rustc_span/
lib.rs

1//! Source positions and related helper functions.
2//!
3//! Important concepts in this module include:
4//!
5//! - the *span*, represented by [`SpanData`] and related types;
6//! - source code as represented by a [`SourceMap`]; and
7//! - interned strings, represented by [`Symbol`]s, with some common symbols available statically
8//!   in the [`sym`] module.
9//!
10//! Unlike most compilers, the span contains not only the position in the source code, but also
11//! various other metadata, such as the edition and macro hygiene. This metadata is stored in
12//! [`SyntaxContext`] and [`ExpnData`].
13//!
14//! ## Note
15//!
16//! This API is completely unstable and subject to change.
17
18// tidy-alphabetical-start
19#![allow(internal_features)]
20#![doc(html_root_url = "https://doc.rust-lang.org/nightly/nightly-rustc/")]
21#![doc(rust_logo)]
22#![feature(array_windows)]
23#![feature(cfg_match)]
24#![feature(core_io_borrowed_buf)]
25#![feature(hash_set_entry)]
26#![feature(if_let_guard)]
27#![feature(map_try_insert)]
28#![feature(negative_impls)]
29#![feature(read_buf)]
30#![feature(round_char_boundary)]
31#![feature(rustc_attrs)]
32#![feature(rustdoc_internals)]
33// tidy-alphabetical-end
34
35// The code produced by the `Encodable`/`Decodable` derive macros refer to
36// `rustc_span::Span{Encoder,Decoder}`. That's fine outside this crate, but doesn't work inside
37// this crate without this line making `rustc_span` available.
38extern crate self as rustc_span;
39
40use derive_where::derive_where;
41use rustc_data_structures::{AtomicRef, outline};
42use rustc_macros::{Decodable, Encodable, HashStable_Generic};
43use rustc_serialize::opaque::{FileEncoder, MemDecoder};
44use rustc_serialize::{Decodable, Decoder, Encodable, Encoder};
45use tracing::debug;
46
47mod caching_source_map_view;
48pub mod source_map;
49use source_map::{SourceMap, SourceMapInputs};
50
51pub use self::caching_source_map_view::CachingSourceMapView;
52use crate::fatal_error::FatalError;
53
54pub mod edition;
55use edition::Edition;
56pub mod hygiene;
57use hygiene::Transparency;
58pub use hygiene::{
59    DesugaringKind, ExpnData, ExpnHash, ExpnId, ExpnKind, LocalExpnId, MacroKind, SyntaxContext,
60};
61use rustc_data_structures::stable_hasher::HashingControls;
62pub mod def_id;
63use def_id::{CrateNum, DefId, DefIndex, DefPathHash, LOCAL_CRATE, LocalDefId, StableCrateId};
64pub mod edit_distance;
65mod span_encoding;
66pub use span_encoding::{DUMMY_SP, Span};
67
68pub mod symbol;
69pub use symbol::{Ident, MacroRulesNormalizedIdent, STDLIB_STABLE_CRATES, Symbol, kw, sym};
70
71mod analyze_source_file;
72pub mod fatal_error;
73
74pub mod profiling;
75
76use std::borrow::Cow;
77use std::cmp::{self, Ordering};
78use std::fmt::Display;
79use std::hash::Hash;
80use std::io::{self, Read};
81use std::ops::{Add, Range, Sub};
82use std::path::{Path, PathBuf};
83use std::str::FromStr;
84use std::sync::Arc;
85use std::{fmt, iter};
86
87use md5::{Digest, Md5};
88use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
89use rustc_data_structures::sync::{FreezeLock, FreezeWriteGuard, Lock};
90use rustc_data_structures::unord::UnordMap;
91use rustc_hashes::{Hash64, Hash128};
92use sha1::Sha1;
93use sha2::Sha256;
94
95#[cfg(test)]
96mod tests;
97
98/// Per-session global variables: this struct is stored in thread-local storage
99/// in such a way that it is accessible without any kind of handle to all
100/// threads within the compilation session, but is not accessible outside the
101/// session.
102pub struct SessionGlobals {
103    symbol_interner: symbol::Interner,
104    span_interner: Lock<span_encoding::SpanInterner>,
105    /// Maps a macro argument token into use of the corresponding metavariable in the macro body.
106    /// Collisions are possible and processed in `maybe_use_metavar_location` on best effort basis.
107    metavar_spans: MetavarSpansMap,
108    hygiene_data: Lock<hygiene::HygieneData>,
109
110    /// The session's source map, if there is one. This field should only be
111    /// used in places where the `Session` is truly not available, such as
112    /// `<Span as Debug>::fmt`.
113    source_map: Option<Arc<SourceMap>>,
114}
115
116impl SessionGlobals {
117    pub fn new(
118        edition: Edition,
119        extra_symbols: &[&'static str],
120        sm_inputs: Option<SourceMapInputs>,
121    ) -> SessionGlobals {
122        SessionGlobals {
123            symbol_interner: symbol::Interner::with_extra_symbols(extra_symbols),
124            span_interner: Lock::new(span_encoding::SpanInterner::default()),
125            metavar_spans: Default::default(),
126            hygiene_data: Lock::new(hygiene::HygieneData::new(edition)),
127            source_map: sm_inputs.map(|inputs| Arc::new(SourceMap::with_inputs(inputs))),
128        }
129    }
130}
131
132pub fn create_session_globals_then<R>(
133    edition: Edition,
134    extra_symbols: &[&'static str],
135    sm_inputs: Option<SourceMapInputs>,
136    f: impl FnOnce() -> R,
137) -> R {
138    assert!(
139        !SESSION_GLOBALS.is_set(),
140        "SESSION_GLOBALS should never be overwritten! \
141         Use another thread if you need another SessionGlobals"
142    );
143    let session_globals = SessionGlobals::new(edition, extra_symbols, sm_inputs);
144    SESSION_GLOBALS.set(&session_globals, f)
145}
146
147pub fn set_session_globals_then<R>(session_globals: &SessionGlobals, f: impl FnOnce() -> R) -> R {
148    assert!(
149        !SESSION_GLOBALS.is_set(),
150        "SESSION_GLOBALS should never be overwritten! \
151         Use another thread if you need another SessionGlobals"
152    );
153    SESSION_GLOBALS.set(session_globals, f)
154}
155
156/// No source map.
157pub fn create_session_if_not_set_then<R, F>(edition: Edition, f: F) -> R
158where
159    F: FnOnce(&SessionGlobals) -> R,
160{
161    if !SESSION_GLOBALS.is_set() {
162        let session_globals = SessionGlobals::new(edition, &[], None);
163        SESSION_GLOBALS.set(&session_globals, || SESSION_GLOBALS.with(f))
164    } else {
165        SESSION_GLOBALS.with(f)
166    }
167}
168
169pub fn with_session_globals<R, F>(f: F) -> R
170where
171    F: FnOnce(&SessionGlobals) -> R,
172{
173    SESSION_GLOBALS.with(f)
174}
175
176/// Default edition, no source map.
177pub fn create_default_session_globals_then<R>(f: impl FnOnce() -> R) -> R {
178    create_session_globals_then(edition::DEFAULT_EDITION, &[], None, f)
179}
180
181// If this ever becomes non thread-local, `decode_syntax_context`
182// and `decode_expn_id` will need to be updated to handle concurrent
183// deserialization.
184scoped_tls::scoped_thread_local!(static SESSION_GLOBALS: SessionGlobals);
185
186#[derive(Default)]
187pub struct MetavarSpansMap(FreezeLock<UnordMap<Span, (Span, bool)>>);
188
189impl MetavarSpansMap {
190    pub fn insert(&self, span: Span, var_span: Span) -> bool {
191        match self.0.write().try_insert(span, (var_span, false)) {
192            Ok(_) => true,
193            Err(entry) => entry.entry.get().0 == var_span,
194        }
195    }
196
197    /// Read a span and record that it was read.
198    pub fn get(&self, span: Span) -> Option<Span> {
199        if let Some(mut mspans) = self.0.try_write() {
200            if let Some((var_span, read)) = mspans.get_mut(&span) {
201                *read = true;
202                Some(*var_span)
203            } else {
204                None
205            }
206        } else {
207            if let Some((span, true)) = self.0.read().get(&span) { Some(*span) } else { None }
208        }
209    }
210
211    /// Freeze the set, and return the spans which have been read.
212    ///
213    /// After this is frozen, no spans that have not been read can be read.
214    pub fn freeze_and_get_read_spans(&self) -> UnordMap<Span, Span> {
215        self.0.freeze().items().filter(|(_, (_, b))| *b).map(|(s1, (s2, _))| (*s1, *s2)).collect()
216    }
217}
218
219#[inline]
220pub fn with_metavar_spans<R>(f: impl FnOnce(&MetavarSpansMap) -> R) -> R {
221    with_session_globals(|session_globals| f(&session_globals.metavar_spans))
222}
223
224// FIXME: We should use this enum or something like it to get rid of the
225// use of magic `/rust/1.x/...` paths across the board.
226#[derive(Debug, Eq, PartialEq, Clone, Ord, PartialOrd, Decodable, Encodable)]
227pub enum RealFileName {
228    LocalPath(PathBuf),
229    /// For remapped paths (namely paths into libstd that have been mapped
230    /// to the appropriate spot on the local host's file system, and local file
231    /// system paths that have been remapped with `FilePathMapping`),
232    Remapped {
233        /// `local_path` is the (host-dependent) local path to the file. This is
234        /// None if the file was imported from another crate
235        local_path: Option<PathBuf>,
236        /// `virtual_name` is the stable path rustc will store internally within
237        /// build artifacts.
238        virtual_name: PathBuf,
239    },
240}
241
242impl Hash for RealFileName {
243    fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
244        // To prevent #70924 from happening again we should only hash the
245        // remapped (virtualized) path if that exists. This is because
246        // virtualized paths to sysroot crates (/rust/$hash or /rust/$version)
247        // remain stable even if the corresponding local_path changes
248        self.remapped_path_if_available().hash(state)
249    }
250}
251
252impl RealFileName {
253    /// Returns the path suitable for reading from the file system on the local host,
254    /// if this information exists.
255    /// Avoid embedding this in build artifacts; see `remapped_path_if_available()` for that.
256    pub fn local_path(&self) -> Option<&Path> {
257        match self {
258            RealFileName::LocalPath(p) => Some(p),
259            RealFileName::Remapped { local_path, virtual_name: _ } => local_path.as_deref(),
260        }
261    }
262
263    /// Returns the path suitable for reading from the file system on the local host,
264    /// if this information exists.
265    /// Avoid embedding this in build artifacts; see `remapped_path_if_available()` for that.
266    pub fn into_local_path(self) -> Option<PathBuf> {
267        match self {
268            RealFileName::LocalPath(p) => Some(p),
269            RealFileName::Remapped { local_path: p, virtual_name: _ } => p,
270        }
271    }
272
273    /// Returns the path suitable for embedding into build artifacts. This would still
274    /// be a local path if it has not been remapped. A remapped path will not correspond
275    /// to a valid file system path: see `local_path_if_available()` for something that
276    /// is more likely to return paths into the local host file system.
277    pub fn remapped_path_if_available(&self) -> &Path {
278        match self {
279            RealFileName::LocalPath(p)
280            | RealFileName::Remapped { local_path: _, virtual_name: p } => p,
281        }
282    }
283
284    /// Returns the path suitable for reading from the file system on the local host,
285    /// if this information exists. Otherwise returns the remapped name.
286    /// Avoid embedding this in build artifacts; see `remapped_path_if_available()` for that.
287    pub fn local_path_if_available(&self) -> &Path {
288        match self {
289            RealFileName::LocalPath(path)
290            | RealFileName::Remapped { local_path: None, virtual_name: path }
291            | RealFileName::Remapped { local_path: Some(path), virtual_name: _ } => path,
292        }
293    }
294
295    /// Return the path remapped or not depending on the [`FileNameDisplayPreference`].
296    ///
297    /// For the purpose of this function, local and short preference are equal.
298    pub fn to_path(&self, display_pref: FileNameDisplayPreference) -> &Path {
299        match display_pref {
300            FileNameDisplayPreference::Local | FileNameDisplayPreference::Short => {
301                self.local_path_if_available()
302            }
303            FileNameDisplayPreference::Remapped => self.remapped_path_if_available(),
304        }
305    }
306
307    pub fn to_string_lossy(&self, display_pref: FileNameDisplayPreference) -> Cow<'_, str> {
308        match display_pref {
309            FileNameDisplayPreference::Local => self.local_path_if_available().to_string_lossy(),
310            FileNameDisplayPreference::Remapped => {
311                self.remapped_path_if_available().to_string_lossy()
312            }
313            FileNameDisplayPreference::Short => self
314                .local_path_if_available()
315                .file_name()
316                .map_or_else(|| "".into(), |f| f.to_string_lossy()),
317        }
318    }
319}
320
321/// Differentiates between real files and common virtual files.
322#[derive(Debug, Eq, PartialEq, Clone, Ord, PartialOrd, Hash, Decodable, Encodable)]
323pub enum FileName {
324    Real(RealFileName),
325    /// Strings provided as `--cfg [cfgspec]`.
326    CfgSpec(Hash64),
327    /// Command line.
328    Anon(Hash64),
329    /// Hack in `src/librustc_ast/parse.rs`.
330    // FIXME(jseyfried)
331    MacroExpansion(Hash64),
332    ProcMacroSourceCode(Hash64),
333    /// Strings provided as crate attributes in the CLI.
334    CliCrateAttr(Hash64),
335    /// Custom sources for explicit parser calls from plugins and drivers.
336    Custom(String),
337    DocTest(PathBuf, isize),
338    /// Post-substitution inline assembly from LLVM.
339    InlineAsm(Hash64),
340}
341
342impl From<PathBuf> for FileName {
343    fn from(p: PathBuf) -> Self {
344        FileName::Real(RealFileName::LocalPath(p))
345    }
346}
347
348#[derive(Clone, Copy, Eq, PartialEq, Hash, Debug)]
349pub enum FileNameEmbeddablePreference {
350    /// If a remapped path is available, only embed the `virtual_path` and omit the `local_path`.
351    ///
352    /// Otherwise embed the local-path into the `virtual_path`.
353    RemappedOnly,
354    /// Embed the original path as well as its remapped `virtual_path` component if available.
355    LocalAndRemapped,
356}
357
358#[derive(Clone, Copy, Eq, PartialEq, Hash, Debug)]
359pub enum FileNameDisplayPreference {
360    /// Display the path after the application of rewrite rules provided via `--remap-path-prefix`.
361    /// This is appropriate for paths that get embedded into files produced by the compiler.
362    Remapped,
363    /// Display the path before the application of rewrite rules provided via `--remap-path-prefix`.
364    /// This is appropriate for use in user-facing output (such as diagnostics).
365    Local,
366    /// Display only the filename, as a way to reduce the verbosity of the output.
367    /// This is appropriate for use in user-facing output (such as diagnostics).
368    Short,
369}
370
371pub struct FileNameDisplay<'a> {
372    inner: &'a FileName,
373    display_pref: FileNameDisplayPreference,
374}
375
376impl fmt::Display for FileNameDisplay<'_> {
377    fn fmt(&self, fmt: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
378        use FileName::*;
379        match *self.inner {
380            Real(ref name) => {
381                write!(fmt, "{}", name.to_string_lossy(self.display_pref))
382            }
383            CfgSpec(_) => write!(fmt, "<cfgspec>"),
384            MacroExpansion(_) => write!(fmt, "<macro expansion>"),
385            Anon(_) => write!(fmt, "<anon>"),
386            ProcMacroSourceCode(_) => write!(fmt, "<proc-macro source code>"),
387            CliCrateAttr(_) => write!(fmt, "<crate attribute>"),
388            Custom(ref s) => write!(fmt, "<{s}>"),
389            DocTest(ref path, _) => write!(fmt, "{}", path.display()),
390            InlineAsm(_) => write!(fmt, "<inline asm>"),
391        }
392    }
393}
394
395impl<'a> FileNameDisplay<'a> {
396    pub fn to_string_lossy(&self) -> Cow<'a, str> {
397        match self.inner {
398            FileName::Real(inner) => inner.to_string_lossy(self.display_pref),
399            _ => Cow::from(self.to_string()),
400        }
401    }
402}
403
404impl FileName {
405    pub fn is_real(&self) -> bool {
406        use FileName::*;
407        match *self {
408            Real(_) => true,
409            Anon(_)
410            | MacroExpansion(_)
411            | ProcMacroSourceCode(_)
412            | CliCrateAttr(_)
413            | Custom(_)
414            | CfgSpec(_)
415            | DocTest(_, _)
416            | InlineAsm(_) => false,
417        }
418    }
419
420    pub fn prefer_remapped_unconditionaly(&self) -> FileNameDisplay<'_> {
421        FileNameDisplay { inner: self, display_pref: FileNameDisplayPreference::Remapped }
422    }
423
424    /// This may include transient local filesystem information.
425    /// Must not be embedded in build outputs.
426    pub fn prefer_local(&self) -> FileNameDisplay<'_> {
427        FileNameDisplay { inner: self, display_pref: FileNameDisplayPreference::Local }
428    }
429
430    pub fn display(&self, display_pref: FileNameDisplayPreference) -> FileNameDisplay<'_> {
431        FileNameDisplay { inner: self, display_pref }
432    }
433
434    pub fn macro_expansion_source_code(src: &str) -> FileName {
435        let mut hasher = StableHasher::new();
436        src.hash(&mut hasher);
437        FileName::MacroExpansion(hasher.finish())
438    }
439
440    pub fn anon_source_code(src: &str) -> FileName {
441        let mut hasher = StableHasher::new();
442        src.hash(&mut hasher);
443        FileName::Anon(hasher.finish())
444    }
445
446    pub fn proc_macro_source_code(src: &str) -> FileName {
447        let mut hasher = StableHasher::new();
448        src.hash(&mut hasher);
449        FileName::ProcMacroSourceCode(hasher.finish())
450    }
451
452    pub fn cfg_spec_source_code(src: &str) -> FileName {
453        let mut hasher = StableHasher::new();
454        src.hash(&mut hasher);
455        FileName::CfgSpec(hasher.finish())
456    }
457
458    pub fn cli_crate_attr_source_code(src: &str) -> FileName {
459        let mut hasher = StableHasher::new();
460        src.hash(&mut hasher);
461        FileName::CliCrateAttr(hasher.finish())
462    }
463
464    pub fn doc_test_source_code(path: PathBuf, line: isize) -> FileName {
465        FileName::DocTest(path, line)
466    }
467
468    pub fn inline_asm_source_code(src: &str) -> FileName {
469        let mut hasher = StableHasher::new();
470        src.hash(&mut hasher);
471        FileName::InlineAsm(hasher.finish())
472    }
473
474    /// Returns the path suitable for reading from the file system on the local host,
475    /// if this information exists.
476    /// Avoid embedding this in build artifacts; see `remapped_path_if_available()` for that.
477    pub fn into_local_path(self) -> Option<PathBuf> {
478        match self {
479            FileName::Real(path) => path.into_local_path(),
480            FileName::DocTest(path, _) => Some(path),
481            _ => None,
482        }
483    }
484}
485
486/// Represents a span.
487///
488/// Spans represent a region of code, used for error reporting. Positions in spans
489/// are *absolute* positions from the beginning of the [`SourceMap`], not positions
490/// relative to [`SourceFile`]s. Methods on the `SourceMap` can be used to relate spans back
491/// to the original source.
492///
493/// You must be careful if the span crosses more than one file, since you will not be
494/// able to use many of the functions on spans in source_map and you cannot assume
495/// that the length of the span is equal to `span.hi - span.lo`; there may be space in the
496/// [`BytePos`] range between files.
497///
498/// `SpanData` is public because `Span` uses a thread-local interner and can't be
499/// sent to other threads, but some pieces of performance infra run in a separate thread.
500/// Using `Span` is generally preferred.
501#[derive(Clone, Copy, Hash, PartialEq, Eq)]
502#[derive_where(PartialOrd, Ord)]
503pub struct SpanData {
504    pub lo: BytePos,
505    pub hi: BytePos,
506    /// Information about where the macro came from, if this piece of
507    /// code was created by a macro expansion.
508    #[derive_where(skip)]
509    // `SyntaxContext` does not implement `Ord`.
510    // The other fields are enough to determine in-file order.
511    pub ctxt: SyntaxContext,
512    #[derive_where(skip)]
513    // `LocalDefId` does not implement `Ord`.
514    // The other fields are enough to determine in-file order.
515    pub parent: Option<LocalDefId>,
516}
517
518impl SpanData {
519    #[inline]
520    pub fn span(&self) -> Span {
521        Span::new(self.lo, self.hi, self.ctxt, self.parent)
522    }
523    #[inline]
524    pub fn with_lo(&self, lo: BytePos) -> Span {
525        Span::new(lo, self.hi, self.ctxt, self.parent)
526    }
527    #[inline]
528    pub fn with_hi(&self, hi: BytePos) -> Span {
529        Span::new(self.lo, hi, self.ctxt, self.parent)
530    }
531    /// Avoid if possible, `Span::map_ctxt` should be preferred.
532    #[inline]
533    fn with_ctxt(&self, ctxt: SyntaxContext) -> Span {
534        Span::new(self.lo, self.hi, ctxt, self.parent)
535    }
536    /// Avoid if possible, `Span::with_parent` should be preferred.
537    #[inline]
538    fn with_parent(&self, parent: Option<LocalDefId>) -> Span {
539        Span::new(self.lo, self.hi, self.ctxt, parent)
540    }
541    /// Returns `true` if this is a dummy span with any hygienic context.
542    #[inline]
543    pub fn is_dummy(self) -> bool {
544        self.lo.0 == 0 && self.hi.0 == 0
545    }
546    /// Returns `true` if `self` fully encloses `other`.
547    pub fn contains(self, other: Self) -> bool {
548        self.lo <= other.lo && other.hi <= self.hi
549    }
550}
551
552impl Default for SpanData {
553    fn default() -> Self {
554        Self { lo: BytePos(0), hi: BytePos(0), ctxt: SyntaxContext::root(), parent: None }
555    }
556}
557
558impl PartialOrd for Span {
559    fn partial_cmp(&self, rhs: &Self) -> Option<Ordering> {
560        PartialOrd::partial_cmp(&self.data(), &rhs.data())
561    }
562}
563impl Ord for Span {
564    fn cmp(&self, rhs: &Self) -> Ordering {
565        Ord::cmp(&self.data(), &rhs.data())
566    }
567}
568
569impl Span {
570    #[inline]
571    pub fn lo(self) -> BytePos {
572        self.data().lo
573    }
574    #[inline]
575    pub fn with_lo(self, lo: BytePos) -> Span {
576        self.data().with_lo(lo)
577    }
578    #[inline]
579    pub fn hi(self) -> BytePos {
580        self.data().hi
581    }
582    #[inline]
583    pub fn with_hi(self, hi: BytePos) -> Span {
584        self.data().with_hi(hi)
585    }
586    #[inline]
587    pub fn with_ctxt(self, ctxt: SyntaxContext) -> Span {
588        self.map_ctxt(|_| ctxt)
589    }
590
591    #[inline]
592    pub fn is_visible(self, sm: &SourceMap) -> bool {
593        !self.is_dummy() && sm.is_span_accessible(self)
594    }
595
596    /// Returns whether this span originates in a foreign crate's external macro.
597    ///
598    /// This is used to test whether a lint should not even begin to figure out whether it should
599    /// be reported on the current node.
600    #[inline]
601    pub fn in_external_macro(self, sm: &SourceMap) -> bool {
602        self.ctxt().in_external_macro(sm)
603    }
604
605    /// Returns `true` if `span` originates in a derive-macro's expansion.
606    pub fn in_derive_expansion(self) -> bool {
607        matches!(self.ctxt().outer_expn_data().kind, ExpnKind::Macro(MacroKind::Derive, _))
608    }
609
610    /// Return whether `span` is generated by `async` or `await`.
611    pub fn is_from_async_await(self) -> bool {
612        matches!(
613            self.ctxt().outer_expn_data().kind,
614            ExpnKind::Desugaring(DesugaringKind::Async | DesugaringKind::Await),
615        )
616    }
617
618    /// Gate suggestions that would not be appropriate in a context the user didn't write.
619    pub fn can_be_used_for_suggestions(self) -> bool {
620        !self.from_expansion()
621        // FIXME: If this span comes from a `derive` macro but it points at code the user wrote,
622        // the callsite span and the span will be pointing at different places. It also means that
623        // we can safely provide suggestions on this span.
624            || (self.in_derive_expansion()
625                && self.parent_callsite().map(|p| (p.lo(), p.hi())) != Some((self.lo(), self.hi())))
626    }
627
628    #[inline]
629    pub fn with_root_ctxt(lo: BytePos, hi: BytePos) -> Span {
630        Span::new(lo, hi, SyntaxContext::root(), None)
631    }
632
633    /// Returns a new span representing an empty span at the beginning of this span.
634    #[inline]
635    pub fn shrink_to_lo(self) -> Span {
636        let span = self.data_untracked();
637        span.with_hi(span.lo)
638    }
639    /// Returns a new span representing an empty span at the end of this span.
640    #[inline]
641    pub fn shrink_to_hi(self) -> Span {
642        let span = self.data_untracked();
643        span.with_lo(span.hi)
644    }
645
646    #[inline]
647    /// Returns `true` if `hi == lo`.
648    pub fn is_empty(self) -> bool {
649        let span = self.data_untracked();
650        span.hi == span.lo
651    }
652
653    /// Returns `self` if `self` is not the dummy span, and `other` otherwise.
654    pub fn substitute_dummy(self, other: Span) -> Span {
655        if self.is_dummy() { other } else { self }
656    }
657
658    /// Returns `true` if `self` fully encloses `other`.
659    pub fn contains(self, other: Span) -> bool {
660        let span = self.data();
661        let other = other.data();
662        span.contains(other)
663    }
664
665    /// Returns `true` if `self` touches `other`.
666    pub fn overlaps(self, other: Span) -> bool {
667        let span = self.data();
668        let other = other.data();
669        span.lo < other.hi && other.lo < span.hi
670    }
671
672    /// Returns `true` if `self` touches or adjoins `other`.
673    pub fn overlaps_or_adjacent(self, other: Span) -> bool {
674        let span = self.data();
675        let other = other.data();
676        span.lo <= other.hi && other.lo <= span.hi
677    }
678
679    /// Returns `true` if the spans are equal with regards to the source text.
680    ///
681    /// Use this instead of `==` when either span could be generated code,
682    /// and you only care that they point to the same bytes of source text.
683    pub fn source_equal(self, other: Span) -> bool {
684        let span = self.data();
685        let other = other.data();
686        span.lo == other.lo && span.hi == other.hi
687    }
688
689    /// Returns `Some(span)`, where the start is trimmed by the end of `other`.
690    pub fn trim_start(self, other: Span) -> Option<Span> {
691        let span = self.data();
692        let other = other.data();
693        if span.hi > other.hi { Some(span.with_lo(cmp::max(span.lo, other.hi))) } else { None }
694    }
695
696    /// Returns `Some(span)`, where the end is trimmed by the start of `other`.
697    pub fn trim_end(self, other: Span) -> Option<Span> {
698        let span = self.data();
699        let other = other.data();
700        if span.lo < other.lo { Some(span.with_hi(cmp::min(span.hi, other.lo))) } else { None }
701    }
702
703    /// Returns the source span -- this is either the supplied span, or the span for
704    /// the macro callsite that expanded to it.
705    pub fn source_callsite(self) -> Span {
706        let ctxt = self.ctxt();
707        if !ctxt.is_root() { ctxt.outer_expn_data().call_site.source_callsite() } else { self }
708    }
709
710    /// The `Span` for the tokens in the previous macro expansion from which `self` was generated,
711    /// if any.
712    pub fn parent_callsite(self) -> Option<Span> {
713        let ctxt = self.ctxt();
714        (!ctxt.is_root()).then(|| ctxt.outer_expn_data().call_site)
715    }
716
717    /// Walk down the expansion ancestors to find a span that's contained within `outer`.
718    ///
719    /// The span returned by this method may have a different [`SyntaxContext`] as `outer`.
720    /// If you need to extend the span, use [`find_ancestor_inside_same_ctxt`] instead,
721    /// because joining spans with different syntax contexts can create unexpected results.
722    ///
723    /// [`find_ancestor_inside_same_ctxt`]: Self::find_ancestor_inside_same_ctxt
724    pub fn find_ancestor_inside(mut self, outer: Span) -> Option<Span> {
725        while !outer.contains(self) {
726            self = self.parent_callsite()?;
727        }
728        Some(self)
729    }
730
731    /// Walk down the expansion ancestors to find a span with the same [`SyntaxContext`] as
732    /// `other`.
733    ///
734    /// Like [`find_ancestor_inside_same_ctxt`], but specifically for when spans might not
735    /// overlap. Take care when using this, and prefer [`find_ancestor_inside`] or
736    /// [`find_ancestor_inside_same_ctxt`] when you know that the spans are nested (modulo
737    /// macro expansion).
738    ///
739    /// [`find_ancestor_inside`]: Self::find_ancestor_inside
740    /// [`find_ancestor_inside_same_ctxt`]: Self::find_ancestor_inside_same_ctxt
741    pub fn find_ancestor_in_same_ctxt(mut self, other: Span) -> Option<Span> {
742        while !self.eq_ctxt(other) {
743            self = self.parent_callsite()?;
744        }
745        Some(self)
746    }
747
748    /// Walk down the expansion ancestors to find a span that's contained within `outer` and
749    /// has the same [`SyntaxContext`] as `outer`.
750    ///
751    /// This method is the combination of [`find_ancestor_inside`] and
752    /// [`find_ancestor_in_same_ctxt`] and should be preferred when extending the returned span.
753    /// If you do not need to modify the span, use [`find_ancestor_inside`] instead.
754    ///
755    /// [`find_ancestor_inside`]: Self::find_ancestor_inside
756    /// [`find_ancestor_in_same_ctxt`]: Self::find_ancestor_in_same_ctxt
757    pub fn find_ancestor_inside_same_ctxt(mut self, outer: Span) -> Option<Span> {
758        while !outer.contains(self) || !self.eq_ctxt(outer) {
759            self = self.parent_callsite()?;
760        }
761        Some(self)
762    }
763
764    /// Recursively walk down the expansion ancestors to find the oldest ancestor span with the same
765    /// [`SyntaxContext`] the initial span.
766    ///
767    /// This method is suitable for peeling through *local* macro expansions to find the "innermost"
768    /// span that is still local and shares the same [`SyntaxContext`]. For example, given
769    ///
770    /// ```ignore (illustrative example, contains type error)
771    ///  macro_rules! outer {
772    ///      ($x: expr) => {
773    ///          inner!($x)
774    ///      }
775    ///  }
776    ///
777    ///  macro_rules! inner {
778    ///      ($x: expr) => {
779    ///          format!("error: {}", $x)
780    ///          //~^ ERROR mismatched types
781    ///      }
782    ///  }
783    ///
784    ///  fn bar(x: &str) -> Result<(), Box<dyn std::error::Error>> {
785    ///      Err(outer!(x))
786    ///  }
787    /// ```
788    ///
789    /// if provided the initial span of `outer!(x)` inside `bar`, this method will recurse
790    /// the parent callsites until we reach `format!("error: {}", $x)`, at which point it is the
791    /// oldest ancestor span that is both still local and shares the same [`SyntaxContext`] as the
792    /// initial span.
793    pub fn find_oldest_ancestor_in_same_ctxt(self) -> Span {
794        let mut cur = self;
795        while cur.eq_ctxt(self)
796            && let Some(parent_callsite) = cur.parent_callsite()
797        {
798            cur = parent_callsite;
799        }
800        cur
801    }
802
803    /// Edition of the crate from which this span came.
804    pub fn edition(self) -> edition::Edition {
805        self.ctxt().edition()
806    }
807
808    /// Is this edition 2015?
809    #[inline]
810    pub fn is_rust_2015(self) -> bool {
811        self.edition().is_rust_2015()
812    }
813
814    /// Are we allowed to use features from the Rust 2018 edition?
815    #[inline]
816    pub fn at_least_rust_2018(self) -> bool {
817        self.edition().at_least_rust_2018()
818    }
819
820    /// Are we allowed to use features from the Rust 2021 edition?
821    #[inline]
822    pub fn at_least_rust_2021(self) -> bool {
823        self.edition().at_least_rust_2021()
824    }
825
826    /// Are we allowed to use features from the Rust 2024 edition?
827    #[inline]
828    pub fn at_least_rust_2024(self) -> bool {
829        self.edition().at_least_rust_2024()
830    }
831
832    /// Returns the source callee.
833    ///
834    /// Returns `None` if the supplied span has no expansion trace,
835    /// else returns the `ExpnData` for the macro definition
836    /// corresponding to the source callsite.
837    pub fn source_callee(self) -> Option<ExpnData> {
838        let mut ctxt = self.ctxt();
839        let mut opt_expn_data = None;
840        while !ctxt.is_root() {
841            let expn_data = ctxt.outer_expn_data();
842            ctxt = expn_data.call_site.ctxt();
843            opt_expn_data = Some(expn_data);
844        }
845        opt_expn_data
846    }
847
848    /// Checks if a span is "internal" to a macro in which `#[unstable]`
849    /// items can be used (that is, a macro marked with
850    /// `#[allow_internal_unstable]`).
851    pub fn allows_unstable(self, feature: Symbol) -> bool {
852        self.ctxt()
853            .outer_expn_data()
854            .allow_internal_unstable
855            .is_some_and(|features| features.contains(&feature))
856    }
857
858    /// Checks if this span arises from a compiler desugaring of kind `kind`.
859    pub fn is_desugaring(self, kind: DesugaringKind) -> bool {
860        match self.ctxt().outer_expn_data().kind {
861            ExpnKind::Desugaring(k) => k == kind,
862            _ => false,
863        }
864    }
865
866    /// Returns the compiler desugaring that created this span, or `None`
867    /// if this span is not from a desugaring.
868    pub fn desugaring_kind(self) -> Option<DesugaringKind> {
869        match self.ctxt().outer_expn_data().kind {
870            ExpnKind::Desugaring(k) => Some(k),
871            _ => None,
872        }
873    }
874
875    /// Checks if a span is "internal" to a macro in which `unsafe`
876    /// can be used without triggering the `unsafe_code` lint.
877    /// (that is, a macro marked with `#[allow_internal_unsafe]`).
878    pub fn allows_unsafe(self) -> bool {
879        self.ctxt().outer_expn_data().allow_internal_unsafe
880    }
881
882    pub fn macro_backtrace(mut self) -> impl Iterator<Item = ExpnData> {
883        let mut prev_span = DUMMY_SP;
884        iter::from_fn(move || {
885            loop {
886                let ctxt = self.ctxt();
887                if ctxt.is_root() {
888                    return None;
889                }
890
891                let expn_data = ctxt.outer_expn_data();
892                let is_recursive = expn_data.call_site.source_equal(prev_span);
893
894                prev_span = self;
895                self = expn_data.call_site;
896
897                // Don't print recursive invocations.
898                if !is_recursive {
899                    return Some(expn_data);
900                }
901            }
902        })
903    }
904
905    /// Splits a span into two composite spans around a certain position.
906    pub fn split_at(self, pos: u32) -> (Span, Span) {
907        let len = self.hi().0 - self.lo().0;
908        debug_assert!(pos <= len);
909
910        let split_pos = BytePos(self.lo().0 + pos);
911        (
912            Span::new(self.lo(), split_pos, self.ctxt(), self.parent()),
913            Span::new(split_pos, self.hi(), self.ctxt(), self.parent()),
914        )
915    }
916
917    /// Check if you can select metavar spans for the given spans to get matching contexts.
918    fn try_metavars(a: SpanData, b: SpanData, a_orig: Span, b_orig: Span) -> (SpanData, SpanData) {
919        match with_metavar_spans(|mspans| (mspans.get(a_orig), mspans.get(b_orig))) {
920            (None, None) => {}
921            (Some(meta_a), None) => {
922                let meta_a = meta_a.data();
923                if meta_a.ctxt == b.ctxt {
924                    return (meta_a, b);
925                }
926            }
927            (None, Some(meta_b)) => {
928                let meta_b = meta_b.data();
929                if a.ctxt == meta_b.ctxt {
930                    return (a, meta_b);
931                }
932            }
933            (Some(meta_a), Some(meta_b)) => {
934                let meta_b = meta_b.data();
935                if a.ctxt == meta_b.ctxt {
936                    return (a, meta_b);
937                }
938                let meta_a = meta_a.data();
939                if meta_a.ctxt == b.ctxt {
940                    return (meta_a, b);
941                } else if meta_a.ctxt == meta_b.ctxt {
942                    return (meta_a, meta_b);
943                }
944            }
945        }
946
947        (a, b)
948    }
949
950    /// Prepare two spans to a combine operation like `to` or `between`.
951    fn prepare_to_combine(
952        a_orig: Span,
953        b_orig: Span,
954    ) -> Result<(SpanData, SpanData, Option<LocalDefId>), Span> {
955        let (a, b) = (a_orig.data(), b_orig.data());
956        if a.ctxt == b.ctxt {
957            return Ok((a, b, if a.parent == b.parent { a.parent } else { None }));
958        }
959
960        let (a, b) = Span::try_metavars(a, b, a_orig, b_orig);
961        if a.ctxt == b.ctxt {
962            return Ok((a, b, if a.parent == b.parent { a.parent } else { None }));
963        }
964
965        // Context mismatches usually happen when procedural macros combine spans copied from
966        // the macro input with spans produced by the macro (`Span::*_site`).
967        // In that case we consider the combined span to be produced by the macro and return
968        // the original macro-produced span as the result.
969        // Otherwise we just fall back to returning the first span.
970        // Combining locations typically doesn't make sense in case of context mismatches.
971        // `is_root` here is a fast path optimization.
972        let a_is_callsite = a.ctxt.is_root() || a.ctxt == b.span().source_callsite().ctxt();
973        Err(if a_is_callsite { b_orig } else { a_orig })
974    }
975
976    /// This span, but in a larger context, may switch to the metavariable span if suitable.
977    pub fn with_neighbor(self, neighbor: Span) -> Span {
978        match Span::prepare_to_combine(self, neighbor) {
979            Ok((this, ..)) => this.span(),
980            Err(_) => self,
981        }
982    }
983
984    /// Returns a `Span` that would enclose both `self` and `end`.
985    ///
986    /// Note that this can also be used to extend the span "backwards":
987    /// `start.to(end)` and `end.to(start)` return the same `Span`.
988    ///
989    /// ```text
990    ///     ____             ___
991    ///     self lorem ipsum end
992    ///     ^^^^^^^^^^^^^^^^^^^^
993    /// ```
994    pub fn to(self, end: Span) -> Span {
995        match Span::prepare_to_combine(self, end) {
996            Ok((from, to, parent)) => {
997                Span::new(cmp::min(from.lo, to.lo), cmp::max(from.hi, to.hi), from.ctxt, parent)
998            }
999            Err(fallback) => fallback,
1000        }
1001    }
1002
1003    /// Returns a `Span` between the end of `self` to the beginning of `end`.
1004    ///
1005    /// ```text
1006    ///     ____             ___
1007    ///     self lorem ipsum end
1008    ///         ^^^^^^^^^^^^^
1009    /// ```
1010    pub fn between(self, end: Span) -> Span {
1011        match Span::prepare_to_combine(self, end) {
1012            Ok((from, to, parent)) => {
1013                Span::new(cmp::min(from.hi, to.hi), cmp::max(from.lo, to.lo), from.ctxt, parent)
1014            }
1015            Err(fallback) => fallback,
1016        }
1017    }
1018
1019    /// Returns a `Span` from the beginning of `self` until the beginning of `end`.
1020    ///
1021    /// ```text
1022    ///     ____             ___
1023    ///     self lorem ipsum end
1024    ///     ^^^^^^^^^^^^^^^^^
1025    /// ```
1026    pub fn until(self, end: Span) -> Span {
1027        match Span::prepare_to_combine(self, end) {
1028            Ok((from, to, parent)) => {
1029                Span::new(cmp::min(from.lo, to.lo), cmp::max(from.lo, to.lo), from.ctxt, parent)
1030            }
1031            Err(fallback) => fallback,
1032        }
1033    }
1034
1035    /// Returns the `Span` within the syntax context of "within". This is useful when
1036    /// "self" is an expansion from a macro variable, since this can be used for
1037    /// providing extra macro expansion context for certain errors.
1038    ///
1039    /// ```text
1040    /// macro_rules! m {
1041    ///     ($ident:ident) => { ($ident,) }
1042    /// }
1043    ///
1044    /// m!(outer_ident);
1045    /// ```
1046    ///
1047    /// If "self" is the span of the outer_ident, and "within" is the span of the `($ident,)`
1048    /// expr, then this will return the span of the `$ident` macro variable.
1049    pub fn within_macro(self, within: Span, sm: &SourceMap) -> Option<Span> {
1050        match Span::prepare_to_combine(self, within) {
1051            // Only return something if it doesn't overlap with the original span,
1052            // and the span isn't "imported" (i.e. from unavailable sources).
1053            // FIXME: This does limit the usefulness of the error when the macro is
1054            // from a foreign crate; we could also take into account `-Zmacro-backtrace`,
1055            // which doesn't redact this span (but that would mean passing in even more
1056            // args to this function, lol).
1057            Ok((self_, _, parent))
1058                if self_.hi < self.lo() || self.hi() < self_.lo && !sm.is_imported(within) =>
1059            {
1060                Some(Span::new(self_.lo, self_.hi, self_.ctxt, parent))
1061            }
1062            _ => None,
1063        }
1064    }
1065
1066    pub fn from_inner(self, inner: InnerSpan) -> Span {
1067        let span = self.data();
1068        Span::new(
1069            span.lo + BytePos::from_usize(inner.start),
1070            span.lo + BytePos::from_usize(inner.end),
1071            span.ctxt,
1072            span.parent,
1073        )
1074    }
1075
1076    /// Equivalent of `Span::def_site` from the proc macro API,
1077    /// except that the location is taken from the `self` span.
1078    pub fn with_def_site_ctxt(self, expn_id: ExpnId) -> Span {
1079        self.with_ctxt_from_mark(expn_id, Transparency::Opaque)
1080    }
1081
1082    /// Equivalent of `Span::call_site` from the proc macro API,
1083    /// except that the location is taken from the `self` span.
1084    pub fn with_call_site_ctxt(self, expn_id: ExpnId) -> Span {
1085        self.with_ctxt_from_mark(expn_id, Transparency::Transparent)
1086    }
1087
1088    /// Equivalent of `Span::mixed_site` from the proc macro API,
1089    /// except that the location is taken from the `self` span.
1090    pub fn with_mixed_site_ctxt(self, expn_id: ExpnId) -> Span {
1091        self.with_ctxt_from_mark(expn_id, Transparency::SemiOpaque)
1092    }
1093
1094    /// Produces a span with the same location as `self` and context produced by a macro with the
1095    /// given ID and transparency, assuming that macro was defined directly and not produced by
1096    /// some other macro (which is the case for built-in and procedural macros).
1097    fn with_ctxt_from_mark(self, expn_id: ExpnId, transparency: Transparency) -> Span {
1098        self.with_ctxt(SyntaxContext::root().apply_mark(expn_id, transparency))
1099    }
1100
1101    #[inline]
1102    pub fn apply_mark(self, expn_id: ExpnId, transparency: Transparency) -> Span {
1103        self.map_ctxt(|ctxt| ctxt.apply_mark(expn_id, transparency))
1104    }
1105
1106    #[inline]
1107    pub fn remove_mark(&mut self) -> ExpnId {
1108        let mut mark = ExpnId::root();
1109        *self = self.map_ctxt(|mut ctxt| {
1110            mark = ctxt.remove_mark();
1111            ctxt
1112        });
1113        mark
1114    }
1115
1116    #[inline]
1117    pub fn adjust(&mut self, expn_id: ExpnId) -> Option<ExpnId> {
1118        let mut mark = None;
1119        *self = self.map_ctxt(|mut ctxt| {
1120            mark = ctxt.adjust(expn_id);
1121            ctxt
1122        });
1123        mark
1124    }
1125
1126    #[inline]
1127    pub fn normalize_to_macros_2_0_and_adjust(&mut self, expn_id: ExpnId) -> Option<ExpnId> {
1128        let mut mark = None;
1129        *self = self.map_ctxt(|mut ctxt| {
1130            mark = ctxt.normalize_to_macros_2_0_and_adjust(expn_id);
1131            ctxt
1132        });
1133        mark
1134    }
1135
1136    #[inline]
1137    pub fn glob_adjust(&mut self, expn_id: ExpnId, glob_span: Span) -> Option<Option<ExpnId>> {
1138        let mut mark = None;
1139        *self = self.map_ctxt(|mut ctxt| {
1140            mark = ctxt.glob_adjust(expn_id, glob_span);
1141            ctxt
1142        });
1143        mark
1144    }
1145
1146    #[inline]
1147    pub fn reverse_glob_adjust(
1148        &mut self,
1149        expn_id: ExpnId,
1150        glob_span: Span,
1151    ) -> Option<Option<ExpnId>> {
1152        let mut mark = None;
1153        *self = self.map_ctxt(|mut ctxt| {
1154            mark = ctxt.reverse_glob_adjust(expn_id, glob_span);
1155            ctxt
1156        });
1157        mark
1158    }
1159
1160    #[inline]
1161    pub fn normalize_to_macros_2_0(self) -> Span {
1162        self.map_ctxt(|ctxt| ctxt.normalize_to_macros_2_0())
1163    }
1164
1165    #[inline]
1166    pub fn normalize_to_macro_rules(self) -> Span {
1167        self.map_ctxt(|ctxt| ctxt.normalize_to_macro_rules())
1168    }
1169}
1170
1171impl Default for Span {
1172    fn default() -> Self {
1173        DUMMY_SP
1174    }
1175}
1176
1177rustc_index::newtype_index! {
1178    #[orderable]
1179    #[debug_format = "AttrId({})"]
1180    pub struct AttrId {}
1181}
1182
1183/// This trait is used to allow encoder specific encodings of certain types.
1184/// It is similar to rustc_type_ir's TyEncoder.
1185pub trait SpanEncoder: Encoder {
1186    fn encode_span(&mut self, span: Span);
1187    fn encode_symbol(&mut self, symbol: Symbol);
1188    fn encode_expn_id(&mut self, expn_id: ExpnId);
1189    fn encode_syntax_context(&mut self, syntax_context: SyntaxContext);
1190    /// As a local identifier, a `CrateNum` is only meaningful within its context, e.g. within a tcx.
1191    /// Therefore, make sure to include the context when encode a `CrateNum`.
1192    fn encode_crate_num(&mut self, crate_num: CrateNum);
1193    fn encode_def_index(&mut self, def_index: DefIndex);
1194    fn encode_def_id(&mut self, def_id: DefId);
1195}
1196
1197impl SpanEncoder for FileEncoder {
1198    fn encode_span(&mut self, span: Span) {
1199        let span = span.data();
1200        span.lo.encode(self);
1201        span.hi.encode(self);
1202    }
1203
1204    fn encode_symbol(&mut self, symbol: Symbol) {
1205        self.emit_str(symbol.as_str());
1206    }
1207
1208    fn encode_expn_id(&mut self, _expn_id: ExpnId) {
1209        panic!("cannot encode `ExpnId` with `FileEncoder`");
1210    }
1211
1212    fn encode_syntax_context(&mut self, _syntax_context: SyntaxContext) {
1213        panic!("cannot encode `SyntaxContext` with `FileEncoder`");
1214    }
1215
1216    fn encode_crate_num(&mut self, crate_num: CrateNum) {
1217        self.emit_u32(crate_num.as_u32());
1218    }
1219
1220    fn encode_def_index(&mut self, _def_index: DefIndex) {
1221        panic!("cannot encode `DefIndex` with `FileEncoder`");
1222    }
1223
1224    fn encode_def_id(&mut self, def_id: DefId) {
1225        def_id.krate.encode(self);
1226        def_id.index.encode(self);
1227    }
1228}
1229
1230impl<E: SpanEncoder> Encodable<E> for Span {
1231    fn encode(&self, s: &mut E) {
1232        s.encode_span(*self);
1233    }
1234}
1235
1236impl<E: SpanEncoder> Encodable<E> for Symbol {
1237    fn encode(&self, s: &mut E) {
1238        s.encode_symbol(*self);
1239    }
1240}
1241
1242impl<E: SpanEncoder> Encodable<E> for ExpnId {
1243    fn encode(&self, s: &mut E) {
1244        s.encode_expn_id(*self)
1245    }
1246}
1247
1248impl<E: SpanEncoder> Encodable<E> for SyntaxContext {
1249    fn encode(&self, s: &mut E) {
1250        s.encode_syntax_context(*self)
1251    }
1252}
1253
1254impl<E: SpanEncoder> Encodable<E> for CrateNum {
1255    fn encode(&self, s: &mut E) {
1256        s.encode_crate_num(*self)
1257    }
1258}
1259
1260impl<E: SpanEncoder> Encodable<E> for DefIndex {
1261    fn encode(&self, s: &mut E) {
1262        s.encode_def_index(*self)
1263    }
1264}
1265
1266impl<E: SpanEncoder> Encodable<E> for DefId {
1267    fn encode(&self, s: &mut E) {
1268        s.encode_def_id(*self)
1269    }
1270}
1271
1272impl<E: SpanEncoder> Encodable<E> for AttrId {
1273    fn encode(&self, _s: &mut E) {
1274        // A fresh id will be generated when decoding
1275    }
1276}
1277
1278/// This trait is used to allow decoder specific encodings of certain types.
1279/// It is similar to rustc_type_ir's TyDecoder.
1280pub trait SpanDecoder: Decoder {
1281    fn decode_span(&mut self) -> Span;
1282    fn decode_symbol(&mut self) -> Symbol;
1283    fn decode_expn_id(&mut self) -> ExpnId;
1284    fn decode_syntax_context(&mut self) -> SyntaxContext;
1285    fn decode_crate_num(&mut self) -> CrateNum;
1286    fn decode_def_index(&mut self) -> DefIndex;
1287    fn decode_def_id(&mut self) -> DefId;
1288    fn decode_attr_id(&mut self) -> AttrId;
1289}
1290
1291impl SpanDecoder for MemDecoder<'_> {
1292    fn decode_span(&mut self) -> Span {
1293        let lo = Decodable::decode(self);
1294        let hi = Decodable::decode(self);
1295
1296        Span::new(lo, hi, SyntaxContext::root(), None)
1297    }
1298
1299    fn decode_symbol(&mut self) -> Symbol {
1300        Symbol::intern(self.read_str())
1301    }
1302
1303    fn decode_expn_id(&mut self) -> ExpnId {
1304        panic!("cannot decode `ExpnId` with `MemDecoder`");
1305    }
1306
1307    fn decode_syntax_context(&mut self) -> SyntaxContext {
1308        panic!("cannot decode `SyntaxContext` with `MemDecoder`");
1309    }
1310
1311    fn decode_crate_num(&mut self) -> CrateNum {
1312        CrateNum::from_u32(self.read_u32())
1313    }
1314
1315    fn decode_def_index(&mut self) -> DefIndex {
1316        panic!("cannot decode `DefIndex` with `MemDecoder`");
1317    }
1318
1319    fn decode_def_id(&mut self) -> DefId {
1320        DefId { krate: Decodable::decode(self), index: Decodable::decode(self) }
1321    }
1322
1323    fn decode_attr_id(&mut self) -> AttrId {
1324        panic!("cannot decode `AttrId` with `MemDecoder`");
1325    }
1326}
1327
1328impl<D: SpanDecoder> Decodable<D> for Span {
1329    fn decode(s: &mut D) -> Span {
1330        s.decode_span()
1331    }
1332}
1333
1334impl<D: SpanDecoder> Decodable<D> for Symbol {
1335    fn decode(s: &mut D) -> Symbol {
1336        s.decode_symbol()
1337    }
1338}
1339
1340impl<D: SpanDecoder> Decodable<D> for ExpnId {
1341    fn decode(s: &mut D) -> ExpnId {
1342        s.decode_expn_id()
1343    }
1344}
1345
1346impl<D: SpanDecoder> Decodable<D> for SyntaxContext {
1347    fn decode(s: &mut D) -> SyntaxContext {
1348        s.decode_syntax_context()
1349    }
1350}
1351
1352impl<D: SpanDecoder> Decodable<D> for CrateNum {
1353    fn decode(s: &mut D) -> CrateNum {
1354        s.decode_crate_num()
1355    }
1356}
1357
1358impl<D: SpanDecoder> Decodable<D> for DefIndex {
1359    fn decode(s: &mut D) -> DefIndex {
1360        s.decode_def_index()
1361    }
1362}
1363
1364impl<D: SpanDecoder> Decodable<D> for DefId {
1365    fn decode(s: &mut D) -> DefId {
1366        s.decode_def_id()
1367    }
1368}
1369
1370impl<D: SpanDecoder> Decodable<D> for AttrId {
1371    fn decode(s: &mut D) -> AttrId {
1372        s.decode_attr_id()
1373    }
1374}
1375
1376impl fmt::Debug for Span {
1377    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1378        // Use the global `SourceMap` to print the span. If that's not
1379        // available, fall back to printing the raw values.
1380
1381        fn fallback(span: Span, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1382            f.debug_struct("Span")
1383                .field("lo", &span.lo())
1384                .field("hi", &span.hi())
1385                .field("ctxt", &span.ctxt())
1386                .finish()
1387        }
1388
1389        if SESSION_GLOBALS.is_set() {
1390            with_session_globals(|session_globals| {
1391                if let Some(source_map) = &session_globals.source_map {
1392                    write!(f, "{} ({:?})", source_map.span_to_diagnostic_string(*self), self.ctxt())
1393                } else {
1394                    fallback(*self, f)
1395                }
1396            })
1397        } else {
1398            fallback(*self, f)
1399        }
1400    }
1401}
1402
1403impl fmt::Debug for SpanData {
1404    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1405        fmt::Debug::fmt(&self.span(), f)
1406    }
1407}
1408
1409/// Identifies an offset of a multi-byte character in a `SourceFile`.
1410#[derive(Copy, Clone, Encodable, Decodable, Eq, PartialEq, Debug, HashStable_Generic)]
1411pub struct MultiByteChar {
1412    /// The relative offset of the character in the `SourceFile`.
1413    pub pos: RelativeBytePos,
1414    /// The number of bytes, `>= 2`.
1415    pub bytes: u8,
1416}
1417
1418/// Identifies an offset of a character that was normalized away from `SourceFile`.
1419#[derive(Copy, Clone, Encodable, Decodable, Eq, PartialEq, Debug, HashStable_Generic)]
1420pub struct NormalizedPos {
1421    /// The relative offset of the character in the `SourceFile`.
1422    pub pos: RelativeBytePos,
1423    /// The difference between original and normalized string at position.
1424    pub diff: u32,
1425}
1426
1427#[derive(PartialEq, Eq, Clone, Debug)]
1428pub enum ExternalSource {
1429    /// No external source has to be loaded, since the `SourceFile` represents a local crate.
1430    Unneeded,
1431    Foreign {
1432        kind: ExternalSourceKind,
1433        /// Index of the file inside metadata.
1434        metadata_index: u32,
1435    },
1436}
1437
1438/// The state of the lazy external source loading mechanism of a `SourceFile`.
1439#[derive(PartialEq, Eq, Clone, Debug)]
1440pub enum ExternalSourceKind {
1441    /// The external source has been loaded already.
1442    Present(Arc<String>),
1443    /// No attempt has been made to load the external source.
1444    AbsentOk,
1445    /// A failed attempt has been made to load the external source.
1446    AbsentErr,
1447}
1448
1449impl ExternalSource {
1450    pub fn get_source(&self) -> Option<&str> {
1451        match self {
1452            ExternalSource::Foreign { kind: ExternalSourceKind::Present(src), .. } => Some(src),
1453            _ => None,
1454        }
1455    }
1456}
1457
1458#[derive(Debug)]
1459pub struct OffsetOverflowError;
1460
1461#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash, Encodable, Decodable)]
1462#[derive(HashStable_Generic)]
1463pub enum SourceFileHashAlgorithm {
1464    Md5,
1465    Sha1,
1466    Sha256,
1467    Blake3,
1468}
1469
1470impl Display for SourceFileHashAlgorithm {
1471    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1472        f.write_str(match self {
1473            Self::Md5 => "md5",
1474            Self::Sha1 => "sha1",
1475            Self::Sha256 => "sha256",
1476            Self::Blake3 => "blake3",
1477        })
1478    }
1479}
1480
1481impl FromStr for SourceFileHashAlgorithm {
1482    type Err = ();
1483
1484    fn from_str(s: &str) -> Result<SourceFileHashAlgorithm, ()> {
1485        match s {
1486            "md5" => Ok(SourceFileHashAlgorithm::Md5),
1487            "sha1" => Ok(SourceFileHashAlgorithm::Sha1),
1488            "sha256" => Ok(SourceFileHashAlgorithm::Sha256),
1489            "blake3" => Ok(SourceFileHashAlgorithm::Blake3),
1490            _ => Err(()),
1491        }
1492    }
1493}
1494
1495/// The hash of the on-disk source file used for debug info and cargo freshness checks.
1496#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash)]
1497#[derive(HashStable_Generic, Encodable, Decodable)]
1498pub struct SourceFileHash {
1499    pub kind: SourceFileHashAlgorithm,
1500    value: [u8; 32],
1501}
1502
1503impl Display for SourceFileHash {
1504    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1505        write!(f, "{}=", self.kind)?;
1506        for byte in self.value[0..self.hash_len()].into_iter() {
1507            write!(f, "{byte:02x}")?;
1508        }
1509        Ok(())
1510    }
1511}
1512
1513impl SourceFileHash {
1514    pub fn new_in_memory(kind: SourceFileHashAlgorithm, src: impl AsRef<[u8]>) -> SourceFileHash {
1515        let mut hash = SourceFileHash { kind, value: Default::default() };
1516        let len = hash.hash_len();
1517        let value = &mut hash.value[..len];
1518        let data = src.as_ref();
1519        match kind {
1520            SourceFileHashAlgorithm::Md5 => {
1521                value.copy_from_slice(&Md5::digest(data));
1522            }
1523            SourceFileHashAlgorithm::Sha1 => {
1524                value.copy_from_slice(&Sha1::digest(data));
1525            }
1526            SourceFileHashAlgorithm::Sha256 => {
1527                value.copy_from_slice(&Sha256::digest(data));
1528            }
1529            SourceFileHashAlgorithm::Blake3 => value.copy_from_slice(blake3::hash(data).as_bytes()),
1530        };
1531        hash
1532    }
1533
1534    pub fn new(kind: SourceFileHashAlgorithm, src: impl Read) -> Result<SourceFileHash, io::Error> {
1535        let mut hash = SourceFileHash { kind, value: Default::default() };
1536        let len = hash.hash_len();
1537        let value = &mut hash.value[..len];
1538        // Buffer size is the recommended amount to fully leverage SIMD instructions on AVX-512 as per
1539        // blake3 documentation.
1540        let mut buf = vec![0; 16 * 1024];
1541
1542        fn digest<T>(
1543            mut hasher: T,
1544            mut update: impl FnMut(&mut T, &[u8]),
1545            finish: impl FnOnce(T, &mut [u8]),
1546            mut src: impl Read,
1547            buf: &mut [u8],
1548            value: &mut [u8],
1549        ) -> Result<(), io::Error> {
1550            loop {
1551                let bytes_read = src.read(buf)?;
1552                if bytes_read == 0 {
1553                    break;
1554                }
1555                update(&mut hasher, &buf[0..bytes_read]);
1556            }
1557            finish(hasher, value);
1558            Ok(())
1559        }
1560
1561        match kind {
1562            SourceFileHashAlgorithm::Sha256 => {
1563                digest(
1564                    Sha256::new(),
1565                    |h, b| {
1566                        h.update(b);
1567                    },
1568                    |h, out| out.copy_from_slice(&h.finalize()),
1569                    src,
1570                    &mut buf,
1571                    value,
1572                )?;
1573            }
1574            SourceFileHashAlgorithm::Sha1 => {
1575                digest(
1576                    Sha1::new(),
1577                    |h, b| {
1578                        h.update(b);
1579                    },
1580                    |h, out| out.copy_from_slice(&h.finalize()),
1581                    src,
1582                    &mut buf,
1583                    value,
1584                )?;
1585            }
1586            SourceFileHashAlgorithm::Md5 => {
1587                digest(
1588                    Md5::new(),
1589                    |h, b| {
1590                        h.update(b);
1591                    },
1592                    |h, out| out.copy_from_slice(&h.finalize()),
1593                    src,
1594                    &mut buf,
1595                    value,
1596                )?;
1597            }
1598            SourceFileHashAlgorithm::Blake3 => {
1599                digest(
1600                    blake3::Hasher::new(),
1601                    |h, b| {
1602                        h.update(b);
1603                    },
1604                    |h, out| out.copy_from_slice(h.finalize().as_bytes()),
1605                    src,
1606                    &mut buf,
1607                    value,
1608                )?;
1609            }
1610        }
1611        Ok(hash)
1612    }
1613
1614    /// Check if the stored hash matches the hash of the string.
1615    pub fn matches(&self, src: &str) -> bool {
1616        Self::new_in_memory(self.kind, src.as_bytes()) == *self
1617    }
1618
1619    /// The bytes of the hash.
1620    pub fn hash_bytes(&self) -> &[u8] {
1621        let len = self.hash_len();
1622        &self.value[..len]
1623    }
1624
1625    fn hash_len(&self) -> usize {
1626        match self.kind {
1627            SourceFileHashAlgorithm::Md5 => 16,
1628            SourceFileHashAlgorithm::Sha1 => 20,
1629            SourceFileHashAlgorithm::Sha256 | SourceFileHashAlgorithm::Blake3 => 32,
1630        }
1631    }
1632}
1633
1634#[derive(Clone)]
1635pub enum SourceFileLines {
1636    /// The source file lines, in decoded (random-access) form.
1637    Lines(Vec<RelativeBytePos>),
1638
1639    /// The source file lines, in undecoded difference list form.
1640    Diffs(SourceFileDiffs),
1641}
1642
1643impl SourceFileLines {
1644    pub fn is_lines(&self) -> bool {
1645        matches!(self, SourceFileLines::Lines(_))
1646    }
1647}
1648
1649/// The source file lines in difference list form. This matches the form
1650/// used within metadata, which saves space by exploiting the fact that the
1651/// lines list is sorted and individual lines are usually not that long.
1652///
1653/// We read it directly from metadata and only decode it into `Lines` form
1654/// when necessary. This is a significant performance win, especially for
1655/// small crates where very little of `std`'s metadata is used.
1656#[derive(Clone)]
1657pub struct SourceFileDiffs {
1658    /// Always 1, 2, or 4. Always as small as possible, while being big
1659    /// enough to hold the length of the longest line in the source file.
1660    /// The 1 case is by far the most common.
1661    bytes_per_diff: usize,
1662
1663    /// The number of diffs encoded in `raw_diffs`. Always one less than
1664    /// the number of lines in the source file.
1665    num_diffs: usize,
1666
1667    /// The diffs in "raw" form. Each segment of `bytes_per_diff` length
1668    /// encodes one little-endian diff. Note that they aren't LEB128
1669    /// encoded. This makes for much faster decoding. Besides, the
1670    /// bytes_per_diff==1 case is by far the most common, and LEB128
1671    /// encoding has no effect on that case.
1672    raw_diffs: Vec<u8>,
1673}
1674
1675/// A single source in the [`SourceMap`].
1676pub struct SourceFile {
1677    /// The name of the file that the source came from. Source that doesn't
1678    /// originate from files has names between angle brackets by convention
1679    /// (e.g., `<anon>`).
1680    pub name: FileName,
1681    /// The complete source code.
1682    pub src: Option<Arc<String>>,
1683    /// The source code's hash.
1684    pub src_hash: SourceFileHash,
1685    /// Used to enable cargo to use checksums to check if a crate is fresh rather
1686    /// than mtimes. This might be the same as `src_hash`, and if the requested algorithm
1687    /// is identical we won't compute it twice.
1688    pub checksum_hash: Option<SourceFileHash>,
1689    /// The external source code (used for external crates, which will have a `None`
1690    /// value as `self.src`.
1691    pub external_src: FreezeLock<ExternalSource>,
1692    /// The start position of this source in the `SourceMap`.
1693    pub start_pos: BytePos,
1694    /// The byte length of this source.
1695    pub source_len: RelativeBytePos,
1696    /// Locations of lines beginnings in the source code.
1697    pub lines: FreezeLock<SourceFileLines>,
1698    /// Locations of multi-byte characters in the source code.
1699    pub multibyte_chars: Vec<MultiByteChar>,
1700    /// Locations of characters removed during normalization.
1701    pub normalized_pos: Vec<NormalizedPos>,
1702    /// A hash of the filename & crate-id, used for uniquely identifying source
1703    /// files within the crate graph and for speeding up hashing in incremental
1704    /// compilation.
1705    pub stable_id: StableSourceFileId,
1706    /// Indicates which crate this `SourceFile` was imported from.
1707    pub cnum: CrateNum,
1708}
1709
1710impl Clone for SourceFile {
1711    fn clone(&self) -> Self {
1712        Self {
1713            name: self.name.clone(),
1714            src: self.src.clone(),
1715            src_hash: self.src_hash,
1716            checksum_hash: self.checksum_hash,
1717            external_src: self.external_src.clone(),
1718            start_pos: self.start_pos,
1719            source_len: self.source_len,
1720            lines: self.lines.clone(),
1721            multibyte_chars: self.multibyte_chars.clone(),
1722            normalized_pos: self.normalized_pos.clone(),
1723            stable_id: self.stable_id,
1724            cnum: self.cnum,
1725        }
1726    }
1727}
1728
1729impl<S: SpanEncoder> Encodable<S> for SourceFile {
1730    fn encode(&self, s: &mut S) {
1731        self.name.encode(s);
1732        self.src_hash.encode(s);
1733        self.checksum_hash.encode(s);
1734        // Do not encode `start_pos` as it's global state for this session.
1735        self.source_len.encode(s);
1736
1737        // We are always in `Lines` form by the time we reach here.
1738        assert!(self.lines.read().is_lines());
1739        let lines = self.lines();
1740        // Store the length.
1741        s.emit_u32(lines.len() as u32);
1742
1743        // Compute and store the difference list.
1744        if lines.len() != 0 {
1745            let max_line_length = if lines.len() == 1 {
1746                0
1747            } else {
1748                lines
1749                    .array_windows()
1750                    .map(|&[fst, snd]| snd - fst)
1751                    .map(|bp| bp.to_usize())
1752                    .max()
1753                    .unwrap()
1754            };
1755
1756            let bytes_per_diff: usize = match max_line_length {
1757                0..=0xFF => 1,
1758                0x100..=0xFFFF => 2,
1759                _ => 4,
1760            };
1761
1762            // Encode the number of bytes used per diff.
1763            s.emit_u8(bytes_per_diff as u8);
1764
1765            // Encode the first element.
1766            assert_eq!(lines[0], RelativeBytePos(0));
1767
1768            // Encode the difference list.
1769            let diff_iter = lines.array_windows().map(|&[fst, snd]| snd - fst);
1770            let num_diffs = lines.len() - 1;
1771            let mut raw_diffs;
1772            match bytes_per_diff {
1773                1 => {
1774                    raw_diffs = Vec::with_capacity(num_diffs);
1775                    for diff in diff_iter {
1776                        raw_diffs.push(diff.0 as u8);
1777                    }
1778                }
1779                2 => {
1780                    raw_diffs = Vec::with_capacity(bytes_per_diff * num_diffs);
1781                    for diff in diff_iter {
1782                        raw_diffs.extend_from_slice(&(diff.0 as u16).to_le_bytes());
1783                    }
1784                }
1785                4 => {
1786                    raw_diffs = Vec::with_capacity(bytes_per_diff * num_diffs);
1787                    for diff in diff_iter {
1788                        raw_diffs.extend_from_slice(&(diff.0).to_le_bytes());
1789                    }
1790                }
1791                _ => unreachable!(),
1792            }
1793            s.emit_raw_bytes(&raw_diffs);
1794        }
1795
1796        self.multibyte_chars.encode(s);
1797        self.stable_id.encode(s);
1798        self.normalized_pos.encode(s);
1799        self.cnum.encode(s);
1800    }
1801}
1802
1803impl<D: SpanDecoder> Decodable<D> for SourceFile {
1804    fn decode(d: &mut D) -> SourceFile {
1805        let name: FileName = Decodable::decode(d);
1806        let src_hash: SourceFileHash = Decodable::decode(d);
1807        let checksum_hash: Option<SourceFileHash> = Decodable::decode(d);
1808        let source_len: RelativeBytePos = Decodable::decode(d);
1809        let lines = {
1810            let num_lines: u32 = Decodable::decode(d);
1811            if num_lines > 0 {
1812                // Read the number of bytes used per diff.
1813                let bytes_per_diff = d.read_u8() as usize;
1814
1815                // Read the difference list.
1816                let num_diffs = num_lines as usize - 1;
1817                let raw_diffs = d.read_raw_bytes(bytes_per_diff * num_diffs).to_vec();
1818                SourceFileLines::Diffs(SourceFileDiffs { bytes_per_diff, num_diffs, raw_diffs })
1819            } else {
1820                SourceFileLines::Lines(vec![])
1821            }
1822        };
1823        let multibyte_chars: Vec<MultiByteChar> = Decodable::decode(d);
1824        let stable_id = Decodable::decode(d);
1825        let normalized_pos: Vec<NormalizedPos> = Decodable::decode(d);
1826        let cnum: CrateNum = Decodable::decode(d);
1827        SourceFile {
1828            name,
1829            start_pos: BytePos::from_u32(0),
1830            source_len,
1831            src: None,
1832            src_hash,
1833            checksum_hash,
1834            // Unused - the metadata decoder will construct
1835            // a new SourceFile, filling in `external_src` properly
1836            external_src: FreezeLock::frozen(ExternalSource::Unneeded),
1837            lines: FreezeLock::new(lines),
1838            multibyte_chars,
1839            normalized_pos,
1840            stable_id,
1841            cnum,
1842        }
1843    }
1844}
1845
1846impl fmt::Debug for SourceFile {
1847    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
1848        write!(fmt, "SourceFile({:?})", self.name)
1849    }
1850}
1851
1852/// This is a [SourceFile] identifier that is used to correlate source files between
1853/// subsequent compilation sessions (which is something we need to do during
1854/// incremental compilation).
1855///
1856/// It is a hash value (so we can efficiently consume it when stable-hashing
1857/// spans) that consists of the `FileName` and the `StableCrateId` of the crate
1858/// the source file is from. The crate id is needed because sometimes the
1859/// `FileName` is not unique within the crate graph (think `src/lib.rs`, for
1860/// example).
1861///
1862/// The way the crate-id part is handled is a bit special: source files of the
1863/// local crate are hashed as `(filename, None)`, while source files from
1864/// upstream crates have a hash of `(filename, Some(stable_crate_id))`. This
1865/// is because SourceFiles for the local crate are allocated very early in the
1866/// compilation process when the `StableCrateId` is not yet known. If, due to
1867/// some refactoring of the compiler, the `StableCrateId` of the local crate
1868/// were to become available, it would be better to uniformly make this a
1869/// hash of `(filename, stable_crate_id)`.
1870///
1871/// When `SourceFile`s are exported in crate metadata, the `StableSourceFileId`
1872/// is updated to incorporate the `StableCrateId` of the exporting crate.
1873#[derive(
1874    Debug,
1875    Clone,
1876    Copy,
1877    Hash,
1878    PartialEq,
1879    Eq,
1880    HashStable_Generic,
1881    Encodable,
1882    Decodable,
1883    Default,
1884    PartialOrd,
1885    Ord
1886)]
1887pub struct StableSourceFileId(Hash128);
1888
1889impl StableSourceFileId {
1890    fn from_filename_in_current_crate(filename: &FileName) -> Self {
1891        Self::from_filename_and_stable_crate_id(filename, None)
1892    }
1893
1894    pub fn from_filename_for_export(
1895        filename: &FileName,
1896        local_crate_stable_crate_id: StableCrateId,
1897    ) -> Self {
1898        Self::from_filename_and_stable_crate_id(filename, Some(local_crate_stable_crate_id))
1899    }
1900
1901    fn from_filename_and_stable_crate_id(
1902        filename: &FileName,
1903        stable_crate_id: Option<StableCrateId>,
1904    ) -> Self {
1905        let mut hasher = StableHasher::new();
1906        filename.hash(&mut hasher);
1907        stable_crate_id.hash(&mut hasher);
1908        StableSourceFileId(hasher.finish())
1909    }
1910}
1911
1912impl SourceFile {
1913    const MAX_FILE_SIZE: u32 = u32::MAX - 1;
1914
1915    pub fn new(
1916        name: FileName,
1917        mut src: String,
1918        hash_kind: SourceFileHashAlgorithm,
1919        checksum_hash_kind: Option<SourceFileHashAlgorithm>,
1920    ) -> Result<Self, OffsetOverflowError> {
1921        // Compute the file hash before any normalization.
1922        let src_hash = SourceFileHash::new_in_memory(hash_kind, src.as_bytes());
1923        let checksum_hash = checksum_hash_kind.map(|checksum_hash_kind| {
1924            if checksum_hash_kind == hash_kind {
1925                src_hash
1926            } else {
1927                SourceFileHash::new_in_memory(checksum_hash_kind, src.as_bytes())
1928            }
1929        });
1930        let normalized_pos = normalize_src(&mut src);
1931
1932        let stable_id = StableSourceFileId::from_filename_in_current_crate(&name);
1933        let source_len = src.len();
1934        let source_len = u32::try_from(source_len).map_err(|_| OffsetOverflowError)?;
1935        if source_len > Self::MAX_FILE_SIZE {
1936            return Err(OffsetOverflowError);
1937        }
1938
1939        let (lines, multibyte_chars) = analyze_source_file::analyze_source_file(&src);
1940
1941        Ok(SourceFile {
1942            name,
1943            src: Some(Arc::new(src)),
1944            src_hash,
1945            checksum_hash,
1946            external_src: FreezeLock::frozen(ExternalSource::Unneeded),
1947            start_pos: BytePos::from_u32(0),
1948            source_len: RelativeBytePos::from_u32(source_len),
1949            lines: FreezeLock::frozen(SourceFileLines::Lines(lines)),
1950            multibyte_chars,
1951            normalized_pos,
1952            stable_id,
1953            cnum: LOCAL_CRATE,
1954        })
1955    }
1956
1957    /// This converts the `lines` field to contain `SourceFileLines::Lines` if needed and freezes
1958    /// it.
1959    fn convert_diffs_to_lines_frozen(&self) {
1960        let mut guard = if let Some(guard) = self.lines.try_write() { guard } else { return };
1961
1962        let SourceFileDiffs { bytes_per_diff, num_diffs, raw_diffs } = match &*guard {
1963            SourceFileLines::Diffs(diffs) => diffs,
1964            SourceFileLines::Lines(..) => {
1965                FreezeWriteGuard::freeze(guard);
1966                return;
1967            }
1968        };
1969
1970        // Convert from "diffs" form to "lines" form.
1971        let num_lines = num_diffs + 1;
1972        let mut lines = Vec::with_capacity(num_lines);
1973        let mut line_start = RelativeBytePos(0);
1974        lines.push(line_start);
1975
1976        assert_eq!(*num_diffs, raw_diffs.len() / bytes_per_diff);
1977        match bytes_per_diff {
1978            1 => {
1979                lines.extend(raw_diffs.into_iter().map(|&diff| {
1980                    line_start = line_start + RelativeBytePos(diff as u32);
1981                    line_start
1982                }));
1983            }
1984            2 => {
1985                lines.extend((0..*num_diffs).map(|i| {
1986                    let pos = bytes_per_diff * i;
1987                    let bytes = [raw_diffs[pos], raw_diffs[pos + 1]];
1988                    let diff = u16::from_le_bytes(bytes);
1989                    line_start = line_start + RelativeBytePos(diff as u32);
1990                    line_start
1991                }));
1992            }
1993            4 => {
1994                lines.extend((0..*num_diffs).map(|i| {
1995                    let pos = bytes_per_diff * i;
1996                    let bytes = [
1997                        raw_diffs[pos],
1998                        raw_diffs[pos + 1],
1999                        raw_diffs[pos + 2],
2000                        raw_diffs[pos + 3],
2001                    ];
2002                    let diff = u32::from_le_bytes(bytes);
2003                    line_start = line_start + RelativeBytePos(diff);
2004                    line_start
2005                }));
2006            }
2007            _ => unreachable!(),
2008        }
2009
2010        *guard = SourceFileLines::Lines(lines);
2011
2012        FreezeWriteGuard::freeze(guard);
2013    }
2014
2015    pub fn lines(&self) -> &[RelativeBytePos] {
2016        if let Some(SourceFileLines::Lines(lines)) = self.lines.get() {
2017            return &lines[..];
2018        }
2019
2020        outline(|| {
2021            self.convert_diffs_to_lines_frozen();
2022            if let Some(SourceFileLines::Lines(lines)) = self.lines.get() {
2023                return &lines[..];
2024            }
2025            unreachable!()
2026        })
2027    }
2028
2029    /// Returns the `BytePos` of the beginning of the current line.
2030    pub fn line_begin_pos(&self, pos: BytePos) -> BytePos {
2031        let pos = self.relative_position(pos);
2032        let line_index = self.lookup_line(pos).unwrap();
2033        let line_start_pos = self.lines()[line_index];
2034        self.absolute_position(line_start_pos)
2035    }
2036
2037    /// Add externally loaded source.
2038    /// If the hash of the input doesn't match or no input is supplied via None,
2039    /// it is interpreted as an error and the corresponding enum variant is set.
2040    /// The return value signifies whether some kind of source is present.
2041    pub fn add_external_src<F>(&self, get_src: F) -> bool
2042    where
2043        F: FnOnce() -> Option<String>,
2044    {
2045        if !self.external_src.is_frozen() {
2046            let src = get_src();
2047            let src = src.and_then(|mut src| {
2048                // The src_hash needs to be computed on the pre-normalized src.
2049                self.src_hash.matches(&src).then(|| {
2050                    normalize_src(&mut src);
2051                    src
2052                })
2053            });
2054
2055            self.external_src.try_write().map(|mut external_src| {
2056                if let ExternalSource::Foreign {
2057                    kind: src_kind @ ExternalSourceKind::AbsentOk,
2058                    ..
2059                } = &mut *external_src
2060                {
2061                    *src_kind = if let Some(src) = src {
2062                        ExternalSourceKind::Present(Arc::new(src))
2063                    } else {
2064                        ExternalSourceKind::AbsentErr
2065                    };
2066                } else {
2067                    panic!("unexpected state {:?}", *external_src)
2068                }
2069
2070                // Freeze this so we don't try to load the source again.
2071                FreezeWriteGuard::freeze(external_src)
2072            });
2073        }
2074
2075        self.src.is_some() || self.external_src.read().get_source().is_some()
2076    }
2077
2078    /// Gets a line from the list of pre-computed line-beginnings.
2079    /// The line number here is 0-based.
2080    pub fn get_line(&self, line_number: usize) -> Option<Cow<'_, str>> {
2081        fn get_until_newline(src: &str, begin: usize) -> &str {
2082            // We can't use `lines.get(line_number+1)` because we might
2083            // be parsing when we call this function and thus the current
2084            // line is the last one we have line info for.
2085            let slice = &src[begin..];
2086            match slice.find('\n') {
2087                Some(e) => &slice[..e],
2088                None => slice,
2089            }
2090        }
2091
2092        let begin = {
2093            let line = self.lines().get(line_number).copied()?;
2094            line.to_usize()
2095        };
2096
2097        if let Some(ref src) = self.src {
2098            Some(Cow::from(get_until_newline(src, begin)))
2099        } else {
2100            self.external_src
2101                .borrow()
2102                .get_source()
2103                .map(|src| Cow::Owned(String::from(get_until_newline(src, begin))))
2104        }
2105    }
2106
2107    pub fn is_real_file(&self) -> bool {
2108        self.name.is_real()
2109    }
2110
2111    #[inline]
2112    pub fn is_imported(&self) -> bool {
2113        self.src.is_none()
2114    }
2115
2116    pub fn count_lines(&self) -> usize {
2117        self.lines().len()
2118    }
2119
2120    #[inline]
2121    pub fn absolute_position(&self, pos: RelativeBytePos) -> BytePos {
2122        BytePos::from_u32(pos.to_u32() + self.start_pos.to_u32())
2123    }
2124
2125    #[inline]
2126    pub fn relative_position(&self, pos: BytePos) -> RelativeBytePos {
2127        RelativeBytePos::from_u32(pos.to_u32() - self.start_pos.to_u32())
2128    }
2129
2130    #[inline]
2131    pub fn end_position(&self) -> BytePos {
2132        self.absolute_position(self.source_len)
2133    }
2134
2135    /// Finds the line containing the given position. The return value is the
2136    /// index into the `lines` array of this `SourceFile`, not the 1-based line
2137    /// number. If the source_file is empty or the position is located before the
2138    /// first line, `None` is returned.
2139    pub fn lookup_line(&self, pos: RelativeBytePos) -> Option<usize> {
2140        self.lines().partition_point(|x| x <= &pos).checked_sub(1)
2141    }
2142
2143    pub fn line_bounds(&self, line_index: usize) -> Range<BytePos> {
2144        if self.is_empty() {
2145            return self.start_pos..self.start_pos;
2146        }
2147
2148        let lines = self.lines();
2149        assert!(line_index < lines.len());
2150        if line_index == (lines.len() - 1) {
2151            self.absolute_position(lines[line_index])..self.end_position()
2152        } else {
2153            self.absolute_position(lines[line_index])..self.absolute_position(lines[line_index + 1])
2154        }
2155    }
2156
2157    /// Returns whether or not the file contains the given `SourceMap` byte
2158    /// position. The position one past the end of the file is considered to be
2159    /// contained by the file. This implies that files for which `is_empty`
2160    /// returns true still contain one byte position according to this function.
2161    #[inline]
2162    pub fn contains(&self, byte_pos: BytePos) -> bool {
2163        byte_pos >= self.start_pos && byte_pos <= self.end_position()
2164    }
2165
2166    #[inline]
2167    pub fn is_empty(&self) -> bool {
2168        self.source_len.to_u32() == 0
2169    }
2170
2171    /// Calculates the original byte position relative to the start of the file
2172    /// based on the given byte position.
2173    pub fn original_relative_byte_pos(&self, pos: BytePos) -> RelativeBytePos {
2174        let pos = self.relative_position(pos);
2175
2176        // Diff before any records is 0. Otherwise use the previously recorded
2177        // diff as that applies to the following characters until a new diff
2178        // is recorded.
2179        let diff = match self.normalized_pos.binary_search_by(|np| np.pos.cmp(&pos)) {
2180            Ok(i) => self.normalized_pos[i].diff,
2181            Err(0) => 0,
2182            Err(i) => self.normalized_pos[i - 1].diff,
2183        };
2184
2185        RelativeBytePos::from_u32(pos.0 + diff)
2186    }
2187
2188    /// Calculates a normalized byte position from a byte offset relative to the
2189    /// start of the file.
2190    ///
2191    /// When we get an inline assembler error from LLVM during codegen, we
2192    /// import the expanded assembly code as a new `SourceFile`, which can then
2193    /// be used for error reporting with spans. However the byte offsets given
2194    /// to us by LLVM are relative to the start of the original buffer, not the
2195    /// normalized one. Hence we need to convert those offsets to the normalized
2196    /// form when constructing spans.
2197    pub fn normalized_byte_pos(&self, offset: u32) -> BytePos {
2198        let diff = match self
2199            .normalized_pos
2200            .binary_search_by(|np| (np.pos.0 + np.diff).cmp(&(self.start_pos.0 + offset)))
2201        {
2202            Ok(i) => self.normalized_pos[i].diff,
2203            Err(0) => 0,
2204            Err(i) => self.normalized_pos[i - 1].diff,
2205        };
2206
2207        BytePos::from_u32(self.start_pos.0 + offset - diff)
2208    }
2209
2210    /// Converts an relative `RelativeBytePos` to a `CharPos` relative to the `SourceFile`.
2211    fn bytepos_to_file_charpos(&self, bpos: RelativeBytePos) -> CharPos {
2212        // The number of extra bytes due to multibyte chars in the `SourceFile`.
2213        let mut total_extra_bytes = 0;
2214
2215        for mbc in self.multibyte_chars.iter() {
2216            debug!("{}-byte char at {:?}", mbc.bytes, mbc.pos);
2217            if mbc.pos < bpos {
2218                // Every character is at least one byte, so we only
2219                // count the actual extra bytes.
2220                total_extra_bytes += mbc.bytes as u32 - 1;
2221                // We should never see a byte position in the middle of a
2222                // character.
2223                assert!(bpos.to_u32() >= mbc.pos.to_u32() + mbc.bytes as u32);
2224            } else {
2225                break;
2226            }
2227        }
2228
2229        assert!(total_extra_bytes <= bpos.to_u32());
2230        CharPos(bpos.to_usize() - total_extra_bytes as usize)
2231    }
2232
2233    /// Looks up the file's (1-based) line number and (0-based `CharPos`) column offset, for a
2234    /// given `RelativeBytePos`.
2235    fn lookup_file_pos(&self, pos: RelativeBytePos) -> (usize, CharPos) {
2236        let chpos = self.bytepos_to_file_charpos(pos);
2237        match self.lookup_line(pos) {
2238            Some(a) => {
2239                let line = a + 1; // Line numbers start at 1
2240                let linebpos = self.lines()[a];
2241                let linechpos = self.bytepos_to_file_charpos(linebpos);
2242                let col = chpos - linechpos;
2243                debug!("byte pos {:?} is on the line at byte pos {:?}", pos, linebpos);
2244                debug!("char pos {:?} is on the line at char pos {:?}", chpos, linechpos);
2245                debug!("byte is on line: {}", line);
2246                assert!(chpos >= linechpos);
2247                (line, col)
2248            }
2249            None => (0, chpos),
2250        }
2251    }
2252
2253    /// Looks up the file's (1-based) line number, (0-based `CharPos`) column offset, and (0-based)
2254    /// column offset when displayed, for a given `BytePos`.
2255    pub fn lookup_file_pos_with_col_display(&self, pos: BytePos) -> (usize, CharPos, usize) {
2256        let pos = self.relative_position(pos);
2257        let (line, col_or_chpos) = self.lookup_file_pos(pos);
2258        if line > 0 {
2259            let Some(code) = self.get_line(line - 1) else {
2260                // If we don't have the code available, it is ok as a fallback to return the bytepos
2261                // instead of the "display" column, which is only used to properly show underlines
2262                // in the terminal.
2263                // FIXME: we'll want better handling of this in the future for the sake of tools
2264                // that want to use the display col instead of byte offsets to modify Rust code, but
2265                // that is a problem for another day, the previous code was already incorrect for
2266                // both displaying *and* third party tools using the json output naïvely.
2267                tracing::info!("couldn't find line {line} {:?}", self.name);
2268                return (line, col_or_chpos, col_or_chpos.0);
2269            };
2270            let display_col = code.chars().take(col_or_chpos.0).map(|ch| char_width(ch)).sum();
2271            (line, col_or_chpos, display_col)
2272        } else {
2273            // This is never meant to happen?
2274            (0, col_or_chpos, col_or_chpos.0)
2275        }
2276    }
2277}
2278
2279pub fn char_width(ch: char) -> usize {
2280    // FIXME: `unicode_width` sometimes disagrees with terminals on how wide a `char` is. For now,
2281    // just accept that sometimes the code line will be longer than desired.
2282    match ch {
2283        '\t' => 4,
2284        // Keep the following list in sync with `rustc_errors::emitter::OUTPUT_REPLACEMENTS`. These
2285        // are control points that we replace before printing with a visible codepoint for the sake
2286        // of being able to point at them with underlines.
2287        '\u{0000}' | '\u{0001}' | '\u{0002}' | '\u{0003}' | '\u{0004}' | '\u{0005}'
2288        | '\u{0006}' | '\u{0007}' | '\u{0008}' | '\u{000B}' | '\u{000C}' | '\u{000D}'
2289        | '\u{000E}' | '\u{000F}' | '\u{0010}' | '\u{0011}' | '\u{0012}' | '\u{0013}'
2290        | '\u{0014}' | '\u{0015}' | '\u{0016}' | '\u{0017}' | '\u{0018}' | '\u{0019}'
2291        | '\u{001A}' | '\u{001B}' | '\u{001C}' | '\u{001D}' | '\u{001E}' | '\u{001F}'
2292        | '\u{007F}' | '\u{202A}' | '\u{202B}' | '\u{202D}' | '\u{202E}' | '\u{2066}'
2293        | '\u{2067}' | '\u{2068}' | '\u{202C}' | '\u{2069}' => 1,
2294        _ => unicode_width::UnicodeWidthChar::width(ch).unwrap_or(1),
2295    }
2296}
2297
2298pub fn str_width(s: &str) -> usize {
2299    s.chars().map(char_width).sum()
2300}
2301
2302/// Normalizes the source code and records the normalizations.
2303fn normalize_src(src: &mut String) -> Vec<NormalizedPos> {
2304    let mut normalized_pos = vec![];
2305    remove_bom(src, &mut normalized_pos);
2306    normalize_newlines(src, &mut normalized_pos);
2307    normalized_pos
2308}
2309
2310/// Removes UTF-8 BOM, if any.
2311fn remove_bom(src: &mut String, normalized_pos: &mut Vec<NormalizedPos>) {
2312    if src.starts_with('\u{feff}') {
2313        src.drain(..3);
2314        normalized_pos.push(NormalizedPos { pos: RelativeBytePos(0), diff: 3 });
2315    }
2316}
2317
2318/// Replaces `\r\n` with `\n` in-place in `src`.
2319///
2320/// Leaves any occurrences of lone `\r` unchanged.
2321fn normalize_newlines(src: &mut String, normalized_pos: &mut Vec<NormalizedPos>) {
2322    if !src.as_bytes().contains(&b'\r') {
2323        return;
2324    }
2325
2326    // We replace `\r\n` with `\n` in-place, which doesn't break utf-8 encoding.
2327    // While we *can* call `as_mut_vec` and do surgery on the live string
2328    // directly, let's rather steal the contents of `src`. This makes the code
2329    // safe even if a panic occurs.
2330
2331    let mut buf = std::mem::replace(src, String::new()).into_bytes();
2332    let mut gap_len = 0;
2333    let mut tail = buf.as_mut_slice();
2334    let mut cursor = 0;
2335    let original_gap = normalized_pos.last().map_or(0, |l| l.diff);
2336    loop {
2337        let idx = match find_crlf(&tail[gap_len..]) {
2338            None => tail.len(),
2339            Some(idx) => idx + gap_len,
2340        };
2341        tail.copy_within(gap_len..idx, 0);
2342        tail = &mut tail[idx - gap_len..];
2343        if tail.len() == gap_len {
2344            break;
2345        }
2346        cursor += idx - gap_len;
2347        gap_len += 1;
2348        normalized_pos.push(NormalizedPos {
2349            pos: RelativeBytePos::from_usize(cursor + 1),
2350            diff: original_gap + gap_len as u32,
2351        });
2352    }
2353
2354    // Account for removed `\r`.
2355    // After `set_len`, `buf` is guaranteed to contain utf-8 again.
2356    let new_len = buf.len() - gap_len;
2357    unsafe {
2358        buf.set_len(new_len);
2359        *src = String::from_utf8_unchecked(buf);
2360    }
2361
2362    fn find_crlf(src: &[u8]) -> Option<usize> {
2363        let mut search_idx = 0;
2364        while let Some(idx) = find_cr(&src[search_idx..]) {
2365            if src[search_idx..].get(idx + 1) != Some(&b'\n') {
2366                search_idx += idx + 1;
2367                continue;
2368            }
2369            return Some(search_idx + idx);
2370        }
2371        None
2372    }
2373
2374    fn find_cr(src: &[u8]) -> Option<usize> {
2375        src.iter().position(|&b| b == b'\r')
2376    }
2377}
2378
2379// _____________________________________________________________________________
2380// Pos, BytePos, CharPos
2381//
2382
2383pub trait Pos {
2384    fn from_usize(n: usize) -> Self;
2385    fn to_usize(&self) -> usize;
2386    fn from_u32(n: u32) -> Self;
2387    fn to_u32(&self) -> u32;
2388}
2389
2390macro_rules! impl_pos {
2391    (
2392        $(
2393            $(#[$attr:meta])*
2394            $vis:vis struct $ident:ident($inner_vis:vis $inner_ty:ty);
2395        )*
2396    ) => {
2397        $(
2398            $(#[$attr])*
2399            $vis struct $ident($inner_vis $inner_ty);
2400
2401            impl Pos for $ident {
2402                #[inline(always)]
2403                fn from_usize(n: usize) -> $ident {
2404                    $ident(n as $inner_ty)
2405                }
2406
2407                #[inline(always)]
2408                fn to_usize(&self) -> usize {
2409                    self.0 as usize
2410                }
2411
2412                #[inline(always)]
2413                fn from_u32(n: u32) -> $ident {
2414                    $ident(n as $inner_ty)
2415                }
2416
2417                #[inline(always)]
2418                fn to_u32(&self) -> u32 {
2419                    self.0 as u32
2420                }
2421            }
2422
2423            impl Add for $ident {
2424                type Output = $ident;
2425
2426                #[inline(always)]
2427                fn add(self, rhs: $ident) -> $ident {
2428                    $ident(self.0 + rhs.0)
2429                }
2430            }
2431
2432            impl Sub for $ident {
2433                type Output = $ident;
2434
2435                #[inline(always)]
2436                fn sub(self, rhs: $ident) -> $ident {
2437                    $ident(self.0 - rhs.0)
2438                }
2439            }
2440        )*
2441    };
2442}
2443
2444impl_pos! {
2445    /// A byte offset.
2446    ///
2447    /// Keep this small (currently 32-bits), as AST contains a lot of them.
2448    #[derive(Clone, Copy, PartialEq, Eq, Hash, PartialOrd, Ord, Debug)]
2449    pub struct BytePos(pub u32);
2450
2451    /// A byte offset relative to file beginning.
2452    #[derive(Clone, Copy, PartialEq, Eq, Hash, PartialOrd, Ord, Debug)]
2453    pub struct RelativeBytePos(pub u32);
2454
2455    /// A character offset.
2456    ///
2457    /// Because of multibyte UTF-8 characters, a byte offset
2458    /// is not equivalent to a character offset. The [`SourceMap`] will convert [`BytePos`]
2459    /// values to `CharPos` values as necessary.
2460    #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Debug)]
2461    pub struct CharPos(pub usize);
2462}
2463
2464impl<S: Encoder> Encodable<S> for BytePos {
2465    fn encode(&self, s: &mut S) {
2466        s.emit_u32(self.0);
2467    }
2468}
2469
2470impl<D: Decoder> Decodable<D> for BytePos {
2471    fn decode(d: &mut D) -> BytePos {
2472        BytePos(d.read_u32())
2473    }
2474}
2475
2476impl<H: HashStableContext> HashStable<H> for RelativeBytePos {
2477    fn hash_stable(&self, hcx: &mut H, hasher: &mut StableHasher) {
2478        self.0.hash_stable(hcx, hasher);
2479    }
2480}
2481
2482impl<S: Encoder> Encodable<S> for RelativeBytePos {
2483    fn encode(&self, s: &mut S) {
2484        s.emit_u32(self.0);
2485    }
2486}
2487
2488impl<D: Decoder> Decodable<D> for RelativeBytePos {
2489    fn decode(d: &mut D) -> RelativeBytePos {
2490        RelativeBytePos(d.read_u32())
2491    }
2492}
2493
2494// _____________________________________________________________________________
2495// Loc, SourceFileAndLine, SourceFileAndBytePos
2496//
2497
2498/// A source code location used for error reporting.
2499#[derive(Debug, Clone)]
2500pub struct Loc {
2501    /// Information about the original source.
2502    pub file: Arc<SourceFile>,
2503    /// The (1-based) line number.
2504    pub line: usize,
2505    /// The (0-based) column offset.
2506    pub col: CharPos,
2507    /// The (0-based) column offset when displayed.
2508    pub col_display: usize,
2509}
2510
2511// Used to be structural records.
2512#[derive(Debug)]
2513pub struct SourceFileAndLine {
2514    pub sf: Arc<SourceFile>,
2515    /// Index of line, starting from 0.
2516    pub line: usize,
2517}
2518#[derive(Debug)]
2519pub struct SourceFileAndBytePos {
2520    pub sf: Arc<SourceFile>,
2521    pub pos: BytePos,
2522}
2523
2524#[derive(Copy, Clone, Debug, PartialEq, Eq)]
2525pub struct LineInfo {
2526    /// Index of line, starting from 0.
2527    pub line_index: usize,
2528
2529    /// Column in line where span begins, starting from 0.
2530    pub start_col: CharPos,
2531
2532    /// Column in line where span ends, starting from 0, exclusive.
2533    pub end_col: CharPos,
2534}
2535
2536pub struct FileLines {
2537    pub file: Arc<SourceFile>,
2538    pub lines: Vec<LineInfo>,
2539}
2540
2541pub static SPAN_TRACK: AtomicRef<fn(LocalDefId)> = AtomicRef::new(&((|_| {}) as fn(_)));
2542
2543// _____________________________________________________________________________
2544// SpanLinesError, SpanSnippetError, DistinctSources, MalformedSourceMapPositions
2545//
2546
2547pub type FileLinesResult = Result<FileLines, SpanLinesError>;
2548
2549#[derive(Clone, PartialEq, Eq, Debug)]
2550pub enum SpanLinesError {
2551    DistinctSources(Box<DistinctSources>),
2552}
2553
2554#[derive(Clone, PartialEq, Eq, Debug)]
2555pub enum SpanSnippetError {
2556    IllFormedSpan(Span),
2557    DistinctSources(Box<DistinctSources>),
2558    MalformedForSourcemap(MalformedSourceMapPositions),
2559    SourceNotAvailable { filename: FileName },
2560}
2561
2562#[derive(Clone, PartialEq, Eq, Debug)]
2563pub struct DistinctSources {
2564    pub begin: (FileName, BytePos),
2565    pub end: (FileName, BytePos),
2566}
2567
2568#[derive(Clone, PartialEq, Eq, Debug)]
2569pub struct MalformedSourceMapPositions {
2570    pub name: FileName,
2571    pub source_len: usize,
2572    pub begin_pos: BytePos,
2573    pub end_pos: BytePos,
2574}
2575
2576/// Range inside of a `Span` used for diagnostics when we only have access to relative positions.
2577#[derive(Copy, Clone, PartialEq, Eq, Debug)]
2578pub struct InnerSpan {
2579    pub start: usize,
2580    pub end: usize,
2581}
2582
2583impl InnerSpan {
2584    pub fn new(start: usize, end: usize) -> InnerSpan {
2585        InnerSpan { start, end }
2586    }
2587}
2588
2589/// Requirements for a `StableHashingContext` to be used in this crate.
2590///
2591/// This is a hack to allow using the [`HashStable_Generic`] derive macro
2592/// instead of implementing everything in rustc_middle.
2593pub trait HashStableContext {
2594    fn def_path_hash(&self, def_id: DefId) -> DefPathHash;
2595    fn hash_spans(&self) -> bool;
2596    /// Accesses `sess.opts.unstable_opts.incremental_ignore_spans` since
2597    /// we don't have easy access to a `Session`
2598    fn unstable_opts_incremental_ignore_spans(&self) -> bool;
2599    fn def_span(&self, def_id: LocalDefId) -> Span;
2600    fn span_data_to_lines_and_cols(
2601        &mut self,
2602        span: &SpanData,
2603    ) -> Option<(Arc<SourceFile>, usize, BytePos, usize, BytePos)>;
2604    fn hashing_controls(&self) -> HashingControls;
2605}
2606
2607impl<CTX> HashStable<CTX> for Span
2608where
2609    CTX: HashStableContext,
2610{
2611    /// Hashes a span in a stable way. We can't directly hash the span's `BytePos`
2612    /// fields (that would be similar to hashing pointers, since those are just
2613    /// offsets into the `SourceMap`). Instead, we hash the (file name, line, column)
2614    /// triple, which stays the same even if the containing `SourceFile` has moved
2615    /// within the `SourceMap`.
2616    ///
2617    /// Also note that we are hashing byte offsets for the column, not unicode
2618    /// codepoint offsets. For the purpose of the hash that's sufficient.
2619    /// Also, hashing filenames is expensive so we avoid doing it twice when the
2620    /// span starts and ends in the same file, which is almost always the case.
2621    fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
2622        const TAG_VALID_SPAN: u8 = 0;
2623        const TAG_INVALID_SPAN: u8 = 1;
2624        const TAG_RELATIVE_SPAN: u8 = 2;
2625
2626        if !ctx.hash_spans() {
2627            return;
2628        }
2629
2630        let span = self.data_untracked();
2631        span.ctxt.hash_stable(ctx, hasher);
2632        span.parent.hash_stable(ctx, hasher);
2633
2634        if span.is_dummy() {
2635            Hash::hash(&TAG_INVALID_SPAN, hasher);
2636            return;
2637        }
2638
2639        if let Some(parent) = span.parent {
2640            let def_span = ctx.def_span(parent).data_untracked();
2641            if def_span.contains(span) {
2642                // This span is enclosed in a definition: only hash the relative position.
2643                Hash::hash(&TAG_RELATIVE_SPAN, hasher);
2644                (span.lo - def_span.lo).to_u32().hash_stable(ctx, hasher);
2645                (span.hi - def_span.lo).to_u32().hash_stable(ctx, hasher);
2646                return;
2647            }
2648        }
2649
2650        // If this is not an empty or invalid span, we want to hash the last
2651        // position that belongs to it, as opposed to hashing the first
2652        // position past it.
2653        let Some((file, line_lo, col_lo, line_hi, col_hi)) = ctx.span_data_to_lines_and_cols(&span)
2654        else {
2655            Hash::hash(&TAG_INVALID_SPAN, hasher);
2656            return;
2657        };
2658
2659        Hash::hash(&TAG_VALID_SPAN, hasher);
2660        Hash::hash(&file.stable_id, hasher);
2661
2662        // Hash both the length and the end location (line/column) of a span. If we
2663        // hash only the length, for example, then two otherwise equal spans with
2664        // different end locations will have the same hash. This can cause a problem
2665        // during incremental compilation wherein a previous result for a query that
2666        // depends on the end location of a span will be incorrectly reused when the
2667        // end location of the span it depends on has changed (see issue #74890). A
2668        // similar analysis applies if some query depends specifically on the length
2669        // of the span, but we only hash the end location. So hash both.
2670
2671        let col_lo_trunc = (col_lo.0 as u64) & 0xFF;
2672        let line_lo_trunc = ((line_lo as u64) & 0xFF_FF_FF) << 8;
2673        let col_hi_trunc = (col_hi.0 as u64) & 0xFF << 32;
2674        let line_hi_trunc = ((line_hi as u64) & 0xFF_FF_FF) << 40;
2675        let col_line = col_lo_trunc | line_lo_trunc | col_hi_trunc | line_hi_trunc;
2676        let len = (span.hi - span.lo).0;
2677        Hash::hash(&col_line, hasher);
2678        Hash::hash(&len, hasher);
2679    }
2680}
2681
2682/// Useful type to use with `Result<>` indicate that an error has already
2683/// been reported to the user, so no need to continue checking.
2684///
2685/// The `()` field is necessary: it is non-`pub`, which means values of this
2686/// type cannot be constructed outside of this crate.
2687#[derive(Clone, Copy, Debug, Hash, PartialEq, Eq, PartialOrd, Ord)]
2688#[derive(HashStable_Generic)]
2689pub struct ErrorGuaranteed(());
2690
2691impl ErrorGuaranteed {
2692    /// Don't use this outside of `DiagCtxtInner::emit_diagnostic`!
2693    #[deprecated = "should only be used in `DiagCtxtInner::emit_diagnostic`"]
2694    pub fn unchecked_error_guaranteed() -> Self {
2695        ErrorGuaranteed(())
2696    }
2697
2698    pub fn raise_fatal(self) -> ! {
2699        FatalError.raise()
2700    }
2701}
2702
2703impl<E: rustc_serialize::Encoder> Encodable<E> for ErrorGuaranteed {
2704    #[inline]
2705    fn encode(&self, _e: &mut E) {
2706        panic!(
2707            "should never serialize an `ErrorGuaranteed`, as we do not write metadata or \
2708            incremental caches in case errors occurred"
2709        )
2710    }
2711}
2712impl<D: rustc_serialize::Decoder> Decodable<D> for ErrorGuaranteed {
2713    #[inline]
2714    fn decode(_d: &mut D) -> ErrorGuaranteed {
2715        panic!(
2716            "`ErrorGuaranteed` should never have been serialized to metadata or incremental caches"
2717        )
2718    }
2719}