rustc_parse/parser/
item.rs

1use std::fmt::Write;
2use std::mem;
3
4use ast::token::IdentIsRaw;
5use rustc_ast::ast::*;
6use rustc_ast::ptr::P;
7use rustc_ast::token::{self, Delimiter, InvisibleOrigin, MetaVarKind, TokenKind};
8use rustc_ast::tokenstream::{DelimSpan, TokenStream, TokenTree};
9use rustc_ast::util::case::Case;
10use rustc_ast::{self as ast};
11use rustc_ast_pretty::pprust;
12use rustc_errors::codes::*;
13use rustc_errors::{Applicability, PResult, StashKey, struct_span_code_err};
14use rustc_span::edit_distance::edit_distance;
15use rustc_span::edition::Edition;
16use rustc_span::{DUMMY_SP, ErrorGuaranteed, Ident, Span, Symbol, kw, source_map, sym};
17use thin_vec::{ThinVec, thin_vec};
18use tracing::debug;
19
20use super::diagnostics::{ConsumeClosingDelim, dummy_arg};
21use super::ty::{AllowPlus, RecoverQPath, RecoverReturnSign};
22use super::{
23    AttrWrapper, ExpKeywordPair, ExpTokenPair, FollowedByType, ForceCollect, Parser, PathStyle,
24    Recovered, Trailing, UsePreAttrPos,
25};
26use crate::errors::{self, MacroExpandsToAdtField};
27use crate::{exp, fluent_generated as fluent};
28
29impl<'a> Parser<'a> {
30    /// Parses a source module as a crate. This is the main entry point for the parser.
31    pub fn parse_crate_mod(&mut self) -> PResult<'a, ast::Crate> {
32        let (attrs, items, spans) = self.parse_mod(exp!(Eof))?;
33        Ok(ast::Crate { attrs, items, spans, id: DUMMY_NODE_ID, is_placeholder: false })
34    }
35
36    /// Parses a `mod <foo> { ... }` or `mod <foo>;` item.
37    fn parse_item_mod(&mut self, attrs: &mut AttrVec) -> PResult<'a, ItemKind> {
38        let safety = self.parse_safety(Case::Sensitive);
39        self.expect_keyword(exp!(Mod))?;
40        let ident = self.parse_ident()?;
41        let mod_kind = if self.eat(exp!(Semi)) {
42            ModKind::Unloaded
43        } else {
44            self.expect(exp!(OpenBrace))?;
45            let (inner_attrs, items, inner_span) = self.parse_mod(exp!(CloseBrace))?;
46            attrs.extend(inner_attrs);
47            ModKind::Loaded(items, Inline::Yes, inner_span, Ok(()))
48        };
49        Ok(ItemKind::Mod(safety, ident, mod_kind))
50    }
51
52    /// Parses the contents of a module (inner attributes followed by module items).
53    /// We exit once we hit `term` which can be either
54    /// - EOF (for files)
55    /// - `}` for mod items
56    pub fn parse_mod(
57        &mut self,
58        term: ExpTokenPair<'_>,
59    ) -> PResult<'a, (AttrVec, ThinVec<P<Item>>, ModSpans)> {
60        let lo = self.token.span;
61        let attrs = self.parse_inner_attributes()?;
62
63        let post_attr_lo = self.token.span;
64        let mut items: ThinVec<P<_>> = ThinVec::new();
65
66        // There shouldn't be any stray semicolons before or after items.
67        // `parse_item` consumes the appropriate semicolons so any leftover is an error.
68        loop {
69            while self.maybe_consume_incorrect_semicolon(items.last().map(|x| &**x)) {} // Eat all bad semicolons
70            let Some(item) = self.parse_item(ForceCollect::No)? else {
71                break;
72            };
73            items.push(item);
74        }
75
76        if !self.eat(term) {
77            let token_str = super::token_descr(&self.token);
78            if !self.maybe_consume_incorrect_semicolon(items.last().map(|x| &**x)) {
79                let is_let = self.token.is_keyword(kw::Let);
80                let is_let_mut = is_let && self.look_ahead(1, |t| t.is_keyword(kw::Mut));
81                let let_has_ident = is_let && !is_let_mut && self.is_kw_followed_by_ident(kw::Let);
82
83                let msg = format!("expected item, found {token_str}");
84                let mut err = self.dcx().struct_span_err(self.token.span, msg);
85
86                let label = if is_let {
87                    "`let` cannot be used for global variables"
88                } else {
89                    "expected item"
90                };
91                err.span_label(self.token.span, label);
92
93                if is_let {
94                    if is_let_mut {
95                        err.help("consider using `static` and a `Mutex` instead of `let mut`");
96                    } else if let_has_ident {
97                        err.span_suggestion_short(
98                            self.token.span,
99                            "consider using `static` or `const` instead of `let`",
100                            "static",
101                            Applicability::MaybeIncorrect,
102                        );
103                    } else {
104                        err.help("consider using `static` or `const` instead of `let`");
105                    }
106                }
107                err.note("for a full list of items that can appear in modules, see <https://doc.rust-lang.org/reference/items.html>");
108                return Err(err);
109            }
110        }
111
112        let inject_use_span = post_attr_lo.data().with_hi(post_attr_lo.lo());
113        let mod_spans = ModSpans { inner_span: lo.to(self.prev_token.span), inject_use_span };
114        Ok((attrs, items, mod_spans))
115    }
116}
117
118impl<'a> Parser<'a> {
119    pub fn parse_item(&mut self, force_collect: ForceCollect) -> PResult<'a, Option<P<Item>>> {
120        let fn_parse_mode = FnParseMode { req_name: |_| true, req_body: true };
121        self.parse_item_(fn_parse_mode, force_collect).map(|i| i.map(P))
122    }
123
124    fn parse_item_(
125        &mut self,
126        fn_parse_mode: FnParseMode,
127        force_collect: ForceCollect,
128    ) -> PResult<'a, Option<Item>> {
129        self.recover_vcs_conflict_marker();
130        let attrs = self.parse_outer_attributes()?;
131        self.recover_vcs_conflict_marker();
132        self.parse_item_common(attrs, true, false, fn_parse_mode, force_collect)
133    }
134
135    pub(super) fn parse_item_common(
136        &mut self,
137        attrs: AttrWrapper,
138        mac_allowed: bool,
139        attrs_allowed: bool,
140        fn_parse_mode: FnParseMode,
141        force_collect: ForceCollect,
142    ) -> PResult<'a, Option<Item>> {
143        if let Some(item) =
144            self.eat_metavar_seq(MetaVarKind::Item, |this| this.parse_item(ForceCollect::Yes))
145        {
146            let mut item = item.expect("an actual item");
147            attrs.prepend_to_nt_inner(&mut item.attrs);
148            return Ok(Some(item.into_inner()));
149        }
150
151        self.collect_tokens(None, attrs, force_collect, |this, mut attrs| {
152            let lo = this.token.span;
153            let vis = this.parse_visibility(FollowedByType::No)?;
154            let mut def = this.parse_defaultness();
155            let kind = this.parse_item_kind(
156                &mut attrs,
157                mac_allowed,
158                lo,
159                &vis,
160                &mut def,
161                fn_parse_mode,
162                Case::Sensitive,
163            )?;
164            if let Some(kind) = kind {
165                this.error_on_unconsumed_default(def, &kind);
166                let span = lo.to(this.prev_token.span);
167                let id = DUMMY_NODE_ID;
168                let item = Item { attrs, id, kind, vis, span, tokens: None };
169                return Ok((Some(item), Trailing::No, UsePreAttrPos::No));
170            }
171
172            // At this point, we have failed to parse an item.
173            if !matches!(vis.kind, VisibilityKind::Inherited) {
174                this.dcx().emit_err(errors::VisibilityNotFollowedByItem { span: vis.span, vis });
175            }
176
177            if let Defaultness::Default(span) = def {
178                this.dcx().emit_err(errors::DefaultNotFollowedByItem { span });
179            }
180
181            if !attrs_allowed {
182                this.recover_attrs_no_item(&attrs)?;
183            }
184            Ok((None, Trailing::No, UsePreAttrPos::No))
185        })
186    }
187
188    /// Error in-case `default` was parsed in an in-appropriate context.
189    fn error_on_unconsumed_default(&self, def: Defaultness, kind: &ItemKind) {
190        if let Defaultness::Default(span) = def {
191            self.dcx().emit_err(errors::InappropriateDefault {
192                span,
193                article: kind.article(),
194                descr: kind.descr(),
195            });
196        }
197    }
198
199    /// Parses one of the items allowed by the flags.
200    fn parse_item_kind(
201        &mut self,
202        attrs: &mut AttrVec,
203        macros_allowed: bool,
204        lo: Span,
205        vis: &Visibility,
206        def: &mut Defaultness,
207        fn_parse_mode: FnParseMode,
208        case: Case,
209    ) -> PResult<'a, Option<ItemKind>> {
210        let check_pub = def == &Defaultness::Final;
211        let mut def_ = || mem::replace(def, Defaultness::Final);
212
213        let info = if !self.is_use_closure() && self.eat_keyword_case(exp!(Use), case) {
214            self.parse_use_item()?
215        } else if self.check_fn_front_matter(check_pub, case) {
216            // FUNCTION ITEM
217            let (ident, sig, generics, contract, body) =
218                self.parse_fn(attrs, fn_parse_mode, lo, vis, case)?;
219            ItemKind::Fn(Box::new(Fn {
220                defaultness: def_(),
221                ident,
222                sig,
223                generics,
224                contract,
225                body,
226                define_opaque: None,
227            }))
228        } else if self.eat_keyword(exp!(Extern)) {
229            if self.eat_keyword(exp!(Crate)) {
230                // EXTERN CRATE
231                self.parse_item_extern_crate()?
232            } else {
233                // EXTERN BLOCK
234                self.parse_item_foreign_mod(attrs, Safety::Default)?
235            }
236        } else if self.is_unsafe_foreign_mod() {
237            // EXTERN BLOCK
238            let safety = self.parse_safety(Case::Sensitive);
239            self.expect_keyword(exp!(Extern))?;
240            self.parse_item_foreign_mod(attrs, safety)?
241        } else if self.is_static_global() {
242            let safety = self.parse_safety(Case::Sensitive);
243            // STATIC ITEM
244            self.bump(); // `static`
245            let mutability = self.parse_mutability();
246            self.parse_static_item(safety, mutability)?
247        } else if let Const::Yes(const_span) = self.parse_constness(Case::Sensitive) {
248            // CONST ITEM
249            if self.token.is_keyword(kw::Impl) {
250                // recover from `const impl`, suggest `impl const`
251                self.recover_const_impl(const_span, attrs, def_())?
252            } else {
253                self.recover_const_mut(const_span);
254                self.recover_missing_kw_before_item()?;
255                let (ident, generics, ty, expr) = self.parse_const_item()?;
256                ItemKind::Const(Box::new(ConstItem {
257                    defaultness: def_(),
258                    ident,
259                    generics,
260                    ty,
261                    expr,
262                    define_opaque: None,
263                }))
264            }
265        } else if self.check_keyword(exp!(Trait)) || self.check_auto_or_unsafe_trait_item() {
266            // TRAIT ITEM
267            self.parse_item_trait(attrs, lo)?
268        } else if self.check_keyword(exp!(Impl))
269            || self.check_keyword(exp!(Unsafe)) && self.is_keyword_ahead(1, &[kw::Impl])
270        {
271            // IMPL ITEM
272            self.parse_item_impl(attrs, def_())?
273        } else if self.is_reuse_path_item() {
274            self.parse_item_delegation()?
275        } else if self.check_keyword(exp!(Mod))
276            || self.check_keyword(exp!(Unsafe)) && self.is_keyword_ahead(1, &[kw::Mod])
277        {
278            // MODULE ITEM
279            self.parse_item_mod(attrs)?
280        } else if self.eat_keyword(exp!(Type)) {
281            // TYPE ITEM
282            self.parse_type_alias(def_())?
283        } else if self.eat_keyword(exp!(Enum)) {
284            // ENUM ITEM
285            self.parse_item_enum()?
286        } else if self.eat_keyword(exp!(Struct)) {
287            // STRUCT ITEM
288            self.parse_item_struct()?
289        } else if self.is_kw_followed_by_ident(kw::Union) {
290            // UNION ITEM
291            self.bump(); // `union`
292            self.parse_item_union()?
293        } else if self.is_builtin() {
294            // BUILTIN# ITEM
295            return self.parse_item_builtin();
296        } else if self.eat_keyword(exp!(Macro)) {
297            // MACROS 2.0 ITEM
298            self.parse_item_decl_macro(lo)?
299        } else if let IsMacroRulesItem::Yes { has_bang } = self.is_macro_rules_item() {
300            // MACRO_RULES ITEM
301            self.parse_item_macro_rules(vis, has_bang)?
302        } else if self.isnt_macro_invocation()
303            && (self.token.is_ident_named(sym::import)
304                || self.token.is_ident_named(sym::using)
305                || self.token.is_ident_named(sym::include)
306                || self.token.is_ident_named(sym::require))
307        {
308            return self.recover_import_as_use();
309        } else if self.isnt_macro_invocation() && vis.kind.is_pub() {
310            self.recover_missing_kw_before_item()?;
311            return Ok(None);
312        } else if self.isnt_macro_invocation() && case == Case::Sensitive {
313            _ = def_;
314
315            // Recover wrong cased keywords
316            return self.parse_item_kind(
317                attrs,
318                macros_allowed,
319                lo,
320                vis,
321                def,
322                fn_parse_mode,
323                Case::Insensitive,
324            );
325        } else if macros_allowed && self.check_path() {
326            if self.isnt_macro_invocation() {
327                self.recover_missing_kw_before_item()?;
328            }
329            // MACRO INVOCATION ITEM
330            ItemKind::MacCall(P(self.parse_item_macro(vis)?))
331        } else {
332            return Ok(None);
333        };
334        Ok(Some(info))
335    }
336
337    fn recover_import_as_use(&mut self) -> PResult<'a, Option<ItemKind>> {
338        let span = self.token.span;
339        let token_name = super::token_descr(&self.token);
340        let snapshot = self.create_snapshot_for_diagnostic();
341        self.bump();
342        match self.parse_use_item() {
343            Ok(u) => {
344                self.dcx().emit_err(errors::RecoverImportAsUse { span, token_name });
345                Ok(Some(u))
346            }
347            Err(e) => {
348                e.cancel();
349                self.restore_snapshot(snapshot);
350                Ok(None)
351            }
352        }
353    }
354
355    fn parse_use_item(&mut self) -> PResult<'a, ItemKind> {
356        let tree = self.parse_use_tree()?;
357        if let Err(mut e) = self.expect_semi() {
358            match tree.kind {
359                UseTreeKind::Glob => {
360                    e.note("the wildcard token must be last on the path");
361                }
362                UseTreeKind::Nested { .. } => {
363                    e.note("glob-like brace syntax must be last on the path");
364                }
365                _ => (),
366            }
367            return Err(e);
368        }
369        Ok(ItemKind::Use(tree))
370    }
371
372    /// When parsing a statement, would the start of a path be an item?
373    pub(super) fn is_path_start_item(&mut self) -> bool {
374        self.is_kw_followed_by_ident(kw::Union) // no: `union::b`, yes: `union U { .. }`
375        || self.is_reuse_path_item()
376        || self.check_auto_or_unsafe_trait_item() // no: `auto::b`, yes: `auto trait X { .. }`
377        || self.is_async_fn() // no(2015): `async::b`, yes: `async fn`
378        || matches!(self.is_macro_rules_item(), IsMacroRulesItem::Yes{..}) // no: `macro_rules::b`, yes: `macro_rules! mac`
379    }
380
381    fn is_reuse_path_item(&mut self) -> bool {
382        // no: `reuse ::path` for compatibility reasons with macro invocations
383        self.token.is_keyword(kw::Reuse)
384            && self.look_ahead(1, |t| t.is_path_start() && *t != token::PathSep)
385    }
386
387    /// Are we sure this could not possibly be a macro invocation?
388    fn isnt_macro_invocation(&mut self) -> bool {
389        self.check_ident() && self.look_ahead(1, |t| *t != token::Bang && *t != token::PathSep)
390    }
391
392    /// Recover on encountering a struct, enum, or method definition where the user
393    /// forgot to add the `struct`, `enum`, or `fn` keyword
394    fn recover_missing_kw_before_item(&mut self) -> PResult<'a, ()> {
395        let is_pub = self.prev_token.is_keyword(kw::Pub);
396        let is_const = self.prev_token.is_keyword(kw::Const);
397        let ident_span = self.token.span;
398        let span = if is_pub { self.prev_token.span.to(ident_span) } else { ident_span };
399        let insert_span = ident_span.shrink_to_lo();
400
401        let ident = if self.token.is_ident()
402            && (!is_const || self.look_ahead(1, |t| *t == token::OpenParen))
403            && self.look_ahead(1, |t| {
404                matches!(t.kind, token::Lt | token::OpenBrace | token::OpenParen)
405            }) {
406            self.parse_ident().unwrap()
407        } else {
408            return Ok(());
409        };
410
411        let mut found_generics = false;
412        if self.check(exp!(Lt)) {
413            found_generics = true;
414            self.eat_to_tokens(&[exp!(Gt)]);
415            self.bump(); // `>`
416        }
417
418        let err = if self.check(exp!(OpenBrace)) {
419            // possible struct or enum definition where `struct` or `enum` was forgotten
420            if self.look_ahead(1, |t| *t == token::CloseBrace) {
421                // `S {}` could be unit enum or struct
422                Some(errors::MissingKeywordForItemDefinition::EnumOrStruct { span })
423            } else if self.look_ahead(2, |t| *t == token::Colon)
424                || self.look_ahead(3, |t| *t == token::Colon)
425            {
426                // `S { f:` or `S { pub f:`
427                Some(errors::MissingKeywordForItemDefinition::Struct { span, insert_span, ident })
428            } else {
429                Some(errors::MissingKeywordForItemDefinition::Enum { span, insert_span, ident })
430            }
431        } else if self.check(exp!(OpenParen)) {
432            // possible function or tuple struct definition where `fn` or `struct` was forgotten
433            self.bump(); // `(`
434            let is_method = self.recover_self_param();
435
436            self.consume_block(exp!(OpenParen), exp!(CloseParen), ConsumeClosingDelim::Yes);
437
438            let err = if self.check(exp!(RArrow)) || self.check(exp!(OpenBrace)) {
439                self.eat_to_tokens(&[exp!(OpenBrace)]);
440                self.bump(); // `{`
441                self.consume_block(exp!(OpenBrace), exp!(CloseBrace), ConsumeClosingDelim::Yes);
442                if is_method {
443                    errors::MissingKeywordForItemDefinition::Method { span, insert_span, ident }
444                } else {
445                    errors::MissingKeywordForItemDefinition::Function { span, insert_span, ident }
446                }
447            } else if is_pub && self.check(exp!(Semi)) {
448                errors::MissingKeywordForItemDefinition::Struct { span, insert_span, ident }
449            } else {
450                errors::MissingKeywordForItemDefinition::Ambiguous {
451                    span,
452                    subdiag: if found_generics {
453                        None
454                    } else if let Ok(snippet) = self.span_to_snippet(ident_span) {
455                        Some(errors::AmbiguousMissingKwForItemSub::SuggestMacro {
456                            span: ident_span,
457                            snippet,
458                        })
459                    } else {
460                        Some(errors::AmbiguousMissingKwForItemSub::HelpMacro)
461                    },
462                }
463            };
464            Some(err)
465        } else if found_generics {
466            Some(errors::MissingKeywordForItemDefinition::Ambiguous { span, subdiag: None })
467        } else {
468            None
469        };
470
471        if let Some(err) = err { Err(self.dcx().create_err(err)) } else { Ok(()) }
472    }
473
474    fn parse_item_builtin(&mut self) -> PResult<'a, Option<ItemKind>> {
475        // To be expanded
476        Ok(None)
477    }
478
479    /// Parses an item macro, e.g., `item!();`.
480    fn parse_item_macro(&mut self, vis: &Visibility) -> PResult<'a, MacCall> {
481        let path = self.parse_path(PathStyle::Mod)?; // `foo::bar`
482        self.expect(exp!(Bang))?; // `!`
483        match self.parse_delim_args() {
484            // `( .. )` or `[ .. ]` (followed by `;`), or `{ .. }`.
485            Ok(args) => {
486                self.eat_semi_for_macro_if_needed(&args);
487                self.complain_if_pub_macro(vis, false);
488                Ok(MacCall { path, args })
489            }
490
491            Err(mut err) => {
492                // Maybe the user misspelled `macro_rules` (issue #91227)
493                if self.token.is_ident()
494                    && let [segment] = path.segments.as_slice()
495                    && edit_distance("macro_rules", &segment.ident.to_string(), 2).is_some()
496                {
497                    err.span_suggestion(
498                        path.span,
499                        "perhaps you meant to define a macro",
500                        "macro_rules",
501                        Applicability::MachineApplicable,
502                    );
503                }
504                Err(err)
505            }
506        }
507    }
508
509    /// Recover if we parsed attributes and expected an item but there was none.
510    fn recover_attrs_no_item(&mut self, attrs: &[Attribute]) -> PResult<'a, ()> {
511        let ([start @ end] | [start, .., end]) = attrs else {
512            return Ok(());
513        };
514        let msg = if end.is_doc_comment() {
515            "expected item after doc comment"
516        } else {
517            "expected item after attributes"
518        };
519        let mut err = self.dcx().struct_span_err(end.span, msg);
520        if end.is_doc_comment() {
521            err.span_label(end.span, "this doc comment doesn't document anything");
522        } else if self.token == TokenKind::Semi {
523            err.span_suggestion_verbose(
524                self.token.span,
525                "consider removing this semicolon",
526                "",
527                Applicability::MaybeIncorrect,
528            );
529        }
530        if let [.., penultimate, _] = attrs {
531            err.span_label(start.span.to(penultimate.span), "other attributes here");
532        }
533        Err(err)
534    }
535
536    fn is_async_fn(&self) -> bool {
537        self.token.is_keyword(kw::Async) && self.is_keyword_ahead(1, &[kw::Fn])
538    }
539
540    fn parse_polarity(&mut self) -> ast::ImplPolarity {
541        // Disambiguate `impl !Trait for Type { ... }` and `impl ! { ... }` for the never type.
542        if self.check(exp!(Bang)) && self.look_ahead(1, |t| t.can_begin_type()) {
543            self.bump(); // `!`
544            ast::ImplPolarity::Negative(self.prev_token.span)
545        } else {
546            ast::ImplPolarity::Positive
547        }
548    }
549
550    /// Parses an implementation item.
551    ///
552    /// ```ignore (illustrative)
553    /// impl<'a, T> TYPE { /* impl items */ }
554    /// impl<'a, T> TRAIT for TYPE { /* impl items */ }
555    /// impl<'a, T> !TRAIT for TYPE { /* impl items */ }
556    /// impl<'a, T> const TRAIT for TYPE { /* impl items */ }
557    /// ```
558    ///
559    /// We actually parse slightly more relaxed grammar for better error reporting and recovery.
560    /// ```ebnf
561    /// "impl" GENERICS "const"? "!"? TYPE "for"? (TYPE | "..") ("where" PREDICATES)? "{" BODY "}"
562    /// "impl" GENERICS "const"? "!"? TYPE ("where" PREDICATES)? "{" BODY "}"
563    /// ```
564    fn parse_item_impl(
565        &mut self,
566        attrs: &mut AttrVec,
567        defaultness: Defaultness,
568    ) -> PResult<'a, ItemKind> {
569        let safety = self.parse_safety(Case::Sensitive);
570        self.expect_keyword(exp!(Impl))?;
571
572        // First, parse generic parameters if necessary.
573        let mut generics = if self.choose_generics_over_qpath(0) {
574            self.parse_generics()?
575        } else {
576            let mut generics = Generics::default();
577            // impl A for B {}
578            //    /\ this is where `generics.span` should point when there are no type params.
579            generics.span = self.prev_token.span.shrink_to_hi();
580            generics
581        };
582
583        let constness = self.parse_constness(Case::Sensitive);
584        if let Const::Yes(span) = constness {
585            self.psess.gated_spans.gate(sym::const_trait_impl, span);
586        }
587
588        // Parse stray `impl async Trait`
589        if (self.token_uninterpolated_span().at_least_rust_2018()
590            && self.token.is_keyword(kw::Async))
591            || self.is_kw_followed_by_ident(kw::Async)
592        {
593            self.bump();
594            self.dcx().emit_err(errors::AsyncImpl { span: self.prev_token.span });
595        }
596
597        let polarity = self.parse_polarity();
598
599        // Parse both types and traits as a type, then reinterpret if necessary.
600        let ty_first = if self.token.is_keyword(kw::For) && self.look_ahead(1, |t| t != &token::Lt)
601        {
602            let span = self.prev_token.span.between(self.token.span);
603            return Err(self.dcx().create_err(errors::MissingTraitInTraitImpl {
604                span,
605                for_span: span.to(self.token.span),
606            }));
607        } else {
608            self.parse_ty_with_generics_recovery(&generics)?
609        };
610
611        // If `for` is missing we try to recover.
612        let has_for = self.eat_keyword(exp!(For));
613        let missing_for_span = self.prev_token.span.between(self.token.span);
614
615        let ty_second = if self.token == token::DotDot {
616            // We need to report this error after `cfg` expansion for compatibility reasons
617            self.bump(); // `..`, do not add it to expected tokens
618
619            // AST validation later detects this `TyKind::Dummy` and emits an
620            // error. (#121072 will hopefully remove all this special handling
621            // of the obsolete `impl Trait for ..` and then this can go away.)
622            Some(self.mk_ty(self.prev_token.span, TyKind::Dummy))
623        } else if has_for || self.token.can_begin_type() {
624            Some(self.parse_ty()?)
625        } else {
626            None
627        };
628
629        generics.where_clause = self.parse_where_clause()?;
630
631        let impl_items = self.parse_item_list(attrs, |p| p.parse_impl_item(ForceCollect::No))?;
632
633        let (of_trait, self_ty) = match ty_second {
634            Some(ty_second) => {
635                // impl Trait for Type
636                if !has_for {
637                    self.dcx().emit_err(errors::MissingForInTraitImpl { span: missing_for_span });
638                }
639
640                let ty_first = ty_first.into_inner();
641                let path = match ty_first.kind {
642                    // This notably includes paths passed through `ty` macro fragments (#46438).
643                    TyKind::Path(None, path) => path,
644                    other => {
645                        if let TyKind::ImplTrait(_, bounds) = other
646                            && let [bound] = bounds.as_slice()
647                            && let GenericBound::Trait(poly_trait_ref) = bound
648                        {
649                            // Suggest removing extra `impl` keyword:
650                            // `impl<T: Default> impl Default for Wrapper<T>`
651                            //                   ^^^^^
652                            let extra_impl_kw = ty_first.span.until(bound.span());
653                            self.dcx().emit_err(errors::ExtraImplKeywordInTraitImpl {
654                                extra_impl_kw,
655                                impl_trait_span: ty_first.span,
656                            });
657                            poly_trait_ref.trait_ref.path.clone()
658                        } else {
659                            return Err(self.dcx().create_err(
660                                errors::ExpectedTraitInTraitImplFoundType { span: ty_first.span },
661                            ));
662                        }
663                    }
664                };
665                let trait_ref = TraitRef { path, ref_id: ty_first.id };
666
667                (Some(trait_ref), ty_second)
668            }
669            None => (None, ty_first), // impl Type
670        };
671        Ok(ItemKind::Impl(Box::new(Impl {
672            safety,
673            polarity,
674            defaultness,
675            constness,
676            generics,
677            of_trait,
678            self_ty,
679            items: impl_items,
680        })))
681    }
682
683    fn parse_item_delegation(&mut self) -> PResult<'a, ItemKind> {
684        let span = self.token.span;
685        self.expect_keyword(exp!(Reuse))?;
686
687        let (qself, path) = if self.eat_lt() {
688            let (qself, path) = self.parse_qpath(PathStyle::Expr)?;
689            (Some(qself), path)
690        } else {
691            (None, self.parse_path(PathStyle::Expr)?)
692        };
693
694        let rename = |this: &mut Self| {
695            Ok(if this.eat_keyword(exp!(As)) { Some(this.parse_ident()?) } else { None })
696        };
697        let body = |this: &mut Self| {
698            Ok(if this.check(exp!(OpenBrace)) {
699                Some(this.parse_block()?)
700            } else {
701                this.expect(exp!(Semi))?;
702                None
703            })
704        };
705
706        let item_kind = if self.eat_path_sep() {
707            let suffixes = if self.eat(exp!(Star)) {
708                None
709            } else {
710                let parse_suffix = |p: &mut Self| Ok((p.parse_path_segment_ident()?, rename(p)?));
711                Some(self.parse_delim_comma_seq(exp!(OpenBrace), exp!(CloseBrace), parse_suffix)?.0)
712            };
713            let deleg = DelegationMac { qself, prefix: path, suffixes, body: body(self)? };
714            ItemKind::DelegationMac(Box::new(deleg))
715        } else {
716            let rename = rename(self)?;
717            let ident = rename.unwrap_or_else(|| path.segments.last().unwrap().ident);
718            let deleg = Delegation {
719                id: DUMMY_NODE_ID,
720                qself,
721                path,
722                ident,
723                rename,
724                body: body(self)?,
725                from_glob: false,
726            };
727            ItemKind::Delegation(Box::new(deleg))
728        };
729
730        let span = span.to(self.prev_token.span);
731        self.psess.gated_spans.gate(sym::fn_delegation, span);
732
733        Ok(item_kind)
734    }
735
736    fn parse_item_list<T>(
737        &mut self,
738        attrs: &mut AttrVec,
739        mut parse_item: impl FnMut(&mut Parser<'a>) -> PResult<'a, Option<Option<T>>>,
740    ) -> PResult<'a, ThinVec<T>> {
741        let open_brace_span = self.token.span;
742
743        // Recover `impl Ty;` instead of `impl Ty {}`
744        if self.token == TokenKind::Semi {
745            self.dcx().emit_err(errors::UseEmptyBlockNotSemi { span: self.token.span });
746            self.bump();
747            return Ok(ThinVec::new());
748        }
749
750        self.expect(exp!(OpenBrace))?;
751        attrs.extend(self.parse_inner_attributes()?);
752
753        let mut items = ThinVec::new();
754        while !self.eat(exp!(CloseBrace)) {
755            if self.recover_doc_comment_before_brace() {
756                continue;
757            }
758            self.recover_vcs_conflict_marker();
759            match parse_item(self) {
760                Ok(None) => {
761                    let mut is_unnecessary_semicolon = !items.is_empty()
762                        // When the close delim is `)` in a case like the following, `token.kind`
763                        // is expected to be `token::CloseParen`, but the actual `token.kind` is
764                        // `token::CloseBrace`. This is because the `token.kind` of the close delim
765                        // is treated as the same as that of the open delim in
766                        // `TokenTreesReader::parse_token_tree`, even if the delimiters of them are
767                        // different. Therefore, `token.kind` should not be compared here.
768                        //
769                        // issue-60075.rs
770                        // ```
771                        // trait T {
772                        //     fn qux() -> Option<usize> {
773                        //         let _ = if true {
774                        //         });
775                        //          ^ this close delim
776                        //         Some(4)
777                        //     }
778                        // ```
779                        && self
780                            .span_to_snippet(self.prev_token.span)
781                            .is_ok_and(|snippet| snippet == "}")
782                        && self.token == token::Semi;
783                    let mut semicolon_span = self.token.span;
784                    if !is_unnecessary_semicolon {
785                        // #105369, Detect spurious `;` before assoc fn body
786                        is_unnecessary_semicolon =
787                            self.token == token::OpenBrace && self.prev_token == token::Semi;
788                        semicolon_span = self.prev_token.span;
789                    }
790                    // We have to bail or we'll potentially never make progress.
791                    let non_item_span = self.token.span;
792                    let is_let = self.token.is_keyword(kw::Let);
793
794                    let mut err =
795                        self.dcx().struct_span_err(non_item_span, "non-item in item list");
796                    self.consume_block(exp!(OpenBrace), exp!(CloseBrace), ConsumeClosingDelim::Yes);
797                    if is_let {
798                        err.span_suggestion_verbose(
799                            non_item_span,
800                            "consider using `const` instead of `let` for associated const",
801                            "const",
802                            Applicability::MachineApplicable,
803                        );
804                    } else {
805                        err.span_label(open_brace_span, "item list starts here")
806                            .span_label(non_item_span, "non-item starts here")
807                            .span_label(self.prev_token.span, "item list ends here");
808                    }
809                    if is_unnecessary_semicolon {
810                        err.span_suggestion(
811                            semicolon_span,
812                            "consider removing this semicolon",
813                            "",
814                            Applicability::MaybeIncorrect,
815                        );
816                    }
817                    err.emit();
818                    break;
819                }
820                Ok(Some(item)) => items.extend(item),
821                Err(err) => {
822                    self.consume_block(exp!(OpenBrace), exp!(CloseBrace), ConsumeClosingDelim::Yes);
823                    err.with_span_label(
824                        open_brace_span,
825                        "while parsing this item list starting here",
826                    )
827                    .with_span_label(self.prev_token.span, "the item list ends here")
828                    .emit();
829                    break;
830                }
831            }
832        }
833        Ok(items)
834    }
835
836    /// Recover on a doc comment before `}`.
837    fn recover_doc_comment_before_brace(&mut self) -> bool {
838        if let token::DocComment(..) = self.token.kind {
839            if self.look_ahead(1, |tok| tok == &token::CloseBrace) {
840                // FIXME: merge with `DocCommentDoesNotDocumentAnything` (E0585)
841                struct_span_code_err!(
842                    self.dcx(),
843                    self.token.span,
844                    E0584,
845                    "found a documentation comment that doesn't document anything",
846                )
847                .with_span_label(self.token.span, "this doc comment doesn't document anything")
848                .with_help(
849                    "doc comments must come before what they document, if a comment was \
850                    intended use `//`",
851                )
852                .emit();
853                self.bump();
854                return true;
855            }
856        }
857        false
858    }
859
860    /// Parses defaultness (i.e., `default` or nothing).
861    fn parse_defaultness(&mut self) -> Defaultness {
862        // We are interested in `default` followed by another identifier.
863        // However, we must avoid keywords that occur as binary operators.
864        // Currently, the only applicable keyword is `as` (`default as Ty`).
865        if self.check_keyword(exp!(Default))
866            && self.look_ahead(1, |t| t.is_non_raw_ident_where(|i| i.name != kw::As))
867        {
868            self.bump(); // `default`
869            Defaultness::Default(self.prev_token_uninterpolated_span())
870        } else {
871            Defaultness::Final
872        }
873    }
874
875    /// Is this an `(unsafe auto? | auto) trait` item?
876    fn check_auto_or_unsafe_trait_item(&mut self) -> bool {
877        // auto trait
878        self.check_keyword(exp!(Auto)) && self.is_keyword_ahead(1, &[kw::Trait])
879            // unsafe auto trait
880            || self.check_keyword(exp!(Unsafe)) && self.is_keyword_ahead(1, &[kw::Trait, kw::Auto])
881    }
882
883    /// Parses `unsafe? auto? trait Foo { ... }` or `trait Foo = Bar;`.
884    fn parse_item_trait(&mut self, attrs: &mut AttrVec, lo: Span) -> PResult<'a, ItemKind> {
885        let safety = self.parse_safety(Case::Sensitive);
886        // Parse optional `auto` prefix.
887        let is_auto = if self.eat_keyword(exp!(Auto)) {
888            self.psess.gated_spans.gate(sym::auto_traits, self.prev_token.span);
889            IsAuto::Yes
890        } else {
891            IsAuto::No
892        };
893
894        self.expect_keyword(exp!(Trait))?;
895        let ident = self.parse_ident()?;
896        let mut generics = self.parse_generics()?;
897
898        // Parse optional colon and supertrait bounds.
899        let had_colon = self.eat(exp!(Colon));
900        let span_at_colon = self.prev_token.span;
901        let bounds = if had_colon { self.parse_generic_bounds()? } else { Vec::new() };
902
903        let span_before_eq = self.prev_token.span;
904        if self.eat(exp!(Eq)) {
905            // It's a trait alias.
906            if had_colon {
907                let span = span_at_colon.to(span_before_eq);
908                self.dcx().emit_err(errors::BoundsNotAllowedOnTraitAliases { span });
909            }
910
911            let bounds = self.parse_generic_bounds()?;
912            generics.where_clause = self.parse_where_clause()?;
913            self.expect_semi()?;
914
915            let whole_span = lo.to(self.prev_token.span);
916            if is_auto == IsAuto::Yes {
917                self.dcx().emit_err(errors::TraitAliasCannotBeAuto { span: whole_span });
918            }
919            if let Safety::Unsafe(_) = safety {
920                self.dcx().emit_err(errors::TraitAliasCannotBeUnsafe { span: whole_span });
921            }
922
923            self.psess.gated_spans.gate(sym::trait_alias, whole_span);
924
925            Ok(ItemKind::TraitAlias(ident, generics, bounds))
926        } else {
927            // It's a normal trait.
928            generics.where_clause = self.parse_where_clause()?;
929            let items = self.parse_item_list(attrs, |p| p.parse_trait_item(ForceCollect::No))?;
930            Ok(ItemKind::Trait(Box::new(Trait { is_auto, safety, ident, generics, bounds, items })))
931        }
932    }
933
934    pub fn parse_impl_item(
935        &mut self,
936        force_collect: ForceCollect,
937    ) -> PResult<'a, Option<Option<P<AssocItem>>>> {
938        let fn_parse_mode = FnParseMode { req_name: |_| true, req_body: true };
939        self.parse_assoc_item(fn_parse_mode, force_collect)
940    }
941
942    pub fn parse_trait_item(
943        &mut self,
944        force_collect: ForceCollect,
945    ) -> PResult<'a, Option<Option<P<AssocItem>>>> {
946        let fn_parse_mode =
947            FnParseMode { req_name: |edition| edition >= Edition::Edition2018, req_body: false };
948        self.parse_assoc_item(fn_parse_mode, force_collect)
949    }
950
951    /// Parses associated items.
952    fn parse_assoc_item(
953        &mut self,
954        fn_parse_mode: FnParseMode,
955        force_collect: ForceCollect,
956    ) -> PResult<'a, Option<Option<P<AssocItem>>>> {
957        Ok(self.parse_item_(fn_parse_mode, force_collect)?.map(
958            |Item { attrs, id, span, vis, kind, tokens }| {
959                let kind = match AssocItemKind::try_from(kind) {
960                    Ok(kind) => kind,
961                    Err(kind) => match kind {
962                        ItemKind::Static(box StaticItem {
963                            ident,
964                            ty,
965                            safety: _,
966                            mutability: _,
967                            expr,
968                            define_opaque,
969                        }) => {
970                            self.dcx().emit_err(errors::AssociatedStaticItemNotAllowed { span });
971                            AssocItemKind::Const(Box::new(ConstItem {
972                                defaultness: Defaultness::Final,
973                                ident,
974                                generics: Generics::default(),
975                                ty,
976                                expr,
977                                define_opaque,
978                            }))
979                        }
980                        _ => return self.error_bad_item_kind(span, &kind, "`trait`s or `impl`s"),
981                    },
982                };
983                Some(P(Item { attrs, id, span, vis, kind, tokens }))
984            },
985        ))
986    }
987
988    /// Parses a `type` alias with the following grammar:
989    /// ```ebnf
990    /// TypeAlias = "type" Ident Generics (":" GenericBounds)? WhereClause ("=" Ty)? WhereClause ";" ;
991    /// ```
992    /// The `"type"` has already been eaten.
993    fn parse_type_alias(&mut self, defaultness: Defaultness) -> PResult<'a, ItemKind> {
994        let ident = self.parse_ident()?;
995        let mut generics = self.parse_generics()?;
996
997        // Parse optional colon and param bounds.
998        let bounds = if self.eat(exp!(Colon)) { self.parse_generic_bounds()? } else { Vec::new() };
999        let before_where_clause = self.parse_where_clause()?;
1000
1001        let ty = if self.eat(exp!(Eq)) { Some(self.parse_ty()?) } else { None };
1002
1003        let after_where_clause = self.parse_where_clause()?;
1004
1005        let where_clauses = TyAliasWhereClauses {
1006            before: TyAliasWhereClause {
1007                has_where_token: before_where_clause.has_where_token,
1008                span: before_where_clause.span,
1009            },
1010            after: TyAliasWhereClause {
1011                has_where_token: after_where_clause.has_where_token,
1012                span: after_where_clause.span,
1013            },
1014            split: before_where_clause.predicates.len(),
1015        };
1016        let mut predicates = before_where_clause.predicates;
1017        predicates.extend(after_where_clause.predicates);
1018        let where_clause = WhereClause {
1019            has_where_token: before_where_clause.has_where_token
1020                || after_where_clause.has_where_token,
1021            predicates,
1022            span: DUMMY_SP,
1023        };
1024        generics.where_clause = where_clause;
1025
1026        self.expect_semi()?;
1027
1028        Ok(ItemKind::TyAlias(Box::new(TyAlias {
1029            defaultness,
1030            ident,
1031            generics,
1032            where_clauses,
1033            bounds,
1034            ty,
1035        })))
1036    }
1037
1038    /// Parses a `UseTree`.
1039    ///
1040    /// ```text
1041    /// USE_TREE = [`::`] `*` |
1042    ///            [`::`] `{` USE_TREE_LIST `}` |
1043    ///            PATH `::` `*` |
1044    ///            PATH `::` `{` USE_TREE_LIST `}` |
1045    ///            PATH [`as` IDENT]
1046    /// ```
1047    fn parse_use_tree(&mut self) -> PResult<'a, UseTree> {
1048        let lo = self.token.span;
1049
1050        let mut prefix =
1051            ast::Path { segments: ThinVec::new(), span: lo.shrink_to_lo(), tokens: None };
1052        let kind =
1053            if self.check(exp!(OpenBrace)) || self.check(exp!(Star)) || self.is_import_coupler() {
1054                // `use *;` or `use ::*;` or `use {...};` or `use ::{...};`
1055                let mod_sep_ctxt = self.token.span.ctxt();
1056                if self.eat_path_sep() {
1057                    prefix
1058                        .segments
1059                        .push(PathSegment::path_root(lo.shrink_to_lo().with_ctxt(mod_sep_ctxt)));
1060                }
1061
1062                self.parse_use_tree_glob_or_nested()?
1063            } else {
1064                // `use path::*;` or `use path::{...};` or `use path;` or `use path as bar;`
1065                prefix = self.parse_path(PathStyle::Mod)?;
1066
1067                if self.eat_path_sep() {
1068                    self.parse_use_tree_glob_or_nested()?
1069                } else {
1070                    // Recover from using a colon as path separator.
1071                    while self.eat_noexpect(&token::Colon) {
1072                        self.dcx()
1073                            .emit_err(errors::SingleColonImportPath { span: self.prev_token.span });
1074
1075                        // We parse the rest of the path and append it to the original prefix.
1076                        self.parse_path_segments(&mut prefix.segments, PathStyle::Mod, None)?;
1077                        prefix.span = lo.to(self.prev_token.span);
1078                    }
1079
1080                    UseTreeKind::Simple(self.parse_rename()?)
1081                }
1082            };
1083
1084        Ok(UseTree { prefix, kind, span: lo.to(self.prev_token.span) })
1085    }
1086
1087    /// Parses `*` or `{...}`.
1088    fn parse_use_tree_glob_or_nested(&mut self) -> PResult<'a, UseTreeKind> {
1089        Ok(if self.eat(exp!(Star)) {
1090            UseTreeKind::Glob
1091        } else {
1092            let lo = self.token.span;
1093            UseTreeKind::Nested {
1094                items: self.parse_use_tree_list()?,
1095                span: lo.to(self.prev_token.span),
1096            }
1097        })
1098    }
1099
1100    /// Parses a `UseTreeKind::Nested(list)`.
1101    ///
1102    /// ```text
1103    /// USE_TREE_LIST = ∅ | (USE_TREE `,`)* USE_TREE [`,`]
1104    /// ```
1105    fn parse_use_tree_list(&mut self) -> PResult<'a, ThinVec<(UseTree, ast::NodeId)>> {
1106        self.parse_delim_comma_seq(exp!(OpenBrace), exp!(CloseBrace), |p| {
1107            p.recover_vcs_conflict_marker();
1108            Ok((p.parse_use_tree()?, DUMMY_NODE_ID))
1109        })
1110        .map(|(r, _)| r)
1111    }
1112
1113    fn parse_rename(&mut self) -> PResult<'a, Option<Ident>> {
1114        if self.eat_keyword(exp!(As)) {
1115            self.parse_ident_or_underscore().map(Some)
1116        } else {
1117            Ok(None)
1118        }
1119    }
1120
1121    fn parse_ident_or_underscore(&mut self) -> PResult<'a, Ident> {
1122        match self.token.ident() {
1123            Some((ident @ Ident { name: kw::Underscore, .. }, IdentIsRaw::No)) => {
1124                self.bump();
1125                Ok(ident)
1126            }
1127            _ => self.parse_ident(),
1128        }
1129    }
1130
1131    /// Parses `extern crate` links.
1132    ///
1133    /// # Examples
1134    ///
1135    /// ```ignore (illustrative)
1136    /// extern crate foo;
1137    /// extern crate bar as foo;
1138    /// ```
1139    fn parse_item_extern_crate(&mut self) -> PResult<'a, ItemKind> {
1140        // Accept `extern crate name-like-this` for better diagnostics
1141        let orig_ident = self.parse_crate_name_with_dashes()?;
1142        let (orig_name, item_ident) = if let Some(rename) = self.parse_rename()? {
1143            (Some(orig_ident.name), rename)
1144        } else {
1145            (None, orig_ident)
1146        };
1147        self.expect_semi()?;
1148        Ok(ItemKind::ExternCrate(orig_name, item_ident))
1149    }
1150
1151    fn parse_crate_name_with_dashes(&mut self) -> PResult<'a, Ident> {
1152        let ident = if self.token.is_keyword(kw::SelfLower) {
1153            self.parse_path_segment_ident()
1154        } else {
1155            self.parse_ident()
1156        }?;
1157
1158        let dash = exp!(Minus);
1159        if self.token != *dash.tok {
1160            return Ok(ident);
1161        }
1162
1163        // Accept `extern crate name-like-this` for better diagnostics.
1164        let mut dashes = vec![];
1165        let mut idents = vec![];
1166        while self.eat(dash) {
1167            dashes.push(self.prev_token.span);
1168            idents.push(self.parse_ident()?);
1169        }
1170
1171        let fixed_name_sp = ident.span.to(idents.last().unwrap().span);
1172        let mut fixed_name = ident.name.to_string();
1173        for part in idents {
1174            write!(fixed_name, "_{}", part.name).unwrap();
1175        }
1176
1177        self.dcx().emit_err(errors::ExternCrateNameWithDashes {
1178            span: fixed_name_sp,
1179            sugg: errors::ExternCrateNameWithDashesSugg { dashes },
1180        });
1181
1182        Ok(Ident::from_str_and_span(&fixed_name, fixed_name_sp))
1183    }
1184
1185    /// Parses `extern` for foreign ABIs modules.
1186    ///
1187    /// `extern` is expected to have been consumed before calling this method.
1188    ///
1189    /// # Examples
1190    ///
1191    /// ```ignore (only-for-syntax-highlight)
1192    /// extern "C" {}
1193    /// extern {}
1194    /// ```
1195    fn parse_item_foreign_mod(
1196        &mut self,
1197        attrs: &mut AttrVec,
1198        mut safety: Safety,
1199    ) -> PResult<'a, ItemKind> {
1200        let extern_span = self.prev_token_uninterpolated_span();
1201        let abi = self.parse_abi(); // ABI?
1202        // FIXME: This recovery should be tested better.
1203        if safety == Safety::Default
1204            && self.token.is_keyword(kw::Unsafe)
1205            && self.look_ahead(1, |t| *t == token::OpenBrace)
1206        {
1207            self.expect(exp!(OpenBrace)).unwrap_err().emit();
1208            safety = Safety::Unsafe(self.token.span);
1209            let _ = self.eat_keyword(exp!(Unsafe));
1210        }
1211        Ok(ItemKind::ForeignMod(ast::ForeignMod {
1212            extern_span,
1213            safety,
1214            abi,
1215            items: self.parse_item_list(attrs, |p| p.parse_foreign_item(ForceCollect::No))?,
1216        }))
1217    }
1218
1219    /// Parses a foreign item (one in an `extern { ... }` block).
1220    pub fn parse_foreign_item(
1221        &mut self,
1222        force_collect: ForceCollect,
1223    ) -> PResult<'a, Option<Option<P<ForeignItem>>>> {
1224        let fn_parse_mode = FnParseMode { req_name: |_| true, req_body: false };
1225        Ok(self.parse_item_(fn_parse_mode, force_collect)?.map(
1226            |Item { attrs, id, span, vis, kind, tokens }| {
1227                let kind = match ForeignItemKind::try_from(kind) {
1228                    Ok(kind) => kind,
1229                    Err(kind) => match kind {
1230                        ItemKind::Const(box ConstItem { ident, ty, expr, .. }) => {
1231                            let const_span = Some(span.with_hi(ident.span.lo()))
1232                                .filter(|span| span.can_be_used_for_suggestions());
1233                            self.dcx().emit_err(errors::ExternItemCannotBeConst {
1234                                ident_span: ident.span,
1235                                const_span,
1236                            });
1237                            ForeignItemKind::Static(Box::new(StaticItem {
1238                                ident,
1239                                ty,
1240                                mutability: Mutability::Not,
1241                                expr,
1242                                safety: Safety::Default,
1243                                define_opaque: None,
1244                            }))
1245                        }
1246                        _ => return self.error_bad_item_kind(span, &kind, "`extern` blocks"),
1247                    },
1248                };
1249                Some(P(Item { attrs, id, span, vis, kind, tokens }))
1250            },
1251        ))
1252    }
1253
1254    fn error_bad_item_kind<T>(&self, span: Span, kind: &ItemKind, ctx: &'static str) -> Option<T> {
1255        // FIXME(#100717): needs variant for each `ItemKind` (instead of using `ItemKind::descr()`)
1256        let span = self.psess.source_map().guess_head_span(span);
1257        let descr = kind.descr();
1258        let help = match kind {
1259            ItemKind::DelegationMac(deleg) if deleg.suffixes.is_none() => false,
1260            _ => true,
1261        };
1262        self.dcx().emit_err(errors::BadItemKind { span, descr, ctx, help });
1263        None
1264    }
1265
1266    fn is_use_closure(&self) -> bool {
1267        if self.token.is_keyword(kw::Use) {
1268            // Check if this could be a closure.
1269            self.look_ahead(1, |token| {
1270                // Move or Async here would be an error but still we're parsing a closure
1271                let dist =
1272                    if token.is_keyword(kw::Move) || token.is_keyword(kw::Async) { 2 } else { 1 };
1273
1274                self.look_ahead(dist, |token| matches!(token.kind, token::Or | token::OrOr))
1275            })
1276        } else {
1277            false
1278        }
1279    }
1280
1281    fn is_unsafe_foreign_mod(&self) -> bool {
1282        // Look for `unsafe`.
1283        if !self.token.is_keyword(kw::Unsafe) {
1284            return false;
1285        }
1286        // Look for `extern`.
1287        if !self.is_keyword_ahead(1, &[kw::Extern]) {
1288            return false;
1289        }
1290
1291        // Look for the optional ABI string literal.
1292        let n = if self.look_ahead(2, |t| t.can_begin_string_literal()) { 3 } else { 2 };
1293
1294        // Look for the `{`. Use `tree_look_ahead` because the ABI (if present)
1295        // might be a metavariable i.e. an invisible-delimited sequence, and
1296        // `tree_look_ahead` will consider that a single element when looking
1297        // ahead.
1298        self.tree_look_ahead(n, |t| matches!(t, TokenTree::Delimited(_, _, Delimiter::Brace, _)))
1299            == Some(true)
1300    }
1301
1302    fn is_static_global(&mut self) -> bool {
1303        if self.check_keyword(exp!(Static)) {
1304            // Check if this could be a closure.
1305            !self.look_ahead(1, |token| {
1306                if token.is_keyword(kw::Move) || token.is_keyword(kw::Use) {
1307                    return true;
1308                }
1309                matches!(token.kind, token::Or | token::OrOr)
1310            })
1311        } else {
1312            // `$qual static`
1313            (self.check_keyword(exp!(Unsafe)) || self.check_keyword(exp!(Safe)))
1314                && self.look_ahead(1, |t| t.is_keyword(kw::Static))
1315        }
1316    }
1317
1318    /// Recover on `const mut` with `const` already eaten.
1319    fn recover_const_mut(&mut self, const_span: Span) {
1320        if self.eat_keyword(exp!(Mut)) {
1321            let span = self.prev_token.span;
1322            self.dcx()
1323                .emit_err(errors::ConstGlobalCannotBeMutable { ident_span: span, const_span });
1324        } else if self.eat_keyword(exp!(Let)) {
1325            let span = self.prev_token.span;
1326            self.dcx().emit_err(errors::ConstLetMutuallyExclusive { span: const_span.to(span) });
1327        }
1328    }
1329
1330    /// Recover on `const impl` with `const` already eaten.
1331    fn recover_const_impl(
1332        &mut self,
1333        const_span: Span,
1334        attrs: &mut AttrVec,
1335        defaultness: Defaultness,
1336    ) -> PResult<'a, ItemKind> {
1337        let impl_span = self.token.span;
1338        let err = self.expected_ident_found_err();
1339
1340        // Only try to recover if this is implementing a trait for a type
1341        let mut item_kind = match self.parse_item_impl(attrs, defaultness) {
1342            Ok(item_kind) => item_kind,
1343            Err(recovery_error) => {
1344                // Recovery failed, raise the "expected identifier" error
1345                recovery_error.cancel();
1346                return Err(err);
1347            }
1348        };
1349
1350        match &mut item_kind {
1351            ItemKind::Impl(box Impl { of_trait: Some(trai), constness, .. }) => {
1352                *constness = Const::Yes(const_span);
1353
1354                let before_trait = trai.path.span.shrink_to_lo();
1355                let const_up_to_impl = const_span.with_hi(impl_span.lo());
1356                err.with_multipart_suggestion(
1357                    "you might have meant to write a const trait impl",
1358                    vec![(const_up_to_impl, "".to_owned()), (before_trait, "const ".to_owned())],
1359                    Applicability::MaybeIncorrect,
1360                )
1361                .emit();
1362            }
1363            ItemKind::Impl { .. } => return Err(err),
1364            _ => unreachable!(),
1365        }
1366
1367        Ok(item_kind)
1368    }
1369
1370    /// Parse a static item with the prefix `"static" "mut"?` already parsed and stored in
1371    /// `mutability`.
1372    ///
1373    /// ```ebnf
1374    /// Static = "static" "mut"? $ident ":" $ty (= $expr)? ";" ;
1375    /// ```
1376    fn parse_static_item(
1377        &mut self,
1378        safety: Safety,
1379        mutability: Mutability,
1380    ) -> PResult<'a, ItemKind> {
1381        let ident = self.parse_ident()?;
1382
1383        if self.token == TokenKind::Lt && self.may_recover() {
1384            let generics = self.parse_generics()?;
1385            self.dcx().emit_err(errors::StaticWithGenerics { span: generics.span });
1386        }
1387
1388        // Parse the type of a static item. That is, the `":" $ty` fragment.
1389        // FIXME: This could maybe benefit from `.may_recover()`?
1390        let ty = match (self.eat(exp!(Colon)), self.check(exp!(Eq)) | self.check(exp!(Semi))) {
1391            (true, false) => self.parse_ty()?,
1392            // If there wasn't a `:` or the colon was followed by a `=` or `;`, recover a missing
1393            // type.
1394            (colon, _) => self.recover_missing_global_item_type(colon, Some(mutability)),
1395        };
1396
1397        let expr = if self.eat(exp!(Eq)) { Some(self.parse_expr()?) } else { None };
1398
1399        self.expect_semi()?;
1400
1401        let item = StaticItem { ident, ty, safety, mutability, expr, define_opaque: None };
1402        Ok(ItemKind::Static(Box::new(item)))
1403    }
1404
1405    /// Parse a constant item with the prefix `"const"` already parsed.
1406    ///
1407    /// ```ebnf
1408    /// Const = "const" ($ident | "_") Generics ":" $ty (= $expr)? WhereClause ";" ;
1409    /// ```
1410    fn parse_const_item(&mut self) -> PResult<'a, (Ident, Generics, P<Ty>, Option<P<ast::Expr>>)> {
1411        let ident = self.parse_ident_or_underscore()?;
1412
1413        let mut generics = self.parse_generics()?;
1414
1415        // Check the span for emptiness instead of the list of parameters in order to correctly
1416        // recognize and subsequently flag empty parameter lists (`<>`) as unstable.
1417        if !generics.span.is_empty() {
1418            self.psess.gated_spans.gate(sym::generic_const_items, generics.span);
1419        }
1420
1421        // Parse the type of a constant item. That is, the `":" $ty` fragment.
1422        // FIXME: This could maybe benefit from `.may_recover()`?
1423        let ty = match (
1424            self.eat(exp!(Colon)),
1425            self.check(exp!(Eq)) | self.check(exp!(Semi)) | self.check_keyword(exp!(Where)),
1426        ) {
1427            (true, false) => self.parse_ty()?,
1428            // If there wasn't a `:` or the colon was followed by a `=`, `;` or `where`, recover a missing type.
1429            (colon, _) => self.recover_missing_global_item_type(colon, None),
1430        };
1431
1432        // Proactively parse a where-clause to be able to provide a good error message in case we
1433        // encounter the item body following it.
1434        let before_where_clause =
1435            if self.may_recover() { self.parse_where_clause()? } else { WhereClause::default() };
1436
1437        let expr = if self.eat(exp!(Eq)) { Some(self.parse_expr()?) } else { None };
1438
1439        let after_where_clause = self.parse_where_clause()?;
1440
1441        // Provide a nice error message if the user placed a where-clause before the item body.
1442        // Users may be tempted to write such code if they are still used to the deprecated
1443        // where-clause location on type aliases and associated types. See also #89122.
1444        if before_where_clause.has_where_token
1445            && let Some(expr) = &expr
1446        {
1447            self.dcx().emit_err(errors::WhereClauseBeforeConstBody {
1448                span: before_where_clause.span,
1449                name: ident.span,
1450                body: expr.span,
1451                sugg: if !after_where_clause.has_where_token {
1452                    self.psess.source_map().span_to_snippet(expr.span).ok().map(|body| {
1453                        errors::WhereClauseBeforeConstBodySugg {
1454                            left: before_where_clause.span.shrink_to_lo(),
1455                            snippet: body,
1456                            right: before_where_clause.span.shrink_to_hi().to(expr.span),
1457                        }
1458                    })
1459                } else {
1460                    // FIXME(generic_const_items): Provide a structured suggestion to merge the first
1461                    // where-clause into the second one.
1462                    None
1463                },
1464            });
1465        }
1466
1467        // Merge the predicates of both where-clauses since either one can be relevant.
1468        // If we didn't parse a body (which is valid for associated consts in traits) and we were
1469        // allowed to recover, `before_where_clause` contains the predicates, otherwise they are
1470        // in `after_where_clause`. Further, both of them might contain predicates iff two
1471        // where-clauses were provided which is syntactically ill-formed but we want to recover from
1472        // it and treat them as one large where-clause.
1473        let mut predicates = before_where_clause.predicates;
1474        predicates.extend(after_where_clause.predicates);
1475        let where_clause = WhereClause {
1476            has_where_token: before_where_clause.has_where_token
1477                || after_where_clause.has_where_token,
1478            predicates,
1479            span: if after_where_clause.has_where_token {
1480                after_where_clause.span
1481            } else {
1482                before_where_clause.span
1483            },
1484        };
1485
1486        if where_clause.has_where_token {
1487            self.psess.gated_spans.gate(sym::generic_const_items, where_clause.span);
1488        }
1489
1490        generics.where_clause = where_clause;
1491
1492        self.expect_semi()?;
1493
1494        Ok((ident, generics, ty, expr))
1495    }
1496
1497    /// We were supposed to parse `":" $ty` but the `:` or the type was missing.
1498    /// This means that the type is missing.
1499    fn recover_missing_global_item_type(
1500        &mut self,
1501        colon_present: bool,
1502        m: Option<Mutability>,
1503    ) -> P<Ty> {
1504        // Construct the error and stash it away with the hope
1505        // that typeck will later enrich the error with a type.
1506        let kind = match m {
1507            Some(Mutability::Mut) => "static mut",
1508            Some(Mutability::Not) => "static",
1509            None => "const",
1510        };
1511
1512        let colon = match colon_present {
1513            true => "",
1514            false => ":",
1515        };
1516
1517        let span = self.prev_token.span.shrink_to_hi();
1518        let err = self.dcx().create_err(errors::MissingConstType { span, colon, kind });
1519        err.stash(span, StashKey::ItemNoType);
1520
1521        // The user intended that the type be inferred,
1522        // so treat this as if the user wrote e.g. `const A: _ = expr;`.
1523        P(Ty { kind: TyKind::Infer, span, id: ast::DUMMY_NODE_ID, tokens: None })
1524    }
1525
1526    /// Parses an enum declaration.
1527    fn parse_item_enum(&mut self) -> PResult<'a, ItemKind> {
1528        if self.token.is_keyword(kw::Struct) {
1529            let span = self.prev_token.span.to(self.token.span);
1530            let err = errors::EnumStructMutuallyExclusive { span };
1531            if self.look_ahead(1, |t| t.is_ident()) {
1532                self.bump();
1533                self.dcx().emit_err(err);
1534            } else {
1535                return Err(self.dcx().create_err(err));
1536            }
1537        }
1538
1539        let prev_span = self.prev_token.span;
1540        let ident = self.parse_ident()?;
1541        let mut generics = self.parse_generics()?;
1542        generics.where_clause = self.parse_where_clause()?;
1543
1544        // Possibly recover `enum Foo;` instead of `enum Foo {}`
1545        let (variants, _) = if self.token == TokenKind::Semi {
1546            self.dcx().emit_err(errors::UseEmptyBlockNotSemi { span: self.token.span });
1547            self.bump();
1548            (thin_vec![], Trailing::No)
1549        } else {
1550            self.parse_delim_comma_seq(exp!(OpenBrace), exp!(CloseBrace), |p| {
1551                p.parse_enum_variant(ident.span)
1552            })
1553            .map_err(|mut err| {
1554                err.span_label(ident.span, "while parsing this enum");
1555                if self.token == token::Colon {
1556                    let snapshot = self.create_snapshot_for_diagnostic();
1557                    self.bump();
1558                    match self.parse_ty() {
1559                        Ok(_) => {
1560                            err.span_suggestion_verbose(
1561                                prev_span,
1562                                "perhaps you meant to use `struct` here",
1563                                "struct",
1564                                Applicability::MaybeIncorrect,
1565                            );
1566                        }
1567                        Err(e) => {
1568                            e.cancel();
1569                        }
1570                    }
1571                    self.restore_snapshot(snapshot);
1572                }
1573                self.eat_to_tokens(&[exp!(CloseBrace)]);
1574                self.bump(); // }
1575                err
1576            })?
1577        };
1578
1579        let enum_definition = EnumDef { variants: variants.into_iter().flatten().collect() };
1580        Ok(ItemKind::Enum(ident, generics, enum_definition))
1581    }
1582
1583    fn parse_enum_variant(&mut self, span: Span) -> PResult<'a, Option<Variant>> {
1584        self.recover_vcs_conflict_marker();
1585        let variant_attrs = self.parse_outer_attributes()?;
1586        self.recover_vcs_conflict_marker();
1587        let help = "enum variants can be `Variant`, `Variant = <integer>`, \
1588                    `Variant(Type, ..., TypeN)` or `Variant { fields: Types }`";
1589        self.collect_tokens(None, variant_attrs, ForceCollect::No, |this, variant_attrs| {
1590            let vlo = this.token.span;
1591
1592            let vis = this.parse_visibility(FollowedByType::No)?;
1593            if !this.recover_nested_adt_item(kw::Enum)? {
1594                return Ok((None, Trailing::No, UsePreAttrPos::No));
1595            }
1596            let ident = this.parse_field_ident("enum", vlo)?;
1597
1598            if this.token == token::Bang {
1599                if let Err(err) = this.unexpected() {
1600                    err.with_note(fluent::parse_macro_expands_to_enum_variant).emit();
1601                }
1602
1603                this.bump();
1604                this.parse_delim_args()?;
1605
1606                return Ok((None, Trailing::from(this.token == token::Comma), UsePreAttrPos::No));
1607            }
1608
1609            let struct_def = if this.check(exp!(OpenBrace)) {
1610                // Parse a struct variant.
1611                let (fields, recovered) =
1612                    match this.parse_record_struct_body("struct", ident.span, false) {
1613                        Ok((fields, recovered)) => (fields, recovered),
1614                        Err(mut err) => {
1615                            if this.token == token::Colon {
1616                                // We handle `enum` to `struct` suggestion in the caller.
1617                                return Err(err);
1618                            }
1619                            this.eat_to_tokens(&[exp!(CloseBrace)]);
1620                            this.bump(); // }
1621                            err.span_label(span, "while parsing this enum");
1622                            err.help(help);
1623                            let guar = err.emit();
1624                            (thin_vec![], Recovered::Yes(guar))
1625                        }
1626                    };
1627                VariantData::Struct { fields, recovered }
1628            } else if this.check(exp!(OpenParen)) {
1629                let body = match this.parse_tuple_struct_body() {
1630                    Ok(body) => body,
1631                    Err(mut err) => {
1632                        if this.token == token::Colon {
1633                            // We handle `enum` to `struct` suggestion in the caller.
1634                            return Err(err);
1635                        }
1636                        this.eat_to_tokens(&[exp!(CloseParen)]);
1637                        this.bump(); // )
1638                        err.span_label(span, "while parsing this enum");
1639                        err.help(help);
1640                        err.emit();
1641                        thin_vec![]
1642                    }
1643                };
1644                VariantData::Tuple(body, DUMMY_NODE_ID)
1645            } else {
1646                VariantData::Unit(DUMMY_NODE_ID)
1647            };
1648
1649            let disr_expr =
1650                if this.eat(exp!(Eq)) { Some(this.parse_expr_anon_const()?) } else { None };
1651
1652            let vr = ast::Variant {
1653                ident,
1654                vis,
1655                id: DUMMY_NODE_ID,
1656                attrs: variant_attrs,
1657                data: struct_def,
1658                disr_expr,
1659                span: vlo.to(this.prev_token.span),
1660                is_placeholder: false,
1661            };
1662
1663            Ok((Some(vr), Trailing::from(this.token == token::Comma), UsePreAttrPos::No))
1664        })
1665        .map_err(|mut err| {
1666            err.help(help);
1667            err
1668        })
1669    }
1670
1671    /// Parses `struct Foo { ... }`.
1672    fn parse_item_struct(&mut self) -> PResult<'a, ItemKind> {
1673        let ident = self.parse_ident()?;
1674
1675        let mut generics = self.parse_generics()?;
1676
1677        // There is a special case worth noting here, as reported in issue #17904.
1678        // If we are parsing a tuple struct it is the case that the where clause
1679        // should follow the field list. Like so:
1680        //
1681        // struct Foo<T>(T) where T: Copy;
1682        //
1683        // If we are parsing a normal record-style struct it is the case
1684        // that the where clause comes before the body, and after the generics.
1685        // So if we look ahead and see a brace or a where-clause we begin
1686        // parsing a record style struct.
1687        //
1688        // Otherwise if we look ahead and see a paren we parse a tuple-style
1689        // struct.
1690
1691        let vdata = if self.token.is_keyword(kw::Where) {
1692            let tuple_struct_body;
1693            (generics.where_clause, tuple_struct_body) =
1694                self.parse_struct_where_clause(ident, generics.span)?;
1695
1696            if let Some(body) = tuple_struct_body {
1697                // If we see a misplaced tuple struct body: `struct Foo<T> where T: Copy, (T);`
1698                let body = VariantData::Tuple(body, DUMMY_NODE_ID);
1699                self.expect_semi()?;
1700                body
1701            } else if self.eat(exp!(Semi)) {
1702                // If we see a: `struct Foo<T> where T: Copy;` style decl.
1703                VariantData::Unit(DUMMY_NODE_ID)
1704            } else {
1705                // If we see: `struct Foo<T> where T: Copy { ... }`
1706                let (fields, recovered) = self.parse_record_struct_body(
1707                    "struct",
1708                    ident.span,
1709                    generics.where_clause.has_where_token,
1710                )?;
1711                VariantData::Struct { fields, recovered }
1712            }
1713        // No `where` so: `struct Foo<T>;`
1714        } else if self.eat(exp!(Semi)) {
1715            VariantData::Unit(DUMMY_NODE_ID)
1716        // Record-style struct definition
1717        } else if self.token == token::OpenBrace {
1718            let (fields, recovered) = self.parse_record_struct_body(
1719                "struct",
1720                ident.span,
1721                generics.where_clause.has_where_token,
1722            )?;
1723            VariantData::Struct { fields, recovered }
1724        // Tuple-style struct definition with optional where-clause.
1725        } else if self.token == token::OpenParen {
1726            let body = VariantData::Tuple(self.parse_tuple_struct_body()?, DUMMY_NODE_ID);
1727            generics.where_clause = self.parse_where_clause()?;
1728            self.expect_semi()?;
1729            body
1730        } else {
1731            let err = errors::UnexpectedTokenAfterStructName::new(self.token.span, self.token);
1732            return Err(self.dcx().create_err(err));
1733        };
1734
1735        Ok(ItemKind::Struct(ident, generics, vdata))
1736    }
1737
1738    /// Parses `union Foo { ... }`.
1739    fn parse_item_union(&mut self) -> PResult<'a, ItemKind> {
1740        let ident = self.parse_ident()?;
1741
1742        let mut generics = self.parse_generics()?;
1743
1744        let vdata = if self.token.is_keyword(kw::Where) {
1745            generics.where_clause = self.parse_where_clause()?;
1746            let (fields, recovered) = self.parse_record_struct_body(
1747                "union",
1748                ident.span,
1749                generics.where_clause.has_where_token,
1750            )?;
1751            VariantData::Struct { fields, recovered }
1752        } else if self.token == token::OpenBrace {
1753            let (fields, recovered) = self.parse_record_struct_body(
1754                "union",
1755                ident.span,
1756                generics.where_clause.has_where_token,
1757            )?;
1758            VariantData::Struct { fields, recovered }
1759        } else {
1760            let token_str = super::token_descr(&self.token);
1761            let msg = format!("expected `where` or `{{` after union name, found {token_str}");
1762            let mut err = self.dcx().struct_span_err(self.token.span, msg);
1763            err.span_label(self.token.span, "expected `where` or `{` after union name");
1764            return Err(err);
1765        };
1766
1767        Ok(ItemKind::Union(ident, generics, vdata))
1768    }
1769
1770    /// This function parses the fields of record structs:
1771    ///
1772    ///   - `struct S { ... }`
1773    ///   - `enum E { Variant { ... } }`
1774    pub(crate) fn parse_record_struct_body(
1775        &mut self,
1776        adt_ty: &str,
1777        ident_span: Span,
1778        parsed_where: bool,
1779    ) -> PResult<'a, (ThinVec<FieldDef>, Recovered)> {
1780        let mut fields = ThinVec::new();
1781        let mut recovered = Recovered::No;
1782        if self.eat(exp!(OpenBrace)) {
1783            while self.token != token::CloseBrace {
1784                match self.parse_field_def(adt_ty) {
1785                    Ok(field) => {
1786                        fields.push(field);
1787                    }
1788                    Err(mut err) => {
1789                        self.consume_block(
1790                            exp!(OpenBrace),
1791                            exp!(CloseBrace),
1792                            ConsumeClosingDelim::No,
1793                        );
1794                        err.span_label(ident_span, format!("while parsing this {adt_ty}"));
1795                        let guar = err.emit();
1796                        recovered = Recovered::Yes(guar);
1797                        break;
1798                    }
1799                }
1800            }
1801            self.expect(exp!(CloseBrace))?;
1802        } else {
1803            let token_str = super::token_descr(&self.token);
1804            let where_str = if parsed_where { "" } else { "`where`, or " };
1805            let msg = format!("expected {where_str}`{{` after struct name, found {token_str}");
1806            let mut err = self.dcx().struct_span_err(self.token.span, msg);
1807            err.span_label(self.token.span, format!("expected {where_str}`{{` after struct name",));
1808            return Err(err);
1809        }
1810
1811        Ok((fields, recovered))
1812    }
1813
1814    fn parse_unsafe_field(&mut self) -> Safety {
1815        // not using parse_safety as that also accepts `safe`.
1816        if self.eat_keyword(exp!(Unsafe)) {
1817            let span = self.prev_token.span;
1818            self.psess.gated_spans.gate(sym::unsafe_fields, span);
1819            Safety::Unsafe(span)
1820        } else {
1821            Safety::Default
1822        }
1823    }
1824
1825    pub(super) fn parse_tuple_struct_body(&mut self) -> PResult<'a, ThinVec<FieldDef>> {
1826        // This is the case where we find `struct Foo<T>(T) where T: Copy;`
1827        // Unit like structs are handled in parse_item_struct function
1828        self.parse_paren_comma_seq(|p| {
1829            let attrs = p.parse_outer_attributes()?;
1830            p.collect_tokens(None, attrs, ForceCollect::No, |p, attrs| {
1831                let mut snapshot = None;
1832                if p.is_vcs_conflict_marker(&TokenKind::Shl, &TokenKind::Lt) {
1833                    // Account for `<<<<<<<` diff markers. We can't proactively error here because
1834                    // that can be a valid type start, so we snapshot and reparse only we've
1835                    // encountered another parse error.
1836                    snapshot = Some(p.create_snapshot_for_diagnostic());
1837                }
1838                let lo = p.token.span;
1839                let vis = match p.parse_visibility(FollowedByType::Yes) {
1840                    Ok(vis) => vis,
1841                    Err(err) => {
1842                        if let Some(ref mut snapshot) = snapshot {
1843                            snapshot.recover_vcs_conflict_marker();
1844                        }
1845                        return Err(err);
1846                    }
1847                };
1848                // Unsafe fields are not supported in tuple structs, as doing so would result in a
1849                // parsing ambiguity for `struct X(unsafe fn())`.
1850                let ty = match p.parse_ty() {
1851                    Ok(ty) => ty,
1852                    Err(err) => {
1853                        if let Some(ref mut snapshot) = snapshot {
1854                            snapshot.recover_vcs_conflict_marker();
1855                        }
1856                        return Err(err);
1857                    }
1858                };
1859                let mut default = None;
1860                if p.token == token::Eq {
1861                    let mut snapshot = p.create_snapshot_for_diagnostic();
1862                    snapshot.bump();
1863                    match snapshot.parse_expr_anon_const() {
1864                        Ok(const_expr) => {
1865                            let sp = ty.span.shrink_to_hi().to(const_expr.value.span);
1866                            p.psess.gated_spans.gate(sym::default_field_values, sp);
1867                            p.restore_snapshot(snapshot);
1868                            default = Some(const_expr);
1869                        }
1870                        Err(err) => {
1871                            err.cancel();
1872                        }
1873                    }
1874                }
1875
1876                Ok((
1877                    FieldDef {
1878                        span: lo.to(ty.span),
1879                        vis,
1880                        safety: Safety::Default,
1881                        ident: None,
1882                        id: DUMMY_NODE_ID,
1883                        ty,
1884                        default,
1885                        attrs,
1886                        is_placeholder: false,
1887                    },
1888                    Trailing::from(p.token == token::Comma),
1889                    UsePreAttrPos::No,
1890                ))
1891            })
1892        })
1893        .map(|(r, _)| r)
1894    }
1895
1896    /// Parses an element of a struct declaration.
1897    fn parse_field_def(&mut self, adt_ty: &str) -> PResult<'a, FieldDef> {
1898        self.recover_vcs_conflict_marker();
1899        let attrs = self.parse_outer_attributes()?;
1900        self.recover_vcs_conflict_marker();
1901        self.collect_tokens(None, attrs, ForceCollect::No, |this, attrs| {
1902            let lo = this.token.span;
1903            let vis = this.parse_visibility(FollowedByType::No)?;
1904            let safety = this.parse_unsafe_field();
1905            this.parse_single_struct_field(adt_ty, lo, vis, safety, attrs)
1906                .map(|field| (field, Trailing::No, UsePreAttrPos::No))
1907        })
1908    }
1909
1910    /// Parses a structure field declaration.
1911    fn parse_single_struct_field(
1912        &mut self,
1913        adt_ty: &str,
1914        lo: Span,
1915        vis: Visibility,
1916        safety: Safety,
1917        attrs: AttrVec,
1918    ) -> PResult<'a, FieldDef> {
1919        let mut seen_comma: bool = false;
1920        let a_var = self.parse_name_and_ty(adt_ty, lo, vis, safety, attrs)?;
1921        if self.token == token::Comma {
1922            seen_comma = true;
1923        }
1924        if self.eat(exp!(Semi)) {
1925            let sp = self.prev_token.span;
1926            let mut err =
1927                self.dcx().struct_span_err(sp, format!("{adt_ty} fields are separated by `,`"));
1928            err.span_suggestion_short(
1929                sp,
1930                "replace `;` with `,`",
1931                ",",
1932                Applicability::MachineApplicable,
1933            );
1934            return Err(err);
1935        }
1936        match self.token.kind {
1937            token::Comma => {
1938                self.bump();
1939            }
1940            token::CloseBrace => {}
1941            token::DocComment(..) => {
1942                let previous_span = self.prev_token.span;
1943                let mut err = errors::DocCommentDoesNotDocumentAnything {
1944                    span: self.token.span,
1945                    missing_comma: None,
1946                };
1947                self.bump(); // consume the doc comment
1948                let comma_after_doc_seen = self.eat(exp!(Comma));
1949                // `seen_comma` is always false, because we are inside doc block
1950                // condition is here to make code more readable
1951                if !seen_comma && comma_after_doc_seen {
1952                    seen_comma = true;
1953                }
1954                if comma_after_doc_seen || self.token == token::CloseBrace {
1955                    self.dcx().emit_err(err);
1956                } else {
1957                    if !seen_comma {
1958                        let sp = previous_span.shrink_to_hi();
1959                        err.missing_comma = Some(sp);
1960                    }
1961                    return Err(self.dcx().create_err(err));
1962                }
1963            }
1964            _ => {
1965                let sp = self.prev_token.span.shrink_to_hi();
1966                let msg =
1967                    format!("expected `,`, or `}}`, found {}", super::token_descr(&self.token));
1968
1969                // Try to recover extra trailing angle brackets
1970                if let TyKind::Path(_, Path { segments, .. }) = &a_var.ty.kind {
1971                    if let Some(last_segment) = segments.last() {
1972                        let guar = self.check_trailing_angle_brackets(
1973                            last_segment,
1974                            &[exp!(Comma), exp!(CloseBrace)],
1975                        );
1976                        if let Some(_guar) = guar {
1977                            // Handle a case like `Vec<u8>>,` where we can continue parsing fields
1978                            // after the comma
1979                            let _ = self.eat(exp!(Comma));
1980
1981                            // `check_trailing_angle_brackets` already emitted a nicer error, as
1982                            // proven by the presence of `_guar`. We can continue parsing.
1983                            return Ok(a_var);
1984                        }
1985                    }
1986                }
1987
1988                let mut err = self.dcx().struct_span_err(sp, msg);
1989
1990                if self.token.is_ident()
1991                    || (self.token == TokenKind::Pound
1992                        && (self.look_ahead(1, |t| t == &token::OpenBracket)))
1993                {
1994                    // This is likely another field, TokenKind::Pound is used for `#[..]`
1995                    // attribute for next field. Emit the diagnostic and continue parsing.
1996                    err.span_suggestion(
1997                        sp,
1998                        "try adding a comma",
1999                        ",",
2000                        Applicability::MachineApplicable,
2001                    );
2002                    err.emit();
2003                } else {
2004                    return Err(err);
2005                }
2006            }
2007        }
2008        Ok(a_var)
2009    }
2010
2011    fn expect_field_ty_separator(&mut self) -> PResult<'a, ()> {
2012        if let Err(err) = self.expect(exp!(Colon)) {
2013            let sm = self.psess.source_map();
2014            let eq_typo = self.token == token::Eq && self.look_ahead(1, |t| t.is_path_start());
2015            let semi_typo = self.token == token::Semi
2016                && self.look_ahead(1, |t| {
2017                    t.is_path_start()
2018                    // We check that we are in a situation like `foo; bar` to avoid bad suggestions
2019                    // when there's no type and `;` was used instead of a comma.
2020                    && match (sm.lookup_line(self.token.span.hi()), sm.lookup_line(t.span.lo())) {
2021                        (Ok(l), Ok(r)) => l.line == r.line,
2022                        _ => true,
2023                    }
2024                });
2025            if eq_typo || semi_typo {
2026                self.bump();
2027                // Gracefully handle small typos.
2028                err.with_span_suggestion_short(
2029                    self.prev_token.span,
2030                    "field names and their types are separated with `:`",
2031                    ":",
2032                    Applicability::MachineApplicable,
2033                )
2034                .emit();
2035            } else {
2036                return Err(err);
2037            }
2038        }
2039        Ok(())
2040    }
2041
2042    /// Parses a structure field.
2043    fn parse_name_and_ty(
2044        &mut self,
2045        adt_ty: &str,
2046        lo: Span,
2047        vis: Visibility,
2048        safety: Safety,
2049        attrs: AttrVec,
2050    ) -> PResult<'a, FieldDef> {
2051        let name = self.parse_field_ident(adt_ty, lo)?;
2052        if self.token == token::Bang {
2053            if let Err(mut err) = self.unexpected() {
2054                // Encounter the macro invocation
2055                err.subdiagnostic(MacroExpandsToAdtField { adt_ty });
2056                return Err(err);
2057            }
2058        }
2059        self.expect_field_ty_separator()?;
2060        let ty = self.parse_ty()?;
2061        if self.token == token::Colon && self.look_ahead(1, |&t| t != token::Colon) {
2062            self.dcx()
2063                .struct_span_err(self.token.span, "found single colon in a struct field type path")
2064                .with_span_suggestion_verbose(
2065                    self.token.span,
2066                    "write a path separator here",
2067                    "::",
2068                    Applicability::MaybeIncorrect,
2069                )
2070                .emit();
2071        }
2072        let default = if self.token == token::Eq {
2073            self.bump();
2074            let const_expr = self.parse_expr_anon_const()?;
2075            let sp = ty.span.shrink_to_hi().to(const_expr.value.span);
2076            self.psess.gated_spans.gate(sym::default_field_values, sp);
2077            Some(const_expr)
2078        } else {
2079            None
2080        };
2081        Ok(FieldDef {
2082            span: lo.to(self.prev_token.span),
2083            ident: Some(name),
2084            vis,
2085            safety,
2086            id: DUMMY_NODE_ID,
2087            ty,
2088            default,
2089            attrs,
2090            is_placeholder: false,
2091        })
2092    }
2093
2094    /// Parses a field identifier. Specialized version of `parse_ident_common`
2095    /// for better diagnostics and suggestions.
2096    fn parse_field_ident(&mut self, adt_ty: &str, lo: Span) -> PResult<'a, Ident> {
2097        let (ident, is_raw) = self.ident_or_err(true)?;
2098        if matches!(is_raw, IdentIsRaw::No) && ident.is_reserved() {
2099            let snapshot = self.create_snapshot_for_diagnostic();
2100            let err = if self.check_fn_front_matter(false, Case::Sensitive) {
2101                let inherited_vis =
2102                    Visibility { span: DUMMY_SP, kind: VisibilityKind::Inherited, tokens: None };
2103                // We use `parse_fn` to get a span for the function
2104                let fn_parse_mode = FnParseMode { req_name: |_| true, req_body: true };
2105                match self.parse_fn(
2106                    &mut AttrVec::new(),
2107                    fn_parse_mode,
2108                    lo,
2109                    &inherited_vis,
2110                    Case::Insensitive,
2111                ) {
2112                    Ok(_) => {
2113                        self.dcx().struct_span_err(
2114                            lo.to(self.prev_token.span),
2115                            format!("functions are not allowed in {adt_ty} definitions"),
2116                        )
2117                        .with_help(
2118                            "unlike in C++, Java, and C#, functions are declared in `impl` blocks",
2119                        )
2120                        .with_help("see https://doc.rust-lang.org/book/ch05-03-method-syntax.html for more information")
2121                    }
2122                    Err(err) => {
2123                        err.cancel();
2124                        self.restore_snapshot(snapshot);
2125                        self.expected_ident_found_err()
2126                    }
2127                }
2128            } else if self.eat_keyword(exp!(Struct)) {
2129                match self.parse_item_struct() {
2130                    Ok(item) => {
2131                        let ItemKind::Struct(ident, ..) = item else { unreachable!() };
2132                        self.dcx()
2133                            .struct_span_err(
2134                                lo.with_hi(ident.span.hi()),
2135                                format!("structs are not allowed in {adt_ty} definitions"),
2136                            )
2137                            .with_help(
2138                                "consider creating a new `struct` definition instead of nesting",
2139                            )
2140                    }
2141                    Err(err) => {
2142                        err.cancel();
2143                        self.restore_snapshot(snapshot);
2144                        self.expected_ident_found_err()
2145                    }
2146                }
2147            } else {
2148                let mut err = self.expected_ident_found_err();
2149                if self.eat_keyword_noexpect(kw::Let)
2150                    && let removal_span = self.prev_token.span.until(self.token.span)
2151                    && let Ok(ident) = self
2152                        .parse_ident_common(false)
2153                        // Cancel this error, we don't need it.
2154                        .map_err(|err| err.cancel())
2155                    && self.token == TokenKind::Colon
2156                {
2157                    err.span_suggestion(
2158                        removal_span,
2159                        "remove this `let` keyword",
2160                        String::new(),
2161                        Applicability::MachineApplicable,
2162                    );
2163                    err.note("the `let` keyword is not allowed in `struct` fields");
2164                    err.note("see <https://doc.rust-lang.org/book/ch05-01-defining-structs.html> for more information");
2165                    err.emit();
2166                    return Ok(ident);
2167                } else {
2168                    self.restore_snapshot(snapshot);
2169                }
2170                err
2171            };
2172            return Err(err);
2173        }
2174        self.bump();
2175        Ok(ident)
2176    }
2177
2178    /// Parses a declarative macro 2.0 definition.
2179    /// The `macro` keyword has already been parsed.
2180    /// ```ebnf
2181    /// MacBody = "{" TOKEN_STREAM "}" ;
2182    /// MacParams = "(" TOKEN_STREAM ")" ;
2183    /// DeclMac = "macro" Ident MacParams? MacBody ;
2184    /// ```
2185    fn parse_item_decl_macro(&mut self, lo: Span) -> PResult<'a, ItemKind> {
2186        let ident = self.parse_ident()?;
2187        let body = if self.check(exp!(OpenBrace)) {
2188            self.parse_delim_args()? // `MacBody`
2189        } else if self.check(exp!(OpenParen)) {
2190            let params = self.parse_token_tree(); // `MacParams`
2191            let pspan = params.span();
2192            if !self.check(exp!(OpenBrace)) {
2193                self.unexpected()?;
2194            }
2195            let body = self.parse_token_tree(); // `MacBody`
2196            // Convert `MacParams MacBody` into `{ MacParams => MacBody }`.
2197            let bspan = body.span();
2198            let arrow = TokenTree::token_alone(token::FatArrow, pspan.between(bspan)); // `=>`
2199            let tokens = TokenStream::new(vec![params, arrow, body]);
2200            let dspan = DelimSpan::from_pair(pspan.shrink_to_lo(), bspan.shrink_to_hi());
2201            P(DelimArgs { dspan, delim: Delimiter::Brace, tokens })
2202        } else {
2203            self.unexpected_any()?
2204        };
2205
2206        self.psess.gated_spans.gate(sym::decl_macro, lo.to(self.prev_token.span));
2207        Ok(ItemKind::MacroDef(ident, ast::MacroDef { body, macro_rules: false }))
2208    }
2209
2210    /// Is this a possibly malformed start of a `macro_rules! foo` item definition?
2211    fn is_macro_rules_item(&mut self) -> IsMacroRulesItem {
2212        if self.check_keyword(exp!(MacroRules)) {
2213            let macro_rules_span = self.token.span;
2214
2215            if self.look_ahead(1, |t| *t == token::Bang) && self.look_ahead(2, |t| t.is_ident()) {
2216                return IsMacroRulesItem::Yes { has_bang: true };
2217            } else if self.look_ahead(1, |t| (t.is_ident())) {
2218                // macro_rules foo
2219                self.dcx().emit_err(errors::MacroRulesMissingBang {
2220                    span: macro_rules_span,
2221                    hi: macro_rules_span.shrink_to_hi(),
2222                });
2223
2224                return IsMacroRulesItem::Yes { has_bang: false };
2225            }
2226        }
2227
2228        IsMacroRulesItem::No
2229    }
2230
2231    /// Parses a `macro_rules! foo { ... }` declarative macro.
2232    fn parse_item_macro_rules(
2233        &mut self,
2234        vis: &Visibility,
2235        has_bang: bool,
2236    ) -> PResult<'a, ItemKind> {
2237        self.expect_keyword(exp!(MacroRules))?; // `macro_rules`
2238
2239        if has_bang {
2240            self.expect(exp!(Bang))?; // `!`
2241        }
2242        let ident = self.parse_ident()?;
2243
2244        if self.eat(exp!(Bang)) {
2245            // Handle macro_rules! foo!
2246            let span = self.prev_token.span;
2247            self.dcx().emit_err(errors::MacroNameRemoveBang { span });
2248        }
2249
2250        let body = self.parse_delim_args()?;
2251        self.eat_semi_for_macro_if_needed(&body);
2252        self.complain_if_pub_macro(vis, true);
2253
2254        Ok(ItemKind::MacroDef(ident, ast::MacroDef { body, macro_rules: true }))
2255    }
2256
2257    /// Item macro invocations or `macro_rules!` definitions need inherited visibility.
2258    /// If that's not the case, emit an error.
2259    fn complain_if_pub_macro(&self, vis: &Visibility, macro_rules: bool) {
2260        if let VisibilityKind::Inherited = vis.kind {
2261            return;
2262        }
2263
2264        let vstr = pprust::vis_to_string(vis);
2265        let vstr = vstr.trim_end();
2266        if macro_rules {
2267            self.dcx().emit_err(errors::MacroRulesVisibility { span: vis.span, vis: vstr });
2268        } else {
2269            self.dcx().emit_err(errors::MacroInvocationVisibility { span: vis.span, vis: vstr });
2270        }
2271    }
2272
2273    fn eat_semi_for_macro_if_needed(&mut self, args: &DelimArgs) {
2274        if args.need_semicolon() && !self.eat(exp!(Semi)) {
2275            self.report_invalid_macro_expansion_item(args);
2276        }
2277    }
2278
2279    fn report_invalid_macro_expansion_item(&self, args: &DelimArgs) {
2280        let span = args.dspan.entire();
2281        let mut err = self.dcx().struct_span_err(
2282            span,
2283            "macros that expand to items must be delimited with braces or followed by a semicolon",
2284        );
2285        // FIXME: This will make us not emit the help even for declarative
2286        // macros within the same crate (that we can fix), which is sad.
2287        if !span.from_expansion() {
2288            let DelimSpan { open, close } = args.dspan;
2289            err.multipart_suggestion(
2290                "change the delimiters to curly braces",
2291                vec![(open, "{".to_string()), (close, '}'.to_string())],
2292                Applicability::MaybeIncorrect,
2293            );
2294            err.span_suggestion(
2295                span.with_neighbor(self.token.span).shrink_to_hi(),
2296                "add a semicolon",
2297                ';',
2298                Applicability::MaybeIncorrect,
2299            );
2300        }
2301        err.emit();
2302    }
2303
2304    /// Checks if current token is one of tokens which cannot be nested like `kw::Enum`. In case
2305    /// it is, we try to parse the item and report error about nested types.
2306    fn recover_nested_adt_item(&mut self, keyword: Symbol) -> PResult<'a, bool> {
2307        if (self.token.is_keyword(kw::Enum)
2308            || self.token.is_keyword(kw::Struct)
2309            || self.token.is_keyword(kw::Union))
2310            && self.look_ahead(1, |t| t.is_ident())
2311        {
2312            let kw_token = self.token;
2313            let kw_str = pprust::token_to_string(&kw_token);
2314            let item = self.parse_item(ForceCollect::No)?;
2315            let mut item = item.unwrap().span;
2316            if self.token == token::Comma {
2317                item = item.to(self.token.span);
2318            }
2319            self.dcx().emit_err(errors::NestedAdt {
2320                span: kw_token.span,
2321                item,
2322                kw_str,
2323                keyword: keyword.as_str(),
2324            });
2325            // We successfully parsed the item but we must inform the caller about nested problem.
2326            return Ok(false);
2327        }
2328        Ok(true)
2329    }
2330}
2331
2332/// The parsing configuration used to parse a parameter list (see `parse_fn_params`).
2333///
2334/// The function decides if, per-parameter `p`, `p` must have a pattern or just a type.
2335///
2336/// This function pointer accepts an edition, because in edition 2015, trait declarations
2337/// were allowed to omit parameter names. In 2018, they became required.
2338type ReqName = fn(Edition) -> bool;
2339
2340/// Parsing configuration for functions.
2341///
2342/// The syntax of function items is slightly different within trait definitions,
2343/// impl blocks, and modules. It is still parsed using the same code, just with
2344/// different flags set, so that even when the input is wrong and produces a parse
2345/// error, it still gets into the AST and the rest of the parser and
2346/// type checker can run.
2347#[derive(Clone, Copy)]
2348pub(crate) struct FnParseMode {
2349    /// A function pointer that decides if, per-parameter `p`, `p` must have a
2350    /// pattern or just a type. This field affects parsing of the parameters list.
2351    ///
2352    /// ```text
2353    /// fn foo(alef: A) -> X { X::new() }
2354    ///        -----^^ affects parsing this part of the function signature
2355    ///        |
2356    ///        if req_name returns false, then this name is optional
2357    ///
2358    /// fn bar(A) -> X;
2359    ///        ^
2360    ///        |
2361    ///        if req_name returns true, this is an error
2362    /// ```
2363    ///
2364    /// Calling this function pointer should only return false if:
2365    ///
2366    ///   * The item is being parsed inside of a trait definition.
2367    ///     Within an impl block or a module, it should always evaluate
2368    ///     to true.
2369    ///   * The span is from Edition 2015. In particular, you can get a
2370    ///     2015 span inside a 2021 crate using macros.
2371    pub(super) req_name: ReqName,
2372    /// If this flag is set to `true`, then plain, semicolon-terminated function
2373    /// prototypes are not allowed here.
2374    ///
2375    /// ```text
2376    /// fn foo(alef: A) -> X { X::new() }
2377    ///                      ^^^^^^^^^^^^
2378    ///                      |
2379    ///                      this is always allowed
2380    ///
2381    /// fn bar(alef: A, bet: B) -> X;
2382    ///                             ^
2383    ///                             |
2384    ///                             if req_body is set to true, this is an error
2385    /// ```
2386    ///
2387    /// This field should only be set to false if the item is inside of a trait
2388    /// definition or extern block. Within an impl block or a module, it should
2389    /// always be set to true.
2390    pub(super) req_body: bool,
2391}
2392
2393/// Parsing of functions and methods.
2394impl<'a> Parser<'a> {
2395    /// Parse a function starting from the front matter (`const ...`) to the body `{ ... }` or `;`.
2396    fn parse_fn(
2397        &mut self,
2398        attrs: &mut AttrVec,
2399        fn_parse_mode: FnParseMode,
2400        sig_lo: Span,
2401        vis: &Visibility,
2402        case: Case,
2403    ) -> PResult<'a, (Ident, FnSig, Generics, Option<P<FnContract>>, Option<P<Block>>)> {
2404        let fn_span = self.token.span;
2405        let header = self.parse_fn_front_matter(vis, case)?; // `const ... fn`
2406        let ident = self.parse_ident()?; // `foo`
2407        let mut generics = self.parse_generics()?; // `<'a, T, ...>`
2408        let decl = match self.parse_fn_decl(
2409            fn_parse_mode.req_name,
2410            AllowPlus::Yes,
2411            RecoverReturnSign::Yes,
2412        ) {
2413            Ok(decl) => decl,
2414            Err(old_err) => {
2415                // If we see `for Ty ...` then user probably meant `impl` item.
2416                if self.token.is_keyword(kw::For) {
2417                    old_err.cancel();
2418                    return Err(self.dcx().create_err(errors::FnTypoWithImpl { fn_span }));
2419                } else {
2420                    return Err(old_err);
2421                }
2422            }
2423        };
2424
2425        // Store the end of function parameters to give better diagnostics
2426        // inside `parse_fn_body()`.
2427        let fn_params_end = self.prev_token.span.shrink_to_hi();
2428
2429        let contract = self.parse_contract()?;
2430
2431        generics.where_clause = self.parse_where_clause()?; // `where T: Ord`
2432
2433        // `fn_params_end` is needed only when it's followed by a where clause.
2434        let fn_params_end =
2435            if generics.where_clause.has_where_token { Some(fn_params_end) } else { None };
2436
2437        let mut sig_hi = self.prev_token.span;
2438        // Either `;` or `{ ... }`.
2439        let body =
2440            self.parse_fn_body(attrs, &ident, &mut sig_hi, fn_parse_mode.req_body, fn_params_end)?;
2441        let fn_sig_span = sig_lo.to(sig_hi);
2442        Ok((ident, FnSig { header, decl, span: fn_sig_span }, generics, contract, body))
2443    }
2444
2445    /// Provide diagnostics when function body is not found
2446    fn error_fn_body_not_found(
2447        &mut self,
2448        ident_span: Span,
2449        req_body: bool,
2450        fn_params_end: Option<Span>,
2451    ) -> PResult<'a, ErrorGuaranteed> {
2452        let expected: &[_] =
2453            if req_body { &[exp!(OpenBrace)] } else { &[exp!(Semi), exp!(OpenBrace)] };
2454        match self.expected_one_of_not_found(&[], expected) {
2455            Ok(error_guaranteed) => Ok(error_guaranteed),
2456            Err(mut err) => {
2457                if self.token == token::CloseBrace {
2458                    // The enclosing `mod`, `trait` or `impl` is being closed, so keep the `fn` in
2459                    // the AST for typechecking.
2460                    err.span_label(ident_span, "while parsing this `fn`");
2461                    Ok(err.emit())
2462                } else if self.token == token::RArrow
2463                    && let Some(fn_params_end) = fn_params_end
2464                {
2465                    // Instead of a function body, the parser has encountered a right arrow
2466                    // preceded by a where clause.
2467
2468                    // Find whether token behind the right arrow is a function trait and
2469                    // store its span.
2470                    let fn_trait_span =
2471                        [sym::FnOnce, sym::FnMut, sym::Fn].into_iter().find_map(|symbol| {
2472                            if self.prev_token.is_ident_named(symbol) {
2473                                Some(self.prev_token.span)
2474                            } else {
2475                                None
2476                            }
2477                        });
2478
2479                    // Parse the return type (along with the right arrow) and store its span.
2480                    // If there's a parse error, cancel it and return the existing error
2481                    // as we are primarily concerned with the
2482                    // expected-function-body-but-found-something-else error here.
2483                    let arrow_span = self.token.span;
2484                    let ty_span = match self.parse_ret_ty(
2485                        AllowPlus::Yes,
2486                        RecoverQPath::Yes,
2487                        RecoverReturnSign::Yes,
2488                    ) {
2489                        Ok(ty_span) => ty_span.span().shrink_to_hi(),
2490                        Err(parse_error) => {
2491                            parse_error.cancel();
2492                            return Err(err);
2493                        }
2494                    };
2495                    let ret_ty_span = arrow_span.to(ty_span);
2496
2497                    if let Some(fn_trait_span) = fn_trait_span {
2498                        // Typo'd Fn* trait bounds such as
2499                        // fn foo<F>() where F: FnOnce -> () {}
2500                        err.subdiagnostic(errors::FnTraitMissingParen { span: fn_trait_span });
2501                    } else if let Ok(snippet) = self.psess.source_map().span_to_snippet(ret_ty_span)
2502                    {
2503                        // If token behind right arrow is not a Fn* trait, the programmer
2504                        // probably misplaced the return type after the where clause like
2505                        // `fn foo<T>() where T: Default -> u8 {}`
2506                        err.primary_message(
2507                            "return type should be specified after the function parameters",
2508                        );
2509                        err.subdiagnostic(errors::MisplacedReturnType {
2510                            fn_params_end,
2511                            snippet,
2512                            ret_ty_span,
2513                        });
2514                    }
2515                    Err(err)
2516                } else {
2517                    Err(err)
2518                }
2519            }
2520        }
2521    }
2522
2523    /// Parse the "body" of a function.
2524    /// This can either be `;` when there's no body,
2525    /// or e.g. a block when the function is a provided one.
2526    fn parse_fn_body(
2527        &mut self,
2528        attrs: &mut AttrVec,
2529        ident: &Ident,
2530        sig_hi: &mut Span,
2531        req_body: bool,
2532        fn_params_end: Option<Span>,
2533    ) -> PResult<'a, Option<P<Block>>> {
2534        let has_semi = if req_body {
2535            self.token == TokenKind::Semi
2536        } else {
2537            // Only include `;` in list of expected tokens if body is not required
2538            self.check(exp!(Semi))
2539        };
2540        let (inner_attrs, body) = if has_semi {
2541            // Include the trailing semicolon in the span of the signature
2542            self.expect_semi()?;
2543            *sig_hi = self.prev_token.span;
2544            (AttrVec::new(), None)
2545        } else if self.check(exp!(OpenBrace)) || self.token.is_metavar_block() {
2546            self.parse_block_common(self.token.span, BlockCheckMode::Default, None)
2547                .map(|(attrs, body)| (attrs, Some(body)))?
2548        } else if self.token == token::Eq {
2549            // Recover `fn foo() = $expr;`.
2550            self.bump(); // `=`
2551            let eq_sp = self.prev_token.span;
2552            let _ = self.parse_expr()?;
2553            self.expect_semi()?; // `;`
2554            let span = eq_sp.to(self.prev_token.span);
2555            let guar = self.dcx().emit_err(errors::FunctionBodyEqualsExpr {
2556                span,
2557                sugg: errors::FunctionBodyEqualsExprSugg { eq: eq_sp, semi: self.prev_token.span },
2558            });
2559            (AttrVec::new(), Some(self.mk_block_err(span, guar)))
2560        } else {
2561            self.error_fn_body_not_found(ident.span, req_body, fn_params_end)?;
2562            (AttrVec::new(), None)
2563        };
2564        attrs.extend(inner_attrs);
2565        Ok(body)
2566    }
2567
2568    /// Is the current token the start of an `FnHeader` / not a valid parse?
2569    ///
2570    /// `check_pub` adds additional `pub` to the checks in case users place it
2571    /// wrongly, can be used to ensure `pub` never comes after `default`.
2572    pub(super) fn check_fn_front_matter(&mut self, check_pub: bool, case: Case) -> bool {
2573        const ALL_QUALS: &[ExpKeywordPair] = &[
2574            exp!(Pub),
2575            exp!(Gen),
2576            exp!(Const),
2577            exp!(Async),
2578            exp!(Unsafe),
2579            exp!(Safe),
2580            exp!(Extern),
2581        ];
2582
2583        // We use an over-approximation here.
2584        // `const const`, `fn const` won't parse, but we're not stepping over other syntax either.
2585        // `pub` is added in case users got confused with the ordering like `async pub fn`,
2586        // only if it wasn't preceded by `default` as `default pub` is invalid.
2587        let quals: &[_] = if check_pub {
2588            ALL_QUALS
2589        } else {
2590            &[exp!(Gen), exp!(Const), exp!(Async), exp!(Unsafe), exp!(Safe), exp!(Extern)]
2591        };
2592        self.check_keyword_case(exp!(Fn), case) // Definitely an `fn`.
2593            // `$qual fn` or `$qual $qual`:
2594            || quals.iter().any(|&exp| self.check_keyword_case(exp, case))
2595                && self.look_ahead(1, |t| {
2596                    // `$qual fn`, e.g. `const fn` or `async fn`.
2597                    t.is_keyword_case(kw::Fn, case)
2598                    // Two qualifiers `$qual $qual` is enough, e.g. `async unsafe`.
2599                    || (
2600                        (
2601                            t.is_non_raw_ident_where(|i|
2602                                quals.iter().any(|exp| exp.kw == i.name)
2603                                    // Rule out 2015 `const async: T = val`.
2604                                    && i.is_reserved()
2605                            )
2606                            || case == Case::Insensitive
2607                                && t.is_non_raw_ident_where(|i| quals.iter().any(|exp| {
2608                                    exp.kw.as_str() == i.name.as_str().to_lowercase()
2609                                }))
2610                        )
2611                        // Rule out `unsafe extern {`.
2612                        && !self.is_unsafe_foreign_mod()
2613                        // Rule out `async gen {` and `async gen move {`
2614                        && !self.is_async_gen_block())
2615                })
2616            // `extern ABI fn`
2617            || self.check_keyword_case(exp!(Extern), case)
2618                // Use `tree_look_ahead` because `ABI` might be a metavariable,
2619                // i.e. an invisible-delimited sequence, and `tree_look_ahead`
2620                // will consider that a single element when looking ahead.
2621                && self.look_ahead(1, |t| t.can_begin_string_literal())
2622                && (self.tree_look_ahead(2, |tt| {
2623                    match tt {
2624                        TokenTree::Token(t, _) => t.is_keyword_case(kw::Fn, case),
2625                        TokenTree::Delimited(..) => false,
2626                    }
2627                }) == Some(true) ||
2628                    // This branch is only for better diagnostics; `pub`, `unsafe`, etc. are not
2629                    // allowed here.
2630                    (self.may_recover()
2631                        && self.tree_look_ahead(2, |tt| {
2632                            match tt {
2633                                TokenTree::Token(t, _) =>
2634                                    ALL_QUALS.iter().any(|exp| {
2635                                        t.is_keyword(exp.kw)
2636                                    }),
2637                                TokenTree::Delimited(..) => false,
2638                            }
2639                        }) == Some(true)
2640                        && self.tree_look_ahead(3, |tt| {
2641                            match tt {
2642                                TokenTree::Token(t, _) => t.is_keyword_case(kw::Fn, case),
2643                                TokenTree::Delimited(..) => false,
2644                            }
2645                        }) == Some(true)
2646                    )
2647                )
2648    }
2649
2650    /// Parses all the "front matter" (or "qualifiers") for a `fn` declaration,
2651    /// up to and including the `fn` keyword. The formal grammar is:
2652    ///
2653    /// ```text
2654    /// Extern = "extern" StringLit? ;
2655    /// FnQual = "const"? "async"? "unsafe"? Extern? ;
2656    /// FnFrontMatter = FnQual "fn" ;
2657    /// ```
2658    ///
2659    /// `vis` represents the visibility that was already parsed, if any. Use
2660    /// `Visibility::Inherited` when no visibility is known.
2661    pub(super) fn parse_fn_front_matter(
2662        &mut self,
2663        orig_vis: &Visibility,
2664        case: Case,
2665    ) -> PResult<'a, FnHeader> {
2666        let sp_start = self.token.span;
2667        let constness = self.parse_constness(case);
2668
2669        let async_start_sp = self.token.span;
2670        let coroutine_kind = self.parse_coroutine_kind(case);
2671
2672        let unsafe_start_sp = self.token.span;
2673        let safety = self.parse_safety(case);
2674
2675        let ext_start_sp = self.token.span;
2676        let ext = self.parse_extern(case);
2677
2678        if let Some(CoroutineKind::Async { span, .. }) = coroutine_kind {
2679            if span.is_rust_2015() {
2680                self.dcx().emit_err(errors::AsyncFnIn2015 {
2681                    span,
2682                    help: errors::HelpUseLatestEdition::new(),
2683                });
2684            }
2685        }
2686
2687        match coroutine_kind {
2688            Some(CoroutineKind::Gen { span, .. }) | Some(CoroutineKind::AsyncGen { span, .. }) => {
2689                self.psess.gated_spans.gate(sym::gen_blocks, span);
2690            }
2691            Some(CoroutineKind::Async { .. }) | None => {}
2692        }
2693
2694        if !self.eat_keyword_case(exp!(Fn), case) {
2695            // It is possible for `expect_one_of` to recover given the contents of
2696            // `self.expected_token_types`, therefore, do not use `self.unexpected()` which doesn't
2697            // account for this.
2698            match self.expect_one_of(&[], &[]) {
2699                Ok(Recovered::Yes(_)) => {}
2700                Ok(Recovered::No) => unreachable!(),
2701                Err(mut err) => {
2702                    // Qualifier keywords ordering check
2703                    enum WrongKw {
2704                        Duplicated(Span),
2705                        Misplaced(Span),
2706                    }
2707
2708                    // We may be able to recover
2709                    let mut recover_constness = constness;
2710                    let mut recover_coroutine_kind = coroutine_kind;
2711                    let mut recover_safety = safety;
2712                    // This will allow the machine fix to directly place the keyword in the correct place or to indicate
2713                    // that the keyword is already present and the second instance should be removed.
2714                    let wrong_kw = if self.check_keyword(exp!(Const)) {
2715                        match constness {
2716                            Const::Yes(sp) => Some(WrongKw::Duplicated(sp)),
2717                            Const::No => {
2718                                recover_constness = Const::Yes(self.token.span);
2719                                Some(WrongKw::Misplaced(async_start_sp))
2720                            }
2721                        }
2722                    } else if self.check_keyword(exp!(Async)) {
2723                        match coroutine_kind {
2724                            Some(CoroutineKind::Async { span, .. }) => {
2725                                Some(WrongKw::Duplicated(span))
2726                            }
2727                            Some(CoroutineKind::AsyncGen { span, .. }) => {
2728                                Some(WrongKw::Duplicated(span))
2729                            }
2730                            Some(CoroutineKind::Gen { .. }) => {
2731                                recover_coroutine_kind = Some(CoroutineKind::AsyncGen {
2732                                    span: self.token.span,
2733                                    closure_id: DUMMY_NODE_ID,
2734                                    return_impl_trait_id: DUMMY_NODE_ID,
2735                                });
2736                                // FIXME(gen_blocks): This span is wrong, didn't want to think about it.
2737                                Some(WrongKw::Misplaced(unsafe_start_sp))
2738                            }
2739                            None => {
2740                                recover_coroutine_kind = Some(CoroutineKind::Async {
2741                                    span: self.token.span,
2742                                    closure_id: DUMMY_NODE_ID,
2743                                    return_impl_trait_id: DUMMY_NODE_ID,
2744                                });
2745                                Some(WrongKw::Misplaced(unsafe_start_sp))
2746                            }
2747                        }
2748                    } else if self.check_keyword(exp!(Unsafe)) {
2749                        match safety {
2750                            Safety::Unsafe(sp) => Some(WrongKw::Duplicated(sp)),
2751                            Safety::Safe(sp) => {
2752                                recover_safety = Safety::Unsafe(self.token.span);
2753                                Some(WrongKw::Misplaced(sp))
2754                            }
2755                            Safety::Default => {
2756                                recover_safety = Safety::Unsafe(self.token.span);
2757                                Some(WrongKw::Misplaced(ext_start_sp))
2758                            }
2759                        }
2760                    } else if self.check_keyword(exp!(Safe)) {
2761                        match safety {
2762                            Safety::Safe(sp) => Some(WrongKw::Duplicated(sp)),
2763                            Safety::Unsafe(sp) => {
2764                                recover_safety = Safety::Safe(self.token.span);
2765                                Some(WrongKw::Misplaced(sp))
2766                            }
2767                            Safety::Default => {
2768                                recover_safety = Safety::Safe(self.token.span);
2769                                Some(WrongKw::Misplaced(ext_start_sp))
2770                            }
2771                        }
2772                    } else {
2773                        None
2774                    };
2775
2776                    // The keyword is already present, suggest removal of the second instance
2777                    if let Some(WrongKw::Duplicated(original_sp)) = wrong_kw {
2778                        let original_kw = self
2779                            .span_to_snippet(original_sp)
2780                            .expect("Span extracted directly from keyword should always work");
2781
2782                        err.span_suggestion(
2783                            self.token_uninterpolated_span(),
2784                            format!("`{original_kw}` already used earlier, remove this one"),
2785                            "",
2786                            Applicability::MachineApplicable,
2787                        )
2788                        .span_note(original_sp, format!("`{original_kw}` first seen here"));
2789                    }
2790                    // The keyword has not been seen yet, suggest correct placement in the function front matter
2791                    else if let Some(WrongKw::Misplaced(correct_pos_sp)) = wrong_kw {
2792                        let correct_pos_sp = correct_pos_sp.to(self.prev_token.span);
2793                        if let Ok(current_qual) = self.span_to_snippet(correct_pos_sp) {
2794                            let misplaced_qual_sp = self.token_uninterpolated_span();
2795                            let misplaced_qual = self.span_to_snippet(misplaced_qual_sp).unwrap();
2796
2797                            err.span_suggestion(
2798                                    correct_pos_sp.to(misplaced_qual_sp),
2799                                    format!("`{misplaced_qual}` must come before `{current_qual}`"),
2800                                    format!("{misplaced_qual} {current_qual}"),
2801                                    Applicability::MachineApplicable,
2802                                ).note("keyword order for functions declaration is `pub`, `default`, `const`, `async`, `unsafe`, `extern`");
2803                        }
2804                    }
2805                    // Recover incorrect visibility order such as `async pub`
2806                    else if self.check_keyword(exp!(Pub)) {
2807                        let sp = sp_start.to(self.prev_token.span);
2808                        if let Ok(snippet) = self.span_to_snippet(sp) {
2809                            let current_vis = match self.parse_visibility(FollowedByType::No) {
2810                                Ok(v) => v,
2811                                Err(d) => {
2812                                    d.cancel();
2813                                    return Err(err);
2814                                }
2815                            };
2816                            let vs = pprust::vis_to_string(&current_vis);
2817                            let vs = vs.trim_end();
2818
2819                            // There was no explicit visibility
2820                            if matches!(orig_vis.kind, VisibilityKind::Inherited) {
2821                                err.span_suggestion(
2822                                    sp_start.to(self.prev_token.span),
2823                                    format!("visibility `{vs}` must come before `{snippet}`"),
2824                                    format!("{vs} {snippet}"),
2825                                    Applicability::MachineApplicable,
2826                                );
2827                            }
2828                            // There was an explicit visibility
2829                            else {
2830                                err.span_suggestion(
2831                                    current_vis.span,
2832                                    "there is already a visibility modifier, remove one",
2833                                    "",
2834                                    Applicability::MachineApplicable,
2835                                )
2836                                .span_note(orig_vis.span, "explicit visibility first seen here");
2837                            }
2838                        }
2839                    }
2840
2841                    // FIXME(gen_blocks): add keyword recovery logic for genness
2842
2843                    if wrong_kw.is_some()
2844                        && self.may_recover()
2845                        && self.look_ahead(1, |tok| tok.is_keyword_case(kw::Fn, case))
2846                    {
2847                        // Advance past the misplaced keyword and `fn`
2848                        self.bump();
2849                        self.bump();
2850                        err.emit();
2851                        return Ok(FnHeader {
2852                            constness: recover_constness,
2853                            safety: recover_safety,
2854                            coroutine_kind: recover_coroutine_kind,
2855                            ext,
2856                        });
2857                    }
2858
2859                    return Err(err);
2860                }
2861            }
2862        }
2863
2864        Ok(FnHeader { constness, safety, coroutine_kind, ext })
2865    }
2866
2867    /// Parses the parameter list and result type of a function declaration.
2868    pub(super) fn parse_fn_decl(
2869        &mut self,
2870        req_name: ReqName,
2871        ret_allow_plus: AllowPlus,
2872        recover_return_sign: RecoverReturnSign,
2873    ) -> PResult<'a, P<FnDecl>> {
2874        Ok(P(FnDecl {
2875            inputs: self.parse_fn_params(req_name)?,
2876            output: self.parse_ret_ty(ret_allow_plus, RecoverQPath::Yes, recover_return_sign)?,
2877        }))
2878    }
2879
2880    /// Parses the parameter list of a function, including the `(` and `)` delimiters.
2881    pub(super) fn parse_fn_params(&mut self, req_name: ReqName) -> PResult<'a, ThinVec<Param>> {
2882        let mut first_param = true;
2883        // Parse the arguments, starting out with `self` being allowed...
2884        if self.token != TokenKind::OpenParen
2885        // might be typo'd trait impl, handled elsewhere
2886        && !self.token.is_keyword(kw::For)
2887        {
2888            // recover from missing argument list, e.g. `fn main -> () {}`
2889            self.dcx()
2890                .emit_err(errors::MissingFnParams { span: self.prev_token.span.shrink_to_hi() });
2891            return Ok(ThinVec::new());
2892        }
2893
2894        let (mut params, _) = self.parse_paren_comma_seq(|p| {
2895            p.recover_vcs_conflict_marker();
2896            let snapshot = p.create_snapshot_for_diagnostic();
2897            let param = p.parse_param_general(req_name, first_param, true).or_else(|e| {
2898                let guar = e.emit();
2899                // When parsing a param failed, we should check to make the span of the param
2900                // not contain '(' before it.
2901                // For example when parsing `*mut Self` in function `fn oof(*mut Self)`.
2902                let lo = if let TokenKind::OpenParen = p.prev_token.kind {
2903                    p.prev_token.span.shrink_to_hi()
2904                } else {
2905                    p.prev_token.span
2906                };
2907                p.restore_snapshot(snapshot);
2908                // Skip every token until next possible arg or end.
2909                p.eat_to_tokens(&[exp!(Comma), exp!(CloseParen)]);
2910                // Create a placeholder argument for proper arg count (issue #34264).
2911                Ok(dummy_arg(Ident::new(sym::dummy, lo.to(p.prev_token.span)), guar))
2912            });
2913            // ...now that we've parsed the first argument, `self` is no longer allowed.
2914            first_param = false;
2915            param
2916        })?;
2917        // Replace duplicated recovered params with `_` pattern to avoid unnecessary errors.
2918        self.deduplicate_recovered_params_names(&mut params);
2919        Ok(params)
2920    }
2921
2922    /// Parses a single function parameter.
2923    ///
2924    /// - `self` is syntactically allowed when `first_param` holds.
2925    /// - `recover_arg_parse` is used to recover from a failed argument parse.
2926    pub(super) fn parse_param_general(
2927        &mut self,
2928        req_name: ReqName,
2929        first_param: bool,
2930        recover_arg_parse: bool,
2931    ) -> PResult<'a, Param> {
2932        let lo = self.token.span;
2933        let attrs = self.parse_outer_attributes()?;
2934        self.collect_tokens(None, attrs, ForceCollect::No, |this, attrs| {
2935            // Possibly parse `self`. Recover if we parsed it and it wasn't allowed here.
2936            if let Some(mut param) = this.parse_self_param()? {
2937                param.attrs = attrs;
2938                let res = if first_param { Ok(param) } else { this.recover_bad_self_param(param) };
2939                return Ok((res?, Trailing::No, UsePreAttrPos::No));
2940            }
2941
2942            let is_name_required = match this.token.kind {
2943                token::DotDotDot => false,
2944                _ => req_name(this.token.span.with_neighbor(this.prev_token.span).edition()),
2945            };
2946            let (pat, ty) = if is_name_required || this.is_named_param() {
2947                debug!("parse_param_general parse_pat (is_name_required:{})", is_name_required);
2948                let (pat, colon) = this.parse_fn_param_pat_colon()?;
2949                if !colon {
2950                    let mut err = this.unexpected().unwrap_err();
2951                    return if let Some(ident) =
2952                        this.parameter_without_type(&mut err, pat, is_name_required, first_param)
2953                    {
2954                        let guar = err.emit();
2955                        Ok((dummy_arg(ident, guar), Trailing::No, UsePreAttrPos::No))
2956                    } else {
2957                        Err(err)
2958                    };
2959                }
2960
2961                this.eat_incorrect_doc_comment_for_param_type();
2962                (pat, this.parse_ty_for_param()?)
2963            } else {
2964                debug!("parse_param_general ident_to_pat");
2965                let parser_snapshot_before_ty = this.create_snapshot_for_diagnostic();
2966                this.eat_incorrect_doc_comment_for_param_type();
2967                let mut ty = this.parse_ty_for_param();
2968
2969                if let Ok(t) = &ty {
2970                    // Check for trailing angle brackets
2971                    if let TyKind::Path(_, Path { segments, .. }) = &t.kind {
2972                        if let Some(segment) = segments.last() {
2973                            if let Some(guar) =
2974                                this.check_trailing_angle_brackets(segment, &[exp!(CloseParen)])
2975                            {
2976                                return Ok((
2977                                    dummy_arg(segment.ident, guar),
2978                                    Trailing::No,
2979                                    UsePreAttrPos::No,
2980                                ));
2981                            }
2982                        }
2983                    }
2984
2985                    if this.token != token::Comma && this.token != token::CloseParen {
2986                        // This wasn't actually a type, but a pattern looking like a type,
2987                        // so we are going to rollback and re-parse for recovery.
2988                        ty = this.unexpected_any();
2989                    }
2990                }
2991                match ty {
2992                    Ok(ty) => {
2993                        let pat = this.mk_pat(ty.span, PatKind::Missing);
2994                        (pat, ty)
2995                    }
2996                    // If this is a C-variadic argument and we hit an error, return the error.
2997                    Err(err) if this.token == token::DotDotDot => return Err(err),
2998                    Err(err) if this.unmatched_angle_bracket_count > 0 => return Err(err),
2999                    Err(err) if recover_arg_parse => {
3000                        // Recover from attempting to parse the argument as a type without pattern.
3001                        err.cancel();
3002                        this.restore_snapshot(parser_snapshot_before_ty);
3003                        this.recover_arg_parse()?
3004                    }
3005                    Err(err) => return Err(err),
3006                }
3007            };
3008
3009            let span = lo.to(this.prev_token.span);
3010
3011            Ok((
3012                Param { attrs, id: ast::DUMMY_NODE_ID, is_placeholder: false, pat, span, ty },
3013                Trailing::No,
3014                UsePreAttrPos::No,
3015            ))
3016        })
3017    }
3018
3019    /// Returns the parsed optional self parameter and whether a self shortcut was used.
3020    fn parse_self_param(&mut self) -> PResult<'a, Option<Param>> {
3021        // Extract an identifier *after* having confirmed that the token is one.
3022        let expect_self_ident = |this: &mut Self| match this.token.ident() {
3023            Some((ident, IdentIsRaw::No)) => {
3024                this.bump();
3025                ident
3026            }
3027            _ => unreachable!(),
3028        };
3029        // is lifetime `n` tokens ahead?
3030        let is_lifetime = |this: &Self, n| this.look_ahead(n, |t| t.is_lifetime());
3031        // Is `self` `n` tokens ahead?
3032        let is_isolated_self = |this: &Self, n| {
3033            this.is_keyword_ahead(n, &[kw::SelfLower])
3034                && this.look_ahead(n + 1, |t| t != &token::PathSep)
3035        };
3036        // Is `pin const self` `n` tokens ahead?
3037        let is_isolated_pin_const_self = |this: &Self, n| {
3038            this.look_ahead(n, |token| token.is_ident_named(sym::pin))
3039                && this.is_keyword_ahead(n + 1, &[kw::Const])
3040                && is_isolated_self(this, n + 2)
3041        };
3042        // Is `mut self` `n` tokens ahead?
3043        let is_isolated_mut_self =
3044            |this: &Self, n| this.is_keyword_ahead(n, &[kw::Mut]) && is_isolated_self(this, n + 1);
3045        // Is `pin mut self` `n` tokens ahead?
3046        let is_isolated_pin_mut_self = |this: &Self, n| {
3047            this.look_ahead(n, |token| token.is_ident_named(sym::pin))
3048                && is_isolated_mut_self(this, n + 1)
3049        };
3050        // Parse `self` or `self: TYPE`. We already know the current token is `self`.
3051        let parse_self_possibly_typed = |this: &mut Self, m| {
3052            let eself_ident = expect_self_ident(this);
3053            let eself_hi = this.prev_token.span;
3054            let eself = if this.eat(exp!(Colon)) {
3055                SelfKind::Explicit(this.parse_ty()?, m)
3056            } else {
3057                SelfKind::Value(m)
3058            };
3059            Ok((eself, eself_ident, eself_hi))
3060        };
3061        let expect_self_ident_not_typed =
3062            |this: &mut Self, modifier: &SelfKind, modifier_span: Span| {
3063                let eself_ident = expect_self_ident(this);
3064
3065                // Recover `: Type` after a qualified self
3066                if this.may_recover() && this.eat_noexpect(&token::Colon) {
3067                    let snap = this.create_snapshot_for_diagnostic();
3068                    match this.parse_ty() {
3069                        Ok(ty) => {
3070                            this.dcx().emit_err(errors::IncorrectTypeOnSelf {
3071                                span: ty.span,
3072                                move_self_modifier: errors::MoveSelfModifier {
3073                                    removal_span: modifier_span,
3074                                    insertion_span: ty.span.shrink_to_lo(),
3075                                    modifier: modifier.to_ref_suggestion(),
3076                                },
3077                            });
3078                        }
3079                        Err(diag) => {
3080                            diag.cancel();
3081                            this.restore_snapshot(snap);
3082                        }
3083                    }
3084                }
3085                eself_ident
3086            };
3087        // Recover for the grammar `*self`, `*const self`, and `*mut self`.
3088        let recover_self_ptr = |this: &mut Self| {
3089            this.dcx().emit_err(errors::SelfArgumentPointer { span: this.token.span });
3090
3091            Ok((SelfKind::Value(Mutability::Not), expect_self_ident(this), this.prev_token.span))
3092        };
3093
3094        // Parse optional `self` parameter of a method.
3095        // Only a limited set of initial token sequences is considered `self` parameters; anything
3096        // else is parsed as a normal function parameter list, so some lookahead is required.
3097        let eself_lo = self.token.span;
3098        let (eself, eself_ident, eself_hi) = match self.token.uninterpolate().kind {
3099            token::And => {
3100                let has_lifetime = is_lifetime(self, 1);
3101                let skip_lifetime_count = has_lifetime as usize;
3102                let eself = if is_isolated_self(self, skip_lifetime_count + 1) {
3103                    // `&{'lt} self`
3104                    self.bump(); // &
3105                    let lifetime = has_lifetime.then(|| self.expect_lifetime());
3106                    SelfKind::Region(lifetime, Mutability::Not)
3107                } else if is_isolated_mut_self(self, skip_lifetime_count + 1) {
3108                    // `&{'lt} mut self`
3109                    self.bump(); // &
3110                    let lifetime = has_lifetime.then(|| self.expect_lifetime());
3111                    self.bump(); // mut
3112                    SelfKind::Region(lifetime, Mutability::Mut)
3113                } else if is_isolated_pin_const_self(self, skip_lifetime_count + 1) {
3114                    // `&{'lt} pin const self`
3115                    self.bump(); // &
3116                    let lifetime = has_lifetime.then(|| self.expect_lifetime());
3117                    self.psess.gated_spans.gate(sym::pin_ergonomics, self.token.span);
3118                    self.bump(); // pin
3119                    self.bump(); // const
3120                    SelfKind::Pinned(lifetime, Mutability::Not)
3121                } else if is_isolated_pin_mut_self(self, skip_lifetime_count + 1) {
3122                    // `&{'lt} pin mut self`
3123                    self.bump(); // &
3124                    let lifetime = has_lifetime.then(|| self.expect_lifetime());
3125                    self.psess.gated_spans.gate(sym::pin_ergonomics, self.token.span);
3126                    self.bump(); // pin
3127                    self.bump(); // mut
3128                    SelfKind::Pinned(lifetime, Mutability::Mut)
3129                } else {
3130                    // `&not_self`
3131                    return Ok(None);
3132                };
3133                let hi = self.token.span;
3134                let self_ident = expect_self_ident_not_typed(self, &eself, eself_lo.until(hi));
3135                (eself, self_ident, hi)
3136            }
3137            // `*self`
3138            token::Star if is_isolated_self(self, 1) => {
3139                self.bump();
3140                recover_self_ptr(self)?
3141            }
3142            // `*mut self` and `*const self`
3143            token::Star
3144                if self.look_ahead(1, |t| t.is_mutability()) && is_isolated_self(self, 2) =>
3145            {
3146                self.bump();
3147                self.bump();
3148                recover_self_ptr(self)?
3149            }
3150            // `self` and `self: TYPE`
3151            token::Ident(..) if is_isolated_self(self, 0) => {
3152                parse_self_possibly_typed(self, Mutability::Not)?
3153            }
3154            // `mut self` and `mut self: TYPE`
3155            token::Ident(..) if is_isolated_mut_self(self, 0) => {
3156                self.bump();
3157                parse_self_possibly_typed(self, Mutability::Mut)?
3158            }
3159            _ => return Ok(None),
3160        };
3161
3162        let eself = source_map::respan(eself_lo.to(eself_hi), eself);
3163        Ok(Some(Param::from_self(AttrVec::default(), eself, eself_ident)))
3164    }
3165
3166    fn is_named_param(&self) -> bool {
3167        let offset = match &self.token.kind {
3168            token::OpenInvisible(origin) => match origin {
3169                InvisibleOrigin::MetaVar(MetaVarKind::Pat(_)) => {
3170                    return self.check_noexpect_past_close_delim(&token::Colon);
3171                }
3172                _ => 0,
3173            },
3174            token::And | token::AndAnd => 1,
3175            _ if self.token.is_keyword(kw::Mut) => 1,
3176            _ => 0,
3177        };
3178
3179        self.look_ahead(offset, |t| t.is_ident())
3180            && self.look_ahead(offset + 1, |t| t == &token::Colon)
3181    }
3182
3183    fn recover_self_param(&mut self) -> bool {
3184        matches!(
3185            self.parse_outer_attributes()
3186                .and_then(|_| self.parse_self_param())
3187                .map_err(|e| e.cancel()),
3188            Ok(Some(_))
3189        )
3190    }
3191}
3192
3193enum IsMacroRulesItem {
3194    Yes { has_bang: bool },
3195    No,
3196}