0 °C, muss, um es zu schmelzen, seine thermische Energie erhöht werden. Dazu muss Wärme zugeführt werden. Die Temperatur steigt während des Schmelzvorganges jedoch nicht an, da die gesamte zugeführte Wärme für den Phasenübergang vom Festsoff zur Flüssigkeit benötigt wird (Schmelzwärme).

Die manchmal so bezeichnete „Druckenergie“ ist nichts anderes als thermische Energie. Gasmoleküle, die in einem Gefäß eingeschlossen sind, stoßen wegen ihrer thermischen Bewegung gegen die Wände. Dadurch wird bei jedem Stoß Impuls übertragen, der als Druck gemessen werden kann.

Neutronenphysik

Eine andere Wortbedeutung hat thermische Energie im Zusammenhang mit freien Neutronen oder anderen Teilchen. In diesen Fällen ist diejenige kinetische Energie des Einzelteilchens gemeint, die der Temperatur des umgebenden Stoffes entspricht (siehe auch: Thermisch).