rustc_span/
lib.rs

1//! Source positions and related helper functions.
2//!
3//! Important concepts in this module include:
4//!
5//! - the *span*, represented by [`SpanData`] and related types;
6//! - source code as represented by a [`SourceMap`]; and
7//! - interned strings, represented by [`Symbol`]s, with some common symbols available statically
8//!   in the [`sym`] module.
9//!
10//! Unlike most compilers, the span contains not only the position in the source code, but also
11//! various other metadata, such as the edition and macro hygiene. This metadata is stored in
12//! [`SyntaxContext`] and [`ExpnData`].
13//!
14//! ## Note
15//!
16//! This API is completely unstable and subject to change.
17
18// tidy-alphabetical-start
19#![allow(internal_features)]
20#![cfg_attr(bootstrap, feature(cfg_match))]
21#![cfg_attr(not(bootstrap), feature(cfg_select))]
22#![doc(html_root_url = "https://doc.rust-lang.org/nightly/nightly-rustc/")]
23#![doc(rust_logo)]
24#![feature(array_windows)]
25#![feature(core_io_borrowed_buf)]
26#![feature(hash_set_entry)]
27#![feature(if_let_guard)]
28#![feature(map_try_insert)]
29#![feature(negative_impls)]
30#![feature(read_buf)]
31#![feature(round_char_boundary)]
32#![feature(rustc_attrs)]
33#![feature(rustdoc_internals)]
34// tidy-alphabetical-end
35
36// The code produced by the `Encodable`/`Decodable` derive macros refer to
37// `rustc_span::Span{Encoder,Decoder}`. That's fine outside this crate, but doesn't work inside
38// this crate without this line making `rustc_span` available.
39extern crate self as rustc_span;
40
41use derive_where::derive_where;
42use rustc_data_structures::{AtomicRef, outline};
43use rustc_macros::{Decodable, Encodable, HashStable_Generic};
44use rustc_serialize::opaque::{FileEncoder, MemDecoder};
45use rustc_serialize::{Decodable, Decoder, Encodable, Encoder};
46use tracing::debug;
47
48mod caching_source_map_view;
49pub mod source_map;
50use source_map::{SourceMap, SourceMapInputs};
51
52pub use self::caching_source_map_view::CachingSourceMapView;
53use crate::fatal_error::FatalError;
54
55pub mod edition;
56use edition::Edition;
57pub mod hygiene;
58use hygiene::Transparency;
59pub use hygiene::{
60    DesugaringKind, ExpnData, ExpnHash, ExpnId, ExpnKind, LocalExpnId, MacroKind, SyntaxContext,
61};
62use rustc_data_structures::stable_hasher::HashingControls;
63pub mod def_id;
64use def_id::{CrateNum, DefId, DefIndex, DefPathHash, LOCAL_CRATE, LocalDefId, StableCrateId};
65pub mod edit_distance;
66mod span_encoding;
67pub use span_encoding::{DUMMY_SP, Span};
68
69pub mod symbol;
70pub use symbol::{Ident, MacroRulesNormalizedIdent, STDLIB_STABLE_CRATES, Symbol, kw, sym};
71
72mod analyze_source_file;
73pub mod fatal_error;
74
75pub mod profiling;
76
77use std::borrow::Cow;
78use std::cmp::{self, Ordering};
79use std::fmt::Display;
80use std::hash::Hash;
81use std::io::{self, Read};
82use std::ops::{Add, Range, Sub};
83use std::path::{Path, PathBuf};
84use std::str::FromStr;
85use std::sync::Arc;
86use std::{fmt, iter};
87
88use md5::{Digest, Md5};
89use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
90use rustc_data_structures::sync::{FreezeLock, FreezeWriteGuard, Lock};
91use rustc_data_structures::unord::UnordMap;
92use rustc_hashes::{Hash64, Hash128};
93use sha1::Sha1;
94use sha2::Sha256;
95
96#[cfg(test)]
97mod tests;
98
99/// Per-session global variables: this struct is stored in thread-local storage
100/// in such a way that it is accessible without any kind of handle to all
101/// threads within the compilation session, but is not accessible outside the
102/// session.
103pub struct SessionGlobals {
104    symbol_interner: symbol::Interner,
105    span_interner: Lock<span_encoding::SpanInterner>,
106    /// Maps a macro argument token into use of the corresponding metavariable in the macro body.
107    /// Collisions are possible and processed in `maybe_use_metavar_location` on best effort basis.
108    metavar_spans: MetavarSpansMap,
109    hygiene_data: Lock<hygiene::HygieneData>,
110
111    /// The session's source map, if there is one. This field should only be
112    /// used in places where the `Session` is truly not available, such as
113    /// `<Span as Debug>::fmt`.
114    source_map: Option<Arc<SourceMap>>,
115}
116
117impl SessionGlobals {
118    pub fn new(
119        edition: Edition,
120        extra_symbols: &[&'static str],
121        sm_inputs: Option<SourceMapInputs>,
122    ) -> SessionGlobals {
123        SessionGlobals {
124            symbol_interner: symbol::Interner::with_extra_symbols(extra_symbols),
125            span_interner: Lock::new(span_encoding::SpanInterner::default()),
126            metavar_spans: Default::default(),
127            hygiene_data: Lock::new(hygiene::HygieneData::new(edition)),
128            source_map: sm_inputs.map(|inputs| Arc::new(SourceMap::with_inputs(inputs))),
129        }
130    }
131}
132
133pub fn create_session_globals_then<R>(
134    edition: Edition,
135    extra_symbols: &[&'static str],
136    sm_inputs: Option<SourceMapInputs>,
137    f: impl FnOnce() -> R,
138) -> R {
139    assert!(
140        !SESSION_GLOBALS.is_set(),
141        "SESSION_GLOBALS should never be overwritten! \
142         Use another thread if you need another SessionGlobals"
143    );
144    let session_globals = SessionGlobals::new(edition, extra_symbols, sm_inputs);
145    SESSION_GLOBALS.set(&session_globals, f)
146}
147
148pub fn set_session_globals_then<R>(session_globals: &SessionGlobals, f: impl FnOnce() -> R) -> R {
149    assert!(
150        !SESSION_GLOBALS.is_set(),
151        "SESSION_GLOBALS should never be overwritten! \
152         Use another thread if you need another SessionGlobals"
153    );
154    SESSION_GLOBALS.set(session_globals, f)
155}
156
157/// No source map.
158pub fn create_session_if_not_set_then<R, F>(edition: Edition, f: F) -> R
159where
160    F: FnOnce(&SessionGlobals) -> R,
161{
162    if !SESSION_GLOBALS.is_set() {
163        let session_globals = SessionGlobals::new(edition, &[], None);
164        SESSION_GLOBALS.set(&session_globals, || SESSION_GLOBALS.with(f))
165    } else {
166        SESSION_GLOBALS.with(f)
167    }
168}
169
170pub fn with_session_globals<R, F>(f: F) -> R
171where
172    F: FnOnce(&SessionGlobals) -> R,
173{
174    SESSION_GLOBALS.with(f)
175}
176
177/// Default edition, no source map.
178pub fn create_default_session_globals_then<R>(f: impl FnOnce() -> R) -> R {
179    create_session_globals_then(edition::DEFAULT_EDITION, &[], None, f)
180}
181
182// If this ever becomes non thread-local, `decode_syntax_context`
183// and `decode_expn_id` will need to be updated to handle concurrent
184// deserialization.
185scoped_tls::scoped_thread_local!(static SESSION_GLOBALS: SessionGlobals);
186
187#[derive(Default)]
188pub struct MetavarSpansMap(FreezeLock<UnordMap<Span, (Span, bool)>>);
189
190impl MetavarSpansMap {
191    pub fn insert(&self, span: Span, var_span: Span) -> bool {
192        match self.0.write().try_insert(span, (var_span, false)) {
193            Ok(_) => true,
194            Err(entry) => entry.entry.get().0 == var_span,
195        }
196    }
197
198    /// Read a span and record that it was read.
199    pub fn get(&self, span: Span) -> Option<Span> {
200        if let Some(mut mspans) = self.0.try_write() {
201            if let Some((var_span, read)) = mspans.get_mut(&span) {
202                *read = true;
203                Some(*var_span)
204            } else {
205                None
206            }
207        } else {
208            if let Some((span, true)) = self.0.read().get(&span) { Some(*span) } else { None }
209        }
210    }
211
212    /// Freeze the set, and return the spans which have been read.
213    ///
214    /// After this is frozen, no spans that have not been read can be read.
215    pub fn freeze_and_get_read_spans(&self) -> UnordMap<Span, Span> {
216        self.0.freeze().items().filter(|(_, (_, b))| *b).map(|(s1, (s2, _))| (*s1, *s2)).collect()
217    }
218}
219
220#[inline]
221pub fn with_metavar_spans<R>(f: impl FnOnce(&MetavarSpansMap) -> R) -> R {
222    with_session_globals(|session_globals| f(&session_globals.metavar_spans))
223}
224
225// FIXME: We should use this enum or something like it to get rid of the
226// use of magic `/rust/1.x/...` paths across the board.
227#[derive(Debug, Eq, PartialEq, Clone, Ord, PartialOrd, Decodable, Encodable)]
228pub enum RealFileName {
229    LocalPath(PathBuf),
230    /// For remapped paths (namely paths into libstd that have been mapped
231    /// to the appropriate spot on the local host's file system, and local file
232    /// system paths that have been remapped with `FilePathMapping`),
233    Remapped {
234        /// `local_path` is the (host-dependent) local path to the file. This is
235        /// None if the file was imported from another crate
236        local_path: Option<PathBuf>,
237        /// `virtual_name` is the stable path rustc will store internally within
238        /// build artifacts.
239        virtual_name: PathBuf,
240    },
241}
242
243impl Hash for RealFileName {
244    fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
245        // To prevent #70924 from happening again we should only hash the
246        // remapped (virtualized) path if that exists. This is because
247        // virtualized paths to sysroot crates (/rust/$hash or /rust/$version)
248        // remain stable even if the corresponding local_path changes
249        self.remapped_path_if_available().hash(state)
250    }
251}
252
253impl RealFileName {
254    /// Returns the path suitable for reading from the file system on the local host,
255    /// if this information exists.
256    /// Avoid embedding this in build artifacts; see `remapped_path_if_available()` for that.
257    pub fn local_path(&self) -> Option<&Path> {
258        match self {
259            RealFileName::LocalPath(p) => Some(p),
260            RealFileName::Remapped { local_path, virtual_name: _ } => local_path.as_deref(),
261        }
262    }
263
264    /// Returns the path suitable for reading from the file system on the local host,
265    /// if this information exists.
266    /// Avoid embedding this in build artifacts; see `remapped_path_if_available()` for that.
267    pub fn into_local_path(self) -> Option<PathBuf> {
268        match self {
269            RealFileName::LocalPath(p) => Some(p),
270            RealFileName::Remapped { local_path: p, virtual_name: _ } => p,
271        }
272    }
273
274    /// Returns the path suitable for embedding into build artifacts. This would still
275    /// be a local path if it has not been remapped. A remapped path will not correspond
276    /// to a valid file system path: see `local_path_if_available()` for something that
277    /// is more likely to return paths into the local host file system.
278    pub fn remapped_path_if_available(&self) -> &Path {
279        match self {
280            RealFileName::LocalPath(p)
281            | RealFileName::Remapped { local_path: _, virtual_name: p } => p,
282        }
283    }
284
285    /// Returns the path suitable for reading from the file system on the local host,
286    /// if this information exists. Otherwise returns the remapped name.
287    /// Avoid embedding this in build artifacts; see `remapped_path_if_available()` for that.
288    pub fn local_path_if_available(&self) -> &Path {
289        match self {
290            RealFileName::LocalPath(path)
291            | RealFileName::Remapped { local_path: None, virtual_name: path }
292            | RealFileName::Remapped { local_path: Some(path), virtual_name: _ } => path,
293        }
294    }
295
296    /// Return the path remapped or not depending on the [`FileNameDisplayPreference`].
297    ///
298    /// For the purpose of this function, local and short preference are equal.
299    pub fn to_path(&self, display_pref: FileNameDisplayPreference) -> &Path {
300        match display_pref {
301            FileNameDisplayPreference::Local | FileNameDisplayPreference::Short => {
302                self.local_path_if_available()
303            }
304            FileNameDisplayPreference::Remapped => self.remapped_path_if_available(),
305        }
306    }
307
308    pub fn to_string_lossy(&self, display_pref: FileNameDisplayPreference) -> Cow<'_, str> {
309        match display_pref {
310            FileNameDisplayPreference::Local => self.local_path_if_available().to_string_lossy(),
311            FileNameDisplayPreference::Remapped => {
312                self.remapped_path_if_available().to_string_lossy()
313            }
314            FileNameDisplayPreference::Short => self
315                .local_path_if_available()
316                .file_name()
317                .map_or_else(|| "".into(), |f| f.to_string_lossy()),
318        }
319    }
320}
321
322/// Differentiates between real files and common virtual files.
323#[derive(Debug, Eq, PartialEq, Clone, Ord, PartialOrd, Hash, Decodable, Encodable)]
324pub enum FileName {
325    Real(RealFileName),
326    /// Strings provided as `--cfg [cfgspec]`.
327    CfgSpec(Hash64),
328    /// Command line.
329    Anon(Hash64),
330    /// Hack in `src/librustc_ast/parse.rs`.
331    // FIXME(jseyfried)
332    MacroExpansion(Hash64),
333    ProcMacroSourceCode(Hash64),
334    /// Strings provided as crate attributes in the CLI.
335    CliCrateAttr(Hash64),
336    /// Custom sources for explicit parser calls from plugins and drivers.
337    Custom(String),
338    DocTest(PathBuf, isize),
339    /// Post-substitution inline assembly from LLVM.
340    InlineAsm(Hash64),
341}
342
343impl From<PathBuf> for FileName {
344    fn from(p: PathBuf) -> Self {
345        FileName::Real(RealFileName::LocalPath(p))
346    }
347}
348
349#[derive(Clone, Copy, Eq, PartialEq, Hash, Debug)]
350pub enum FileNameEmbeddablePreference {
351    /// If a remapped path is available, only embed the `virtual_path` and omit the `local_path`.
352    ///
353    /// Otherwise embed the local-path into the `virtual_path`.
354    RemappedOnly,
355    /// Embed the original path as well as its remapped `virtual_path` component if available.
356    LocalAndRemapped,
357}
358
359#[derive(Clone, Copy, Eq, PartialEq, Hash, Debug)]
360pub enum FileNameDisplayPreference {
361    /// Display the path after the application of rewrite rules provided via `--remap-path-prefix`.
362    /// This is appropriate for paths that get embedded into files produced by the compiler.
363    Remapped,
364    /// Display the path before the application of rewrite rules provided via `--remap-path-prefix`.
365    /// This is appropriate for use in user-facing output (such as diagnostics).
366    Local,
367    /// Display only the filename, as a way to reduce the verbosity of the output.
368    /// This is appropriate for use in user-facing output (such as diagnostics).
369    Short,
370}
371
372pub struct FileNameDisplay<'a> {
373    inner: &'a FileName,
374    display_pref: FileNameDisplayPreference,
375}
376
377impl fmt::Display for FileNameDisplay<'_> {
378    fn fmt(&self, fmt: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
379        use FileName::*;
380        match *self.inner {
381            Real(ref name) => {
382                write!(fmt, "{}", name.to_string_lossy(self.display_pref))
383            }
384            CfgSpec(_) => write!(fmt, "<cfgspec>"),
385            MacroExpansion(_) => write!(fmt, "<macro expansion>"),
386            Anon(_) => write!(fmt, "<anon>"),
387            ProcMacroSourceCode(_) => write!(fmt, "<proc-macro source code>"),
388            CliCrateAttr(_) => write!(fmt, "<crate attribute>"),
389            Custom(ref s) => write!(fmt, "<{s}>"),
390            DocTest(ref path, _) => write!(fmt, "{}", path.display()),
391            InlineAsm(_) => write!(fmt, "<inline asm>"),
392        }
393    }
394}
395
396impl<'a> FileNameDisplay<'a> {
397    pub fn to_string_lossy(&self) -> Cow<'a, str> {
398        match self.inner {
399            FileName::Real(inner) => inner.to_string_lossy(self.display_pref),
400            _ => Cow::from(self.to_string()),
401        }
402    }
403}
404
405impl FileName {
406    pub fn is_real(&self) -> bool {
407        use FileName::*;
408        match *self {
409            Real(_) => true,
410            Anon(_)
411            | MacroExpansion(_)
412            | ProcMacroSourceCode(_)
413            | CliCrateAttr(_)
414            | Custom(_)
415            | CfgSpec(_)
416            | DocTest(_, _)
417            | InlineAsm(_) => false,
418        }
419    }
420
421    pub fn prefer_remapped_unconditionaly(&self) -> FileNameDisplay<'_> {
422        FileNameDisplay { inner: self, display_pref: FileNameDisplayPreference::Remapped }
423    }
424
425    /// This may include transient local filesystem information.
426    /// Must not be embedded in build outputs.
427    pub fn prefer_local(&self) -> FileNameDisplay<'_> {
428        FileNameDisplay { inner: self, display_pref: FileNameDisplayPreference::Local }
429    }
430
431    pub fn display(&self, display_pref: FileNameDisplayPreference) -> FileNameDisplay<'_> {
432        FileNameDisplay { inner: self, display_pref }
433    }
434
435    pub fn macro_expansion_source_code(src: &str) -> FileName {
436        let mut hasher = StableHasher::new();
437        src.hash(&mut hasher);
438        FileName::MacroExpansion(hasher.finish())
439    }
440
441    pub fn anon_source_code(src: &str) -> FileName {
442        let mut hasher = StableHasher::new();
443        src.hash(&mut hasher);
444        FileName::Anon(hasher.finish())
445    }
446
447    pub fn proc_macro_source_code(src: &str) -> FileName {
448        let mut hasher = StableHasher::new();
449        src.hash(&mut hasher);
450        FileName::ProcMacroSourceCode(hasher.finish())
451    }
452
453    pub fn cfg_spec_source_code(src: &str) -> FileName {
454        let mut hasher = StableHasher::new();
455        src.hash(&mut hasher);
456        FileName::CfgSpec(hasher.finish())
457    }
458
459    pub fn cli_crate_attr_source_code(src: &str) -> FileName {
460        let mut hasher = StableHasher::new();
461        src.hash(&mut hasher);
462        FileName::CliCrateAttr(hasher.finish())
463    }
464
465    pub fn doc_test_source_code(path: PathBuf, line: isize) -> FileName {
466        FileName::DocTest(path, line)
467    }
468
469    pub fn inline_asm_source_code(src: &str) -> FileName {
470        let mut hasher = StableHasher::new();
471        src.hash(&mut hasher);
472        FileName::InlineAsm(hasher.finish())
473    }
474
475    /// Returns the path suitable for reading from the file system on the local host,
476    /// if this information exists.
477    /// Avoid embedding this in build artifacts; see `remapped_path_if_available()` for that.
478    pub fn into_local_path(self) -> Option<PathBuf> {
479        match self {
480            FileName::Real(path) => path.into_local_path(),
481            FileName::DocTest(path, _) => Some(path),
482            _ => None,
483        }
484    }
485}
486
487/// Represents a span.
488///
489/// Spans represent a region of code, used for error reporting. Positions in spans
490/// are *absolute* positions from the beginning of the [`SourceMap`], not positions
491/// relative to [`SourceFile`]s. Methods on the `SourceMap` can be used to relate spans back
492/// to the original source.
493///
494/// You must be careful if the span crosses more than one file, since you will not be
495/// able to use many of the functions on spans in source_map and you cannot assume
496/// that the length of the span is equal to `span.hi - span.lo`; there may be space in the
497/// [`BytePos`] range between files.
498///
499/// `SpanData` is public because `Span` uses a thread-local interner and can't be
500/// sent to other threads, but some pieces of performance infra run in a separate thread.
501/// Using `Span` is generally preferred.
502#[derive(Clone, Copy, Hash, PartialEq, Eq)]
503#[derive_where(PartialOrd, Ord)]
504pub struct SpanData {
505    pub lo: BytePos,
506    pub hi: BytePos,
507    /// Information about where the macro came from, if this piece of
508    /// code was created by a macro expansion.
509    #[derive_where(skip)]
510    // `SyntaxContext` does not implement `Ord`.
511    // The other fields are enough to determine in-file order.
512    pub ctxt: SyntaxContext,
513    #[derive_where(skip)]
514    // `LocalDefId` does not implement `Ord`.
515    // The other fields are enough to determine in-file order.
516    pub parent: Option<LocalDefId>,
517}
518
519impl SpanData {
520    #[inline]
521    pub fn span(&self) -> Span {
522        Span::new(self.lo, self.hi, self.ctxt, self.parent)
523    }
524    #[inline]
525    pub fn with_lo(&self, lo: BytePos) -> Span {
526        Span::new(lo, self.hi, self.ctxt, self.parent)
527    }
528    #[inline]
529    pub fn with_hi(&self, hi: BytePos) -> Span {
530        Span::new(self.lo, hi, self.ctxt, self.parent)
531    }
532    /// Avoid if possible, `Span::map_ctxt` should be preferred.
533    #[inline]
534    fn with_ctxt(&self, ctxt: SyntaxContext) -> Span {
535        Span::new(self.lo, self.hi, ctxt, self.parent)
536    }
537    /// Avoid if possible, `Span::with_parent` should be preferred.
538    #[inline]
539    fn with_parent(&self, parent: Option<LocalDefId>) -> Span {
540        Span::new(self.lo, self.hi, self.ctxt, parent)
541    }
542    /// Returns `true` if this is a dummy span with any hygienic context.
543    #[inline]
544    pub fn is_dummy(self) -> bool {
545        self.lo.0 == 0 && self.hi.0 == 0
546    }
547    /// Returns `true` if `self` fully encloses `other`.
548    pub fn contains(self, other: Self) -> bool {
549        self.lo <= other.lo && other.hi <= self.hi
550    }
551}
552
553impl Default for SpanData {
554    fn default() -> Self {
555        Self { lo: BytePos(0), hi: BytePos(0), ctxt: SyntaxContext::root(), parent: None }
556    }
557}
558
559impl PartialOrd for Span {
560    fn partial_cmp(&self, rhs: &Self) -> Option<Ordering> {
561        PartialOrd::partial_cmp(&self.data(), &rhs.data())
562    }
563}
564impl Ord for Span {
565    fn cmp(&self, rhs: &Self) -> Ordering {
566        Ord::cmp(&self.data(), &rhs.data())
567    }
568}
569
570impl Span {
571    #[inline]
572    pub fn lo(self) -> BytePos {
573        self.data().lo
574    }
575    #[inline]
576    pub fn with_lo(self, lo: BytePos) -> Span {
577        self.data().with_lo(lo)
578    }
579    #[inline]
580    pub fn hi(self) -> BytePos {
581        self.data().hi
582    }
583    #[inline]
584    pub fn with_hi(self, hi: BytePos) -> Span {
585        self.data().with_hi(hi)
586    }
587    #[inline]
588    pub fn with_ctxt(self, ctxt: SyntaxContext) -> Span {
589        self.map_ctxt(|_| ctxt)
590    }
591
592    #[inline]
593    pub fn is_visible(self, sm: &SourceMap) -> bool {
594        !self.is_dummy() && sm.is_span_accessible(self)
595    }
596
597    /// Returns whether this span originates in a foreign crate's external macro.
598    ///
599    /// This is used to test whether a lint should not even begin to figure out whether it should
600    /// be reported on the current node.
601    #[inline]
602    pub fn in_external_macro(self, sm: &SourceMap) -> bool {
603        self.ctxt().in_external_macro(sm)
604    }
605
606    /// Returns `true` if `span` originates in a derive-macro's expansion.
607    pub fn in_derive_expansion(self) -> bool {
608        matches!(self.ctxt().outer_expn_data().kind, ExpnKind::Macro(MacroKind::Derive, _))
609    }
610
611    /// Return whether `span` is generated by `async` or `await`.
612    pub fn is_from_async_await(self) -> bool {
613        matches!(
614            self.ctxt().outer_expn_data().kind,
615            ExpnKind::Desugaring(DesugaringKind::Async | DesugaringKind::Await),
616        )
617    }
618
619    /// Gate suggestions that would not be appropriate in a context the user didn't write.
620    pub fn can_be_used_for_suggestions(self) -> bool {
621        !self.from_expansion()
622        // FIXME: If this span comes from a `derive` macro but it points at code the user wrote,
623        // the callsite span and the span will be pointing at different places. It also means that
624        // we can safely provide suggestions on this span.
625            || (self.in_derive_expansion()
626                && self.parent_callsite().map(|p| (p.lo(), p.hi())) != Some((self.lo(), self.hi())))
627    }
628
629    #[inline]
630    pub fn with_root_ctxt(lo: BytePos, hi: BytePos) -> Span {
631        Span::new(lo, hi, SyntaxContext::root(), None)
632    }
633
634    /// Returns a new span representing an empty span at the beginning of this span.
635    #[inline]
636    pub fn shrink_to_lo(self) -> Span {
637        let span = self.data_untracked();
638        span.with_hi(span.lo)
639    }
640    /// Returns a new span representing an empty span at the end of this span.
641    #[inline]
642    pub fn shrink_to_hi(self) -> Span {
643        let span = self.data_untracked();
644        span.with_lo(span.hi)
645    }
646
647    #[inline]
648    /// Returns `true` if `hi == lo`.
649    pub fn is_empty(self) -> bool {
650        let span = self.data_untracked();
651        span.hi == span.lo
652    }
653
654    /// Returns `self` if `self` is not the dummy span, and `other` otherwise.
655    pub fn substitute_dummy(self, other: Span) -> Span {
656        if self.is_dummy() { other } else { self }
657    }
658
659    /// Returns `true` if `self` fully encloses `other`.
660    pub fn contains(self, other: Span) -> bool {
661        let span = self.data();
662        let other = other.data();
663        span.contains(other)
664    }
665
666    /// Returns `true` if `self` touches `other`.
667    pub fn overlaps(self, other: Span) -> bool {
668        let span = self.data();
669        let other = other.data();
670        span.lo < other.hi && other.lo < span.hi
671    }
672
673    /// Returns `true` if `self` touches or adjoins `other`.
674    pub fn overlaps_or_adjacent(self, other: Span) -> bool {
675        let span = self.data();
676        let other = other.data();
677        span.lo <= other.hi && other.lo <= span.hi
678    }
679
680    /// Returns `true` if the spans are equal with regards to the source text.
681    ///
682    /// Use this instead of `==` when either span could be generated code,
683    /// and you only care that they point to the same bytes of source text.
684    pub fn source_equal(self, other: Span) -> bool {
685        let span = self.data();
686        let other = other.data();
687        span.lo == other.lo && span.hi == other.hi
688    }
689
690    /// Returns `Some(span)`, where the start is trimmed by the end of `other`.
691    pub fn trim_start(self, other: Span) -> Option<Span> {
692        let span = self.data();
693        let other = other.data();
694        if span.hi > other.hi { Some(span.with_lo(cmp::max(span.lo, other.hi))) } else { None }
695    }
696
697    /// Returns `Some(span)`, where the end is trimmed by the start of `other`.
698    pub fn trim_end(self, other: Span) -> Option<Span> {
699        let span = self.data();
700        let other = other.data();
701        if span.lo < other.lo { Some(span.with_hi(cmp::min(span.hi, other.lo))) } else { None }
702    }
703
704    /// Returns the source span -- this is either the supplied span, or the span for
705    /// the macro callsite that expanded to it.
706    pub fn source_callsite(self) -> Span {
707        let ctxt = self.ctxt();
708        if !ctxt.is_root() { ctxt.outer_expn_data().call_site.source_callsite() } else { self }
709    }
710
711    /// The `Span` for the tokens in the previous macro expansion from which `self` was generated,
712    /// if any.
713    pub fn parent_callsite(self) -> Option<Span> {
714        let ctxt = self.ctxt();
715        (!ctxt.is_root()).then(|| ctxt.outer_expn_data().call_site)
716    }
717
718    /// Walk down the expansion ancestors to find a span that's contained within `outer`.
719    ///
720    /// The span returned by this method may have a different [`SyntaxContext`] as `outer`.
721    /// If you need to extend the span, use [`find_ancestor_inside_same_ctxt`] instead,
722    /// because joining spans with different syntax contexts can create unexpected results.
723    ///
724    /// [`find_ancestor_inside_same_ctxt`]: Self::find_ancestor_inside_same_ctxt
725    pub fn find_ancestor_inside(mut self, outer: Span) -> Option<Span> {
726        while !outer.contains(self) {
727            self = self.parent_callsite()?;
728        }
729        Some(self)
730    }
731
732    /// Walk down the expansion ancestors to find a span with the same [`SyntaxContext`] as
733    /// `other`.
734    ///
735    /// Like [`find_ancestor_inside_same_ctxt`], but specifically for when spans might not
736    /// overlap. Take care when using this, and prefer [`find_ancestor_inside`] or
737    /// [`find_ancestor_inside_same_ctxt`] when you know that the spans are nested (modulo
738    /// macro expansion).
739    ///
740    /// [`find_ancestor_inside`]: Self::find_ancestor_inside
741    /// [`find_ancestor_inside_same_ctxt`]: Self::find_ancestor_inside_same_ctxt
742    pub fn find_ancestor_in_same_ctxt(mut self, other: Span) -> Option<Span> {
743        while !self.eq_ctxt(other) {
744            self = self.parent_callsite()?;
745        }
746        Some(self)
747    }
748
749    /// Walk down the expansion ancestors to find a span that's contained within `outer` and
750    /// has the same [`SyntaxContext`] as `outer`.
751    ///
752    /// This method is the combination of [`find_ancestor_inside`] and
753    /// [`find_ancestor_in_same_ctxt`] and should be preferred when extending the returned span.
754    /// If you do not need to modify the span, use [`find_ancestor_inside`] instead.
755    ///
756    /// [`find_ancestor_inside`]: Self::find_ancestor_inside
757    /// [`find_ancestor_in_same_ctxt`]: Self::find_ancestor_in_same_ctxt
758    pub fn find_ancestor_inside_same_ctxt(mut self, outer: Span) -> Option<Span> {
759        while !outer.contains(self) || !self.eq_ctxt(outer) {
760            self = self.parent_callsite()?;
761        }
762        Some(self)
763    }
764
765    /// Recursively walk down the expansion ancestors to find the oldest ancestor span with the same
766    /// [`SyntaxContext`] the initial span.
767    ///
768    /// This method is suitable for peeling through *local* macro expansions to find the "innermost"
769    /// span that is still local and shares the same [`SyntaxContext`]. For example, given
770    ///
771    /// ```ignore (illustrative example, contains type error)
772    ///  macro_rules! outer {
773    ///      ($x: expr) => {
774    ///          inner!($x)
775    ///      }
776    ///  }
777    ///
778    ///  macro_rules! inner {
779    ///      ($x: expr) => {
780    ///          format!("error: {}", $x)
781    ///          //~^ ERROR mismatched types
782    ///      }
783    ///  }
784    ///
785    ///  fn bar(x: &str) -> Result<(), Box<dyn std::error::Error>> {
786    ///      Err(outer!(x))
787    ///  }
788    /// ```
789    ///
790    /// if provided the initial span of `outer!(x)` inside `bar`, this method will recurse
791    /// the parent callsites until we reach `format!("error: {}", $x)`, at which point it is the
792    /// oldest ancestor span that is both still local and shares the same [`SyntaxContext`] as the
793    /// initial span.
794    pub fn find_oldest_ancestor_in_same_ctxt(self) -> Span {
795        let mut cur = self;
796        while cur.eq_ctxt(self)
797            && let Some(parent_callsite) = cur.parent_callsite()
798        {
799            cur = parent_callsite;
800        }
801        cur
802    }
803
804    /// Edition of the crate from which this span came.
805    pub fn edition(self) -> edition::Edition {
806        self.ctxt().edition()
807    }
808
809    /// Is this edition 2015?
810    #[inline]
811    pub fn is_rust_2015(self) -> bool {
812        self.edition().is_rust_2015()
813    }
814
815    /// Are we allowed to use features from the Rust 2018 edition?
816    #[inline]
817    pub fn at_least_rust_2018(self) -> bool {
818        self.edition().at_least_rust_2018()
819    }
820
821    /// Are we allowed to use features from the Rust 2021 edition?
822    #[inline]
823    pub fn at_least_rust_2021(self) -> bool {
824        self.edition().at_least_rust_2021()
825    }
826
827    /// Are we allowed to use features from the Rust 2024 edition?
828    #[inline]
829    pub fn at_least_rust_2024(self) -> bool {
830        self.edition().at_least_rust_2024()
831    }
832
833    /// Returns the source callee.
834    ///
835    /// Returns `None` if the supplied span has no expansion trace,
836    /// else returns the `ExpnData` for the macro definition
837    /// corresponding to the source callsite.
838    pub fn source_callee(self) -> Option<ExpnData> {
839        let mut ctxt = self.ctxt();
840        let mut opt_expn_data = None;
841        while !ctxt.is_root() {
842            let expn_data = ctxt.outer_expn_data();
843            ctxt = expn_data.call_site.ctxt();
844            opt_expn_data = Some(expn_data);
845        }
846        opt_expn_data
847    }
848
849    /// Checks if a span is "internal" to a macro in which `#[unstable]`
850    /// items can be used (that is, a macro marked with
851    /// `#[allow_internal_unstable]`).
852    pub fn allows_unstable(self, feature: Symbol) -> bool {
853        self.ctxt()
854            .outer_expn_data()
855            .allow_internal_unstable
856            .is_some_and(|features| features.contains(&feature))
857    }
858
859    /// Checks if this span arises from a compiler desugaring of kind `kind`.
860    pub fn is_desugaring(self, kind: DesugaringKind) -> bool {
861        match self.ctxt().outer_expn_data().kind {
862            ExpnKind::Desugaring(k) => k == kind,
863            _ => false,
864        }
865    }
866
867    /// Returns the compiler desugaring that created this span, or `None`
868    /// if this span is not from a desugaring.
869    pub fn desugaring_kind(self) -> Option<DesugaringKind> {
870        match self.ctxt().outer_expn_data().kind {
871            ExpnKind::Desugaring(k) => Some(k),
872            _ => None,
873        }
874    }
875
876    /// Checks if a span is "internal" to a macro in which `unsafe`
877    /// can be used without triggering the `unsafe_code` lint.
878    /// (that is, a macro marked with `#[allow_internal_unsafe]`).
879    pub fn allows_unsafe(self) -> bool {
880        self.ctxt().outer_expn_data().allow_internal_unsafe
881    }
882
883    pub fn macro_backtrace(mut self) -> impl Iterator<Item = ExpnData> {
884        let mut prev_span = DUMMY_SP;
885        iter::from_fn(move || {
886            loop {
887                let ctxt = self.ctxt();
888                if ctxt.is_root() {
889                    return None;
890                }
891
892                let expn_data = ctxt.outer_expn_data();
893                let is_recursive = expn_data.call_site.source_equal(prev_span);
894
895                prev_span = self;
896                self = expn_data.call_site;
897
898                // Don't print recursive invocations.
899                if !is_recursive {
900                    return Some(expn_data);
901                }
902            }
903        })
904    }
905
906    /// Splits a span into two composite spans around a certain position.
907    pub fn split_at(self, pos: u32) -> (Span, Span) {
908        let len = self.hi().0 - self.lo().0;
909        debug_assert!(pos <= len);
910
911        let split_pos = BytePos(self.lo().0 + pos);
912        (
913            Span::new(self.lo(), split_pos, self.ctxt(), self.parent()),
914            Span::new(split_pos, self.hi(), self.ctxt(), self.parent()),
915        )
916    }
917
918    /// Check if you can select metavar spans for the given spans to get matching contexts.
919    fn try_metavars(a: SpanData, b: SpanData, a_orig: Span, b_orig: Span) -> (SpanData, SpanData) {
920        match with_metavar_spans(|mspans| (mspans.get(a_orig), mspans.get(b_orig))) {
921            (None, None) => {}
922            (Some(meta_a), None) => {
923                let meta_a = meta_a.data();
924                if meta_a.ctxt == b.ctxt {
925                    return (meta_a, b);
926                }
927            }
928            (None, Some(meta_b)) => {
929                let meta_b = meta_b.data();
930                if a.ctxt == meta_b.ctxt {
931                    return (a, meta_b);
932                }
933            }
934            (Some(meta_a), Some(meta_b)) => {
935                let meta_b = meta_b.data();
936                if a.ctxt == meta_b.ctxt {
937                    return (a, meta_b);
938                }
939                let meta_a = meta_a.data();
940                if meta_a.ctxt == b.ctxt {
941                    return (meta_a, b);
942                } else if meta_a.ctxt == meta_b.ctxt {
943                    return (meta_a, meta_b);
944                }
945            }
946        }
947
948        (a, b)
949    }
950
951    /// Prepare two spans to a combine operation like `to` or `between`.
952    fn prepare_to_combine(
953        a_orig: Span,
954        b_orig: Span,
955    ) -> Result<(SpanData, SpanData, Option<LocalDefId>), Span> {
956        let (a, b) = (a_orig.data(), b_orig.data());
957        if a.ctxt == b.ctxt {
958            return Ok((a, b, if a.parent == b.parent { a.parent } else { None }));
959        }
960
961        let (a, b) = Span::try_metavars(a, b, a_orig, b_orig);
962        if a.ctxt == b.ctxt {
963            return Ok((a, b, if a.parent == b.parent { a.parent } else { None }));
964        }
965
966        // Context mismatches usually happen when procedural macros combine spans copied from
967        // the macro input with spans produced by the macro (`Span::*_site`).
968        // In that case we consider the combined span to be produced by the macro and return
969        // the original macro-produced span as the result.
970        // Otherwise we just fall back to returning the first span.
971        // Combining locations typically doesn't make sense in case of context mismatches.
972        // `is_root` here is a fast path optimization.
973        let a_is_callsite = a.ctxt.is_root() || a.ctxt == b.span().source_callsite().ctxt();
974        Err(if a_is_callsite { b_orig } else { a_orig })
975    }
976
977    /// This span, but in a larger context, may switch to the metavariable span if suitable.
978    pub fn with_neighbor(self, neighbor: Span) -> Span {
979        match Span::prepare_to_combine(self, neighbor) {
980            Ok((this, ..)) => this.span(),
981            Err(_) => self,
982        }
983    }
984
985    /// Returns a `Span` that would enclose both `self` and `end`.
986    ///
987    /// Note that this can also be used to extend the span "backwards":
988    /// `start.to(end)` and `end.to(start)` return the same `Span`.
989    ///
990    /// ```text
991    ///     ____             ___
992    ///     self lorem ipsum end
993    ///     ^^^^^^^^^^^^^^^^^^^^
994    /// ```
995    pub fn to(self, end: Span) -> Span {
996        match Span::prepare_to_combine(self, end) {
997            Ok((from, to, parent)) => {
998                Span::new(cmp::min(from.lo, to.lo), cmp::max(from.hi, to.hi), from.ctxt, parent)
999            }
1000            Err(fallback) => fallback,
1001        }
1002    }
1003
1004    /// Returns a `Span` between the end of `self` to the beginning of `end`.
1005    ///
1006    /// ```text
1007    ///     ____             ___
1008    ///     self lorem ipsum end
1009    ///         ^^^^^^^^^^^^^
1010    /// ```
1011    pub fn between(self, end: Span) -> Span {
1012        match Span::prepare_to_combine(self, end) {
1013            Ok((from, to, parent)) => {
1014                Span::new(cmp::min(from.hi, to.hi), cmp::max(from.lo, to.lo), from.ctxt, parent)
1015            }
1016            Err(fallback) => fallback,
1017        }
1018    }
1019
1020    /// Returns a `Span` from the beginning of `self` until the beginning of `end`.
1021    ///
1022    /// ```text
1023    ///     ____             ___
1024    ///     self lorem ipsum end
1025    ///     ^^^^^^^^^^^^^^^^^
1026    /// ```
1027    pub fn until(self, end: Span) -> Span {
1028        match Span::prepare_to_combine(self, end) {
1029            Ok((from, to, parent)) => {
1030                Span::new(cmp::min(from.lo, to.lo), cmp::max(from.lo, to.lo), from.ctxt, parent)
1031            }
1032            Err(fallback) => fallback,
1033        }
1034    }
1035
1036    /// Returns the `Span` within the syntax context of "within". This is useful when
1037    /// "self" is an expansion from a macro variable, since this can be used for
1038    /// providing extra macro expansion context for certain errors.
1039    ///
1040    /// ```text
1041    /// macro_rules! m {
1042    ///     ($ident:ident) => { ($ident,) }
1043    /// }
1044    ///
1045    /// m!(outer_ident);
1046    /// ```
1047    ///
1048    /// If "self" is the span of the outer_ident, and "within" is the span of the `($ident,)`
1049    /// expr, then this will return the span of the `$ident` macro variable.
1050    pub fn within_macro(self, within: Span, sm: &SourceMap) -> Option<Span> {
1051        match Span::prepare_to_combine(self, within) {
1052            // Only return something if it doesn't overlap with the original span,
1053            // and the span isn't "imported" (i.e. from unavailable sources).
1054            // FIXME: This does limit the usefulness of the error when the macro is
1055            // from a foreign crate; we could also take into account `-Zmacro-backtrace`,
1056            // which doesn't redact this span (but that would mean passing in even more
1057            // args to this function, lol).
1058            Ok((self_, _, parent))
1059                if self_.hi < self.lo() || self.hi() < self_.lo && !sm.is_imported(within) =>
1060            {
1061                Some(Span::new(self_.lo, self_.hi, self_.ctxt, parent))
1062            }
1063            _ => None,
1064        }
1065    }
1066
1067    pub fn from_inner(self, inner: InnerSpan) -> Span {
1068        let span = self.data();
1069        Span::new(
1070            span.lo + BytePos::from_usize(inner.start),
1071            span.lo + BytePos::from_usize(inner.end),
1072            span.ctxt,
1073            span.parent,
1074        )
1075    }
1076
1077    /// Equivalent of `Span::def_site` from the proc macro API,
1078    /// except that the location is taken from the `self` span.
1079    pub fn with_def_site_ctxt(self, expn_id: ExpnId) -> Span {
1080        self.with_ctxt_from_mark(expn_id, Transparency::Opaque)
1081    }
1082
1083    /// Equivalent of `Span::call_site` from the proc macro API,
1084    /// except that the location is taken from the `self` span.
1085    pub fn with_call_site_ctxt(self, expn_id: ExpnId) -> Span {
1086        self.with_ctxt_from_mark(expn_id, Transparency::Transparent)
1087    }
1088
1089    /// Equivalent of `Span::mixed_site` from the proc macro API,
1090    /// except that the location is taken from the `self` span.
1091    pub fn with_mixed_site_ctxt(self, expn_id: ExpnId) -> Span {
1092        self.with_ctxt_from_mark(expn_id, Transparency::SemiOpaque)
1093    }
1094
1095    /// Produces a span with the same location as `self` and context produced by a macro with the
1096    /// given ID and transparency, assuming that macro was defined directly and not produced by
1097    /// some other macro (which is the case for built-in and procedural macros).
1098    fn with_ctxt_from_mark(self, expn_id: ExpnId, transparency: Transparency) -> Span {
1099        self.with_ctxt(SyntaxContext::root().apply_mark(expn_id, transparency))
1100    }
1101
1102    #[inline]
1103    pub fn apply_mark(self, expn_id: ExpnId, transparency: Transparency) -> Span {
1104        self.map_ctxt(|ctxt| ctxt.apply_mark(expn_id, transparency))
1105    }
1106
1107    #[inline]
1108    pub fn remove_mark(&mut self) -> ExpnId {
1109        let mut mark = ExpnId::root();
1110        *self = self.map_ctxt(|mut ctxt| {
1111            mark = ctxt.remove_mark();
1112            ctxt
1113        });
1114        mark
1115    }
1116
1117    #[inline]
1118    pub fn adjust(&mut self, expn_id: ExpnId) -> Option<ExpnId> {
1119        let mut mark = None;
1120        *self = self.map_ctxt(|mut ctxt| {
1121            mark = ctxt.adjust(expn_id);
1122            ctxt
1123        });
1124        mark
1125    }
1126
1127    #[inline]
1128    pub fn normalize_to_macros_2_0_and_adjust(&mut self, expn_id: ExpnId) -> Option<ExpnId> {
1129        let mut mark = None;
1130        *self = self.map_ctxt(|mut ctxt| {
1131            mark = ctxt.normalize_to_macros_2_0_and_adjust(expn_id);
1132            ctxt
1133        });
1134        mark
1135    }
1136
1137    #[inline]
1138    pub fn glob_adjust(&mut self, expn_id: ExpnId, glob_span: Span) -> Option<Option<ExpnId>> {
1139        let mut mark = None;
1140        *self = self.map_ctxt(|mut ctxt| {
1141            mark = ctxt.glob_adjust(expn_id, glob_span);
1142            ctxt
1143        });
1144        mark
1145    }
1146
1147    #[inline]
1148    pub fn reverse_glob_adjust(
1149        &mut self,
1150        expn_id: ExpnId,
1151        glob_span: Span,
1152    ) -> Option<Option<ExpnId>> {
1153        let mut mark = None;
1154        *self = self.map_ctxt(|mut ctxt| {
1155            mark = ctxt.reverse_glob_adjust(expn_id, glob_span);
1156            ctxt
1157        });
1158        mark
1159    }
1160
1161    #[inline]
1162    pub fn normalize_to_macros_2_0(self) -> Span {
1163        self.map_ctxt(|ctxt| ctxt.normalize_to_macros_2_0())
1164    }
1165
1166    #[inline]
1167    pub fn normalize_to_macro_rules(self) -> Span {
1168        self.map_ctxt(|ctxt| ctxt.normalize_to_macro_rules())
1169    }
1170}
1171
1172impl Default for Span {
1173    fn default() -> Self {
1174        DUMMY_SP
1175    }
1176}
1177
1178rustc_index::newtype_index! {
1179    #[orderable]
1180    #[debug_format = "AttrId({})"]
1181    pub struct AttrId {}
1182}
1183
1184/// This trait is used to allow encoder specific encodings of certain types.
1185/// It is similar to rustc_type_ir's TyEncoder.
1186pub trait SpanEncoder: Encoder {
1187    fn encode_span(&mut self, span: Span);
1188    fn encode_symbol(&mut self, symbol: Symbol);
1189    fn encode_expn_id(&mut self, expn_id: ExpnId);
1190    fn encode_syntax_context(&mut self, syntax_context: SyntaxContext);
1191    /// As a local identifier, a `CrateNum` is only meaningful within its context, e.g. within a tcx.
1192    /// Therefore, make sure to include the context when encode a `CrateNum`.
1193    fn encode_crate_num(&mut self, crate_num: CrateNum);
1194    fn encode_def_index(&mut self, def_index: DefIndex);
1195    fn encode_def_id(&mut self, def_id: DefId);
1196}
1197
1198impl SpanEncoder for FileEncoder {
1199    fn encode_span(&mut self, span: Span) {
1200        let span = span.data();
1201        span.lo.encode(self);
1202        span.hi.encode(self);
1203    }
1204
1205    fn encode_symbol(&mut self, symbol: Symbol) {
1206        self.emit_str(symbol.as_str());
1207    }
1208
1209    fn encode_expn_id(&mut self, _expn_id: ExpnId) {
1210        panic!("cannot encode `ExpnId` with `FileEncoder`");
1211    }
1212
1213    fn encode_syntax_context(&mut self, _syntax_context: SyntaxContext) {
1214        panic!("cannot encode `SyntaxContext` with `FileEncoder`");
1215    }
1216
1217    fn encode_crate_num(&mut self, crate_num: CrateNum) {
1218        self.emit_u32(crate_num.as_u32());
1219    }
1220
1221    fn encode_def_index(&mut self, _def_index: DefIndex) {
1222        panic!("cannot encode `DefIndex` with `FileEncoder`");
1223    }
1224
1225    fn encode_def_id(&mut self, def_id: DefId) {
1226        def_id.krate.encode(self);
1227        def_id.index.encode(self);
1228    }
1229}
1230
1231impl<E: SpanEncoder> Encodable<E> for Span {
1232    fn encode(&self, s: &mut E) {
1233        s.encode_span(*self);
1234    }
1235}
1236
1237impl<E: SpanEncoder> Encodable<E> for Symbol {
1238    fn encode(&self, s: &mut E) {
1239        s.encode_symbol(*self);
1240    }
1241}
1242
1243impl<E: SpanEncoder> Encodable<E> for ExpnId {
1244    fn encode(&self, s: &mut E) {
1245        s.encode_expn_id(*self)
1246    }
1247}
1248
1249impl<E: SpanEncoder> Encodable<E> for SyntaxContext {
1250    fn encode(&self, s: &mut E) {
1251        s.encode_syntax_context(*self)
1252    }
1253}
1254
1255impl<E: SpanEncoder> Encodable<E> for CrateNum {
1256    fn encode(&self, s: &mut E) {
1257        s.encode_crate_num(*self)
1258    }
1259}
1260
1261impl<E: SpanEncoder> Encodable<E> for DefIndex {
1262    fn encode(&self, s: &mut E) {
1263        s.encode_def_index(*self)
1264    }
1265}
1266
1267impl<E: SpanEncoder> Encodable<E> for DefId {
1268    fn encode(&self, s: &mut E) {
1269        s.encode_def_id(*self)
1270    }
1271}
1272
1273impl<E: SpanEncoder> Encodable<E> for AttrId {
1274    fn encode(&self, _s: &mut E) {
1275        // A fresh id will be generated when decoding
1276    }
1277}
1278
1279/// This trait is used to allow decoder specific encodings of certain types.
1280/// It is similar to rustc_type_ir's TyDecoder.
1281pub trait SpanDecoder: Decoder {
1282    fn decode_span(&mut self) -> Span;
1283    fn decode_symbol(&mut self) -> Symbol;
1284    fn decode_expn_id(&mut self) -> ExpnId;
1285    fn decode_syntax_context(&mut self) -> SyntaxContext;
1286    fn decode_crate_num(&mut self) -> CrateNum;
1287    fn decode_def_index(&mut self) -> DefIndex;
1288    fn decode_def_id(&mut self) -> DefId;
1289    fn decode_attr_id(&mut self) -> AttrId;
1290}
1291
1292impl SpanDecoder for MemDecoder<'_> {
1293    fn decode_span(&mut self) -> Span {
1294        let lo = Decodable::decode(self);
1295        let hi = Decodable::decode(self);
1296
1297        Span::new(lo, hi, SyntaxContext::root(), None)
1298    }
1299
1300    fn decode_symbol(&mut self) -> Symbol {
1301        Symbol::intern(self.read_str())
1302    }
1303
1304    fn decode_expn_id(&mut self) -> ExpnId {
1305        panic!("cannot decode `ExpnId` with `MemDecoder`");
1306    }
1307
1308    fn decode_syntax_context(&mut self) -> SyntaxContext {
1309        panic!("cannot decode `SyntaxContext` with `MemDecoder`");
1310    }
1311
1312    fn decode_crate_num(&mut self) -> CrateNum {
1313        CrateNum::from_u32(self.read_u32())
1314    }
1315
1316    fn decode_def_index(&mut self) -> DefIndex {
1317        panic!("cannot decode `DefIndex` with `MemDecoder`");
1318    }
1319
1320    fn decode_def_id(&mut self) -> DefId {
1321        DefId { krate: Decodable::decode(self), index: Decodable::decode(self) }
1322    }
1323
1324    fn decode_attr_id(&mut self) -> AttrId {
1325        panic!("cannot decode `AttrId` with `MemDecoder`");
1326    }
1327}
1328
1329impl<D: SpanDecoder> Decodable<D> for Span {
1330    fn decode(s: &mut D) -> Span {
1331        s.decode_span()
1332    }
1333}
1334
1335impl<D: SpanDecoder> Decodable<D> for Symbol {
1336    fn decode(s: &mut D) -> Symbol {
1337        s.decode_symbol()
1338    }
1339}
1340
1341impl<D: SpanDecoder> Decodable<D> for ExpnId {
1342    fn decode(s: &mut D) -> ExpnId {
1343        s.decode_expn_id()
1344    }
1345}
1346
1347impl<D: SpanDecoder> Decodable<D> for SyntaxContext {
1348    fn decode(s: &mut D) -> SyntaxContext {
1349        s.decode_syntax_context()
1350    }
1351}
1352
1353impl<D: SpanDecoder> Decodable<D> for CrateNum {
1354    fn decode(s: &mut D) -> CrateNum {
1355        s.decode_crate_num()
1356    }
1357}
1358
1359impl<D: SpanDecoder> Decodable<D> for DefIndex {
1360    fn decode(s: &mut D) -> DefIndex {
1361        s.decode_def_index()
1362    }
1363}
1364
1365impl<D: SpanDecoder> Decodable<D> for DefId {
1366    fn decode(s: &mut D) -> DefId {
1367        s.decode_def_id()
1368    }
1369}
1370
1371impl<D: SpanDecoder> Decodable<D> for AttrId {
1372    fn decode(s: &mut D) -> AttrId {
1373        s.decode_attr_id()
1374    }
1375}
1376
1377impl fmt::Debug for Span {
1378    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1379        // Use the global `SourceMap` to print the span. If that's not
1380        // available, fall back to printing the raw values.
1381
1382        fn fallback(span: Span, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1383            f.debug_struct("Span")
1384                .field("lo", &span.lo())
1385                .field("hi", &span.hi())
1386                .field("ctxt", &span.ctxt())
1387                .finish()
1388        }
1389
1390        if SESSION_GLOBALS.is_set() {
1391            with_session_globals(|session_globals| {
1392                if let Some(source_map) = &session_globals.source_map {
1393                    write!(f, "{} ({:?})", source_map.span_to_diagnostic_string(*self), self.ctxt())
1394                } else {
1395                    fallback(*self, f)
1396                }
1397            })
1398        } else {
1399            fallback(*self, f)
1400        }
1401    }
1402}
1403
1404impl fmt::Debug for SpanData {
1405    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1406        fmt::Debug::fmt(&self.span(), f)
1407    }
1408}
1409
1410/// Identifies an offset of a multi-byte character in a `SourceFile`.
1411#[derive(Copy, Clone, Encodable, Decodable, Eq, PartialEq, Debug, HashStable_Generic)]
1412pub struct MultiByteChar {
1413    /// The relative offset of the character in the `SourceFile`.
1414    pub pos: RelativeBytePos,
1415    /// The number of bytes, `>= 2`.
1416    pub bytes: u8,
1417}
1418
1419/// Identifies an offset of a character that was normalized away from `SourceFile`.
1420#[derive(Copy, Clone, Encodable, Decodable, Eq, PartialEq, Debug, HashStable_Generic)]
1421pub struct NormalizedPos {
1422    /// The relative offset of the character in the `SourceFile`.
1423    pub pos: RelativeBytePos,
1424    /// The difference between original and normalized string at position.
1425    pub diff: u32,
1426}
1427
1428#[derive(PartialEq, Eq, Clone, Debug)]
1429pub enum ExternalSource {
1430    /// No external source has to be loaded, since the `SourceFile` represents a local crate.
1431    Unneeded,
1432    Foreign {
1433        kind: ExternalSourceKind,
1434        /// Index of the file inside metadata.
1435        metadata_index: u32,
1436    },
1437}
1438
1439/// The state of the lazy external source loading mechanism of a `SourceFile`.
1440#[derive(PartialEq, Eq, Clone, Debug)]
1441pub enum ExternalSourceKind {
1442    /// The external source has been loaded already.
1443    Present(Arc<String>),
1444    /// No attempt has been made to load the external source.
1445    AbsentOk,
1446    /// A failed attempt has been made to load the external source.
1447    AbsentErr,
1448}
1449
1450impl ExternalSource {
1451    pub fn get_source(&self) -> Option<&str> {
1452        match self {
1453            ExternalSource::Foreign { kind: ExternalSourceKind::Present(src), .. } => Some(src),
1454            _ => None,
1455        }
1456    }
1457}
1458
1459#[derive(Debug)]
1460pub struct OffsetOverflowError;
1461
1462#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash, Encodable, Decodable)]
1463#[derive(HashStable_Generic)]
1464pub enum SourceFileHashAlgorithm {
1465    Md5,
1466    Sha1,
1467    Sha256,
1468    Blake3,
1469}
1470
1471impl Display for SourceFileHashAlgorithm {
1472    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1473        f.write_str(match self {
1474            Self::Md5 => "md5",
1475            Self::Sha1 => "sha1",
1476            Self::Sha256 => "sha256",
1477            Self::Blake3 => "blake3",
1478        })
1479    }
1480}
1481
1482impl FromStr for SourceFileHashAlgorithm {
1483    type Err = ();
1484
1485    fn from_str(s: &str) -> Result<SourceFileHashAlgorithm, ()> {
1486        match s {
1487            "md5" => Ok(SourceFileHashAlgorithm::Md5),
1488            "sha1" => Ok(SourceFileHashAlgorithm::Sha1),
1489            "sha256" => Ok(SourceFileHashAlgorithm::Sha256),
1490            "blake3" => Ok(SourceFileHashAlgorithm::Blake3),
1491            _ => Err(()),
1492        }
1493    }
1494}
1495
1496/// The hash of the on-disk source file used for debug info and cargo freshness checks.
1497#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash)]
1498#[derive(HashStable_Generic, Encodable, Decodable)]
1499pub struct SourceFileHash {
1500    pub kind: SourceFileHashAlgorithm,
1501    value: [u8; 32],
1502}
1503
1504impl Display for SourceFileHash {
1505    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1506        write!(f, "{}=", self.kind)?;
1507        for byte in self.value[0..self.hash_len()].into_iter() {
1508            write!(f, "{byte:02x}")?;
1509        }
1510        Ok(())
1511    }
1512}
1513
1514impl SourceFileHash {
1515    pub fn new_in_memory(kind: SourceFileHashAlgorithm, src: impl AsRef<[u8]>) -> SourceFileHash {
1516        let mut hash = SourceFileHash { kind, value: Default::default() };
1517        let len = hash.hash_len();
1518        let value = &mut hash.value[..len];
1519        let data = src.as_ref();
1520        match kind {
1521            SourceFileHashAlgorithm::Md5 => {
1522                value.copy_from_slice(&Md5::digest(data));
1523            }
1524            SourceFileHashAlgorithm::Sha1 => {
1525                value.copy_from_slice(&Sha1::digest(data));
1526            }
1527            SourceFileHashAlgorithm::Sha256 => {
1528                value.copy_from_slice(&Sha256::digest(data));
1529            }
1530            SourceFileHashAlgorithm::Blake3 => value.copy_from_slice(blake3::hash(data).as_bytes()),
1531        };
1532        hash
1533    }
1534
1535    pub fn new(kind: SourceFileHashAlgorithm, src: impl Read) -> Result<SourceFileHash, io::Error> {
1536        let mut hash = SourceFileHash { kind, value: Default::default() };
1537        let len = hash.hash_len();
1538        let value = &mut hash.value[..len];
1539        // Buffer size is the recommended amount to fully leverage SIMD instructions on AVX-512 as per
1540        // blake3 documentation.
1541        let mut buf = vec![0; 16 * 1024];
1542
1543        fn digest<T>(
1544            mut hasher: T,
1545            mut update: impl FnMut(&mut T, &[u8]),
1546            finish: impl FnOnce(T, &mut [u8]),
1547            mut src: impl Read,
1548            buf: &mut [u8],
1549            value: &mut [u8],
1550        ) -> Result<(), io::Error> {
1551            loop {
1552                let bytes_read = src.read(buf)?;
1553                if bytes_read == 0 {
1554                    break;
1555                }
1556                update(&mut hasher, &buf[0..bytes_read]);
1557            }
1558            finish(hasher, value);
1559            Ok(())
1560        }
1561
1562        match kind {
1563            SourceFileHashAlgorithm::Sha256 => {
1564                digest(
1565                    Sha256::new(),
1566                    |h, b| {
1567                        h.update(b);
1568                    },
1569                    |h, out| out.copy_from_slice(&h.finalize()),
1570                    src,
1571                    &mut buf,
1572                    value,
1573                )?;
1574            }
1575            SourceFileHashAlgorithm::Sha1 => {
1576                digest(
1577                    Sha1::new(),
1578                    |h, b| {
1579                        h.update(b);
1580                    },
1581                    |h, out| out.copy_from_slice(&h.finalize()),
1582                    src,
1583                    &mut buf,
1584                    value,
1585                )?;
1586            }
1587            SourceFileHashAlgorithm::Md5 => {
1588                digest(
1589                    Md5::new(),
1590                    |h, b| {
1591                        h.update(b);
1592                    },
1593                    |h, out| out.copy_from_slice(&h.finalize()),
1594                    src,
1595                    &mut buf,
1596                    value,
1597                )?;
1598            }
1599            SourceFileHashAlgorithm::Blake3 => {
1600                digest(
1601                    blake3::Hasher::new(),
1602                    |h, b| {
1603                        h.update(b);
1604                    },
1605                    |h, out| out.copy_from_slice(h.finalize().as_bytes()),
1606                    src,
1607                    &mut buf,
1608                    value,
1609                )?;
1610            }
1611        }
1612        Ok(hash)
1613    }
1614
1615    /// Check if the stored hash matches the hash of the string.
1616    pub fn matches(&self, src: &str) -> bool {
1617        Self::new_in_memory(self.kind, src.as_bytes()) == *self
1618    }
1619
1620    /// The bytes of the hash.
1621    pub fn hash_bytes(&self) -> &[u8] {
1622        let len = self.hash_len();
1623        &self.value[..len]
1624    }
1625
1626    fn hash_len(&self) -> usize {
1627        match self.kind {
1628            SourceFileHashAlgorithm::Md5 => 16,
1629            SourceFileHashAlgorithm::Sha1 => 20,
1630            SourceFileHashAlgorithm::Sha256 | SourceFileHashAlgorithm::Blake3 => 32,
1631        }
1632    }
1633}
1634
1635#[derive(Clone)]
1636pub enum SourceFileLines {
1637    /// The source file lines, in decoded (random-access) form.
1638    Lines(Vec<RelativeBytePos>),
1639
1640    /// The source file lines, in undecoded difference list form.
1641    Diffs(SourceFileDiffs),
1642}
1643
1644impl SourceFileLines {
1645    pub fn is_lines(&self) -> bool {
1646        matches!(self, SourceFileLines::Lines(_))
1647    }
1648}
1649
1650/// The source file lines in difference list form. This matches the form
1651/// used within metadata, which saves space by exploiting the fact that the
1652/// lines list is sorted and individual lines are usually not that long.
1653///
1654/// We read it directly from metadata and only decode it into `Lines` form
1655/// when necessary. This is a significant performance win, especially for
1656/// small crates where very little of `std`'s metadata is used.
1657#[derive(Clone)]
1658pub struct SourceFileDiffs {
1659    /// Always 1, 2, or 4. Always as small as possible, while being big
1660    /// enough to hold the length of the longest line in the source file.
1661    /// The 1 case is by far the most common.
1662    bytes_per_diff: usize,
1663
1664    /// The number of diffs encoded in `raw_diffs`. Always one less than
1665    /// the number of lines in the source file.
1666    num_diffs: usize,
1667
1668    /// The diffs in "raw" form. Each segment of `bytes_per_diff` length
1669    /// encodes one little-endian diff. Note that they aren't LEB128
1670    /// encoded. This makes for much faster decoding. Besides, the
1671    /// bytes_per_diff==1 case is by far the most common, and LEB128
1672    /// encoding has no effect on that case.
1673    raw_diffs: Vec<u8>,
1674}
1675
1676/// A single source in the [`SourceMap`].
1677pub struct SourceFile {
1678    /// The name of the file that the source came from. Source that doesn't
1679    /// originate from files has names between angle brackets by convention
1680    /// (e.g., `<anon>`).
1681    pub name: FileName,
1682    /// The complete source code.
1683    pub src: Option<Arc<String>>,
1684    /// The source code's hash.
1685    pub src_hash: SourceFileHash,
1686    /// Used to enable cargo to use checksums to check if a crate is fresh rather
1687    /// than mtimes. This might be the same as `src_hash`, and if the requested algorithm
1688    /// is identical we won't compute it twice.
1689    pub checksum_hash: Option<SourceFileHash>,
1690    /// The external source code (used for external crates, which will have a `None`
1691    /// value as `self.src`.
1692    pub external_src: FreezeLock<ExternalSource>,
1693    /// The start position of this source in the `SourceMap`.
1694    pub start_pos: BytePos,
1695    /// The byte length of this source.
1696    pub source_len: RelativeBytePos,
1697    /// Locations of lines beginnings in the source code.
1698    pub lines: FreezeLock<SourceFileLines>,
1699    /// Locations of multi-byte characters in the source code.
1700    pub multibyte_chars: Vec<MultiByteChar>,
1701    /// Locations of characters removed during normalization.
1702    pub normalized_pos: Vec<NormalizedPos>,
1703    /// A hash of the filename & crate-id, used for uniquely identifying source
1704    /// files within the crate graph and for speeding up hashing in incremental
1705    /// compilation.
1706    pub stable_id: StableSourceFileId,
1707    /// Indicates which crate this `SourceFile` was imported from.
1708    pub cnum: CrateNum,
1709}
1710
1711impl Clone for SourceFile {
1712    fn clone(&self) -> Self {
1713        Self {
1714            name: self.name.clone(),
1715            src: self.src.clone(),
1716            src_hash: self.src_hash,
1717            checksum_hash: self.checksum_hash,
1718            external_src: self.external_src.clone(),
1719            start_pos: self.start_pos,
1720            source_len: self.source_len,
1721            lines: self.lines.clone(),
1722            multibyte_chars: self.multibyte_chars.clone(),
1723            normalized_pos: self.normalized_pos.clone(),
1724            stable_id: self.stable_id,
1725            cnum: self.cnum,
1726        }
1727    }
1728}
1729
1730impl<S: SpanEncoder> Encodable<S> for SourceFile {
1731    fn encode(&self, s: &mut S) {
1732        self.name.encode(s);
1733        self.src_hash.encode(s);
1734        self.checksum_hash.encode(s);
1735        // Do not encode `start_pos` as it's global state for this session.
1736        self.source_len.encode(s);
1737
1738        // We are always in `Lines` form by the time we reach here.
1739        assert!(self.lines.read().is_lines());
1740        let lines = self.lines();
1741        // Store the length.
1742        s.emit_u32(lines.len() as u32);
1743
1744        // Compute and store the difference list.
1745        if lines.len() != 0 {
1746            let max_line_length = if lines.len() == 1 {
1747                0
1748            } else {
1749                lines
1750                    .array_windows()
1751                    .map(|&[fst, snd]| snd - fst)
1752                    .map(|bp| bp.to_usize())
1753                    .max()
1754                    .unwrap()
1755            };
1756
1757            let bytes_per_diff: usize = match max_line_length {
1758                0..=0xFF => 1,
1759                0x100..=0xFFFF => 2,
1760                _ => 4,
1761            };
1762
1763            // Encode the number of bytes used per diff.
1764            s.emit_u8(bytes_per_diff as u8);
1765
1766            // Encode the first element.
1767            assert_eq!(lines[0], RelativeBytePos(0));
1768
1769            // Encode the difference list.
1770            let diff_iter = lines.array_windows().map(|&[fst, snd]| snd - fst);
1771            let num_diffs = lines.len() - 1;
1772            let mut raw_diffs;
1773            match bytes_per_diff {
1774                1 => {
1775                    raw_diffs = Vec::with_capacity(num_diffs);
1776                    for diff in diff_iter {
1777                        raw_diffs.push(diff.0 as u8);
1778                    }
1779                }
1780                2 => {
1781                    raw_diffs = Vec::with_capacity(bytes_per_diff * num_diffs);
1782                    for diff in diff_iter {
1783                        raw_diffs.extend_from_slice(&(diff.0 as u16).to_le_bytes());
1784                    }
1785                }
1786                4 => {
1787                    raw_diffs = Vec::with_capacity(bytes_per_diff * num_diffs);
1788                    for diff in diff_iter {
1789                        raw_diffs.extend_from_slice(&(diff.0).to_le_bytes());
1790                    }
1791                }
1792                _ => unreachable!(),
1793            }
1794            s.emit_raw_bytes(&raw_diffs);
1795        }
1796
1797        self.multibyte_chars.encode(s);
1798        self.stable_id.encode(s);
1799        self.normalized_pos.encode(s);
1800        self.cnum.encode(s);
1801    }
1802}
1803
1804impl<D: SpanDecoder> Decodable<D> for SourceFile {
1805    fn decode(d: &mut D) -> SourceFile {
1806        let name: FileName = Decodable::decode(d);
1807        let src_hash: SourceFileHash = Decodable::decode(d);
1808        let checksum_hash: Option<SourceFileHash> = Decodable::decode(d);
1809        let source_len: RelativeBytePos = Decodable::decode(d);
1810        let lines = {
1811            let num_lines: u32 = Decodable::decode(d);
1812            if num_lines > 0 {
1813                // Read the number of bytes used per diff.
1814                let bytes_per_diff = d.read_u8() as usize;
1815
1816                // Read the difference list.
1817                let num_diffs = num_lines as usize - 1;
1818                let raw_diffs = d.read_raw_bytes(bytes_per_diff * num_diffs).to_vec();
1819                SourceFileLines::Diffs(SourceFileDiffs { bytes_per_diff, num_diffs, raw_diffs })
1820            } else {
1821                SourceFileLines::Lines(vec![])
1822            }
1823        };
1824        let multibyte_chars: Vec<MultiByteChar> = Decodable::decode(d);
1825        let stable_id = Decodable::decode(d);
1826        let normalized_pos: Vec<NormalizedPos> = Decodable::decode(d);
1827        let cnum: CrateNum = Decodable::decode(d);
1828        SourceFile {
1829            name,
1830            start_pos: BytePos::from_u32(0),
1831            source_len,
1832            src: None,
1833            src_hash,
1834            checksum_hash,
1835            // Unused - the metadata decoder will construct
1836            // a new SourceFile, filling in `external_src` properly
1837            external_src: FreezeLock::frozen(ExternalSource::Unneeded),
1838            lines: FreezeLock::new(lines),
1839            multibyte_chars,
1840            normalized_pos,
1841            stable_id,
1842            cnum,
1843        }
1844    }
1845}
1846
1847impl fmt::Debug for SourceFile {
1848    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
1849        write!(fmt, "SourceFile({:?})", self.name)
1850    }
1851}
1852
1853/// This is a [SourceFile] identifier that is used to correlate source files between
1854/// subsequent compilation sessions (which is something we need to do during
1855/// incremental compilation).
1856///
1857/// It is a hash value (so we can efficiently consume it when stable-hashing
1858/// spans) that consists of the `FileName` and the `StableCrateId` of the crate
1859/// the source file is from. The crate id is needed because sometimes the
1860/// `FileName` is not unique within the crate graph (think `src/lib.rs`, for
1861/// example).
1862///
1863/// The way the crate-id part is handled is a bit special: source files of the
1864/// local crate are hashed as `(filename, None)`, while source files from
1865/// upstream crates have a hash of `(filename, Some(stable_crate_id))`. This
1866/// is because SourceFiles for the local crate are allocated very early in the
1867/// compilation process when the `StableCrateId` is not yet known. If, due to
1868/// some refactoring of the compiler, the `StableCrateId` of the local crate
1869/// were to become available, it would be better to uniformly make this a
1870/// hash of `(filename, stable_crate_id)`.
1871///
1872/// When `SourceFile`s are exported in crate metadata, the `StableSourceFileId`
1873/// is updated to incorporate the `StableCrateId` of the exporting crate.
1874#[derive(
1875    Debug,
1876    Clone,
1877    Copy,
1878    Hash,
1879    PartialEq,
1880    Eq,
1881    HashStable_Generic,
1882    Encodable,
1883    Decodable,
1884    Default,
1885    PartialOrd,
1886    Ord
1887)]
1888pub struct StableSourceFileId(Hash128);
1889
1890impl StableSourceFileId {
1891    fn from_filename_in_current_crate(filename: &FileName) -> Self {
1892        Self::from_filename_and_stable_crate_id(filename, None)
1893    }
1894
1895    pub fn from_filename_for_export(
1896        filename: &FileName,
1897        local_crate_stable_crate_id: StableCrateId,
1898    ) -> Self {
1899        Self::from_filename_and_stable_crate_id(filename, Some(local_crate_stable_crate_id))
1900    }
1901
1902    fn from_filename_and_stable_crate_id(
1903        filename: &FileName,
1904        stable_crate_id: Option<StableCrateId>,
1905    ) -> Self {
1906        let mut hasher = StableHasher::new();
1907        filename.hash(&mut hasher);
1908        stable_crate_id.hash(&mut hasher);
1909        StableSourceFileId(hasher.finish())
1910    }
1911}
1912
1913impl SourceFile {
1914    const MAX_FILE_SIZE: u32 = u32::MAX - 1;
1915
1916    pub fn new(
1917        name: FileName,
1918        mut src: String,
1919        hash_kind: SourceFileHashAlgorithm,
1920        checksum_hash_kind: Option<SourceFileHashAlgorithm>,
1921    ) -> Result<Self, OffsetOverflowError> {
1922        // Compute the file hash before any normalization.
1923        let src_hash = SourceFileHash::new_in_memory(hash_kind, src.as_bytes());
1924        let checksum_hash = checksum_hash_kind.map(|checksum_hash_kind| {
1925            if checksum_hash_kind == hash_kind {
1926                src_hash
1927            } else {
1928                SourceFileHash::new_in_memory(checksum_hash_kind, src.as_bytes())
1929            }
1930        });
1931        let normalized_pos = normalize_src(&mut src);
1932
1933        let stable_id = StableSourceFileId::from_filename_in_current_crate(&name);
1934        let source_len = src.len();
1935        let source_len = u32::try_from(source_len).map_err(|_| OffsetOverflowError)?;
1936        if source_len > Self::MAX_FILE_SIZE {
1937            return Err(OffsetOverflowError);
1938        }
1939
1940        let (lines, multibyte_chars) = analyze_source_file::analyze_source_file(&src);
1941
1942        Ok(SourceFile {
1943            name,
1944            src: Some(Arc::new(src)),
1945            src_hash,
1946            checksum_hash,
1947            external_src: FreezeLock::frozen(ExternalSource::Unneeded),
1948            start_pos: BytePos::from_u32(0),
1949            source_len: RelativeBytePos::from_u32(source_len),
1950            lines: FreezeLock::frozen(SourceFileLines::Lines(lines)),
1951            multibyte_chars,
1952            normalized_pos,
1953            stable_id,
1954            cnum: LOCAL_CRATE,
1955        })
1956    }
1957
1958    /// This converts the `lines` field to contain `SourceFileLines::Lines` if needed and freezes
1959    /// it.
1960    fn convert_diffs_to_lines_frozen(&self) {
1961        let mut guard = if let Some(guard) = self.lines.try_write() { guard } else { return };
1962
1963        let SourceFileDiffs { bytes_per_diff, num_diffs, raw_diffs } = match &*guard {
1964            SourceFileLines::Diffs(diffs) => diffs,
1965            SourceFileLines::Lines(..) => {
1966                FreezeWriteGuard::freeze(guard);
1967                return;
1968            }
1969        };
1970
1971        // Convert from "diffs" form to "lines" form.
1972        let num_lines = num_diffs + 1;
1973        let mut lines = Vec::with_capacity(num_lines);
1974        let mut line_start = RelativeBytePos(0);
1975        lines.push(line_start);
1976
1977        assert_eq!(*num_diffs, raw_diffs.len() / bytes_per_diff);
1978        match bytes_per_diff {
1979            1 => {
1980                lines.extend(raw_diffs.into_iter().map(|&diff| {
1981                    line_start = line_start + RelativeBytePos(diff as u32);
1982                    line_start
1983                }));
1984            }
1985            2 => {
1986                lines.extend((0..*num_diffs).map(|i| {
1987                    let pos = bytes_per_diff * i;
1988                    let bytes = [raw_diffs[pos], raw_diffs[pos + 1]];
1989                    let diff = u16::from_le_bytes(bytes);
1990                    line_start = line_start + RelativeBytePos(diff as u32);
1991                    line_start
1992                }));
1993            }
1994            4 => {
1995                lines.extend((0..*num_diffs).map(|i| {
1996                    let pos = bytes_per_diff * i;
1997                    let bytes = [
1998                        raw_diffs[pos],
1999                        raw_diffs[pos + 1],
2000                        raw_diffs[pos + 2],
2001                        raw_diffs[pos + 3],
2002                    ];
2003                    let diff = u32::from_le_bytes(bytes);
2004                    line_start = line_start + RelativeBytePos(diff);
2005                    line_start
2006                }));
2007            }
2008            _ => unreachable!(),
2009        }
2010
2011        *guard = SourceFileLines::Lines(lines);
2012
2013        FreezeWriteGuard::freeze(guard);
2014    }
2015
2016    pub fn lines(&self) -> &[RelativeBytePos] {
2017        if let Some(SourceFileLines::Lines(lines)) = self.lines.get() {
2018            return &lines[..];
2019        }
2020
2021        outline(|| {
2022            self.convert_diffs_to_lines_frozen();
2023            if let Some(SourceFileLines::Lines(lines)) = self.lines.get() {
2024                return &lines[..];
2025            }
2026            unreachable!()
2027        })
2028    }
2029
2030    /// Returns the `BytePos` of the beginning of the current line.
2031    pub fn line_begin_pos(&self, pos: BytePos) -> BytePos {
2032        let pos = self.relative_position(pos);
2033        let line_index = self.lookup_line(pos).unwrap();
2034        let line_start_pos = self.lines()[line_index];
2035        self.absolute_position(line_start_pos)
2036    }
2037
2038    /// Add externally loaded source.
2039    /// If the hash of the input doesn't match or no input is supplied via None,
2040    /// it is interpreted as an error and the corresponding enum variant is set.
2041    /// The return value signifies whether some kind of source is present.
2042    pub fn add_external_src<F>(&self, get_src: F) -> bool
2043    where
2044        F: FnOnce() -> Option<String>,
2045    {
2046        if !self.external_src.is_frozen() {
2047            let src = get_src();
2048            let src = src.and_then(|mut src| {
2049                // The src_hash needs to be computed on the pre-normalized src.
2050                self.src_hash.matches(&src).then(|| {
2051                    normalize_src(&mut src);
2052                    src
2053                })
2054            });
2055
2056            self.external_src.try_write().map(|mut external_src| {
2057                if let ExternalSource::Foreign {
2058                    kind: src_kind @ ExternalSourceKind::AbsentOk,
2059                    ..
2060                } = &mut *external_src
2061                {
2062                    *src_kind = if let Some(src) = src {
2063                        ExternalSourceKind::Present(Arc::new(src))
2064                    } else {
2065                        ExternalSourceKind::AbsentErr
2066                    };
2067                } else {
2068                    panic!("unexpected state {:?}", *external_src)
2069                }
2070
2071                // Freeze this so we don't try to load the source again.
2072                FreezeWriteGuard::freeze(external_src)
2073            });
2074        }
2075
2076        self.src.is_some() || self.external_src.read().get_source().is_some()
2077    }
2078
2079    /// Gets a line from the list of pre-computed line-beginnings.
2080    /// The line number here is 0-based.
2081    pub fn get_line(&self, line_number: usize) -> Option<Cow<'_, str>> {
2082        fn get_until_newline(src: &str, begin: usize) -> &str {
2083            // We can't use `lines.get(line_number+1)` because we might
2084            // be parsing when we call this function and thus the current
2085            // line is the last one we have line info for.
2086            let slice = &src[begin..];
2087            match slice.find('\n') {
2088                Some(e) => &slice[..e],
2089                None => slice,
2090            }
2091        }
2092
2093        let begin = {
2094            let line = self.lines().get(line_number).copied()?;
2095            line.to_usize()
2096        };
2097
2098        if let Some(ref src) = self.src {
2099            Some(Cow::from(get_until_newline(src, begin)))
2100        } else {
2101            self.external_src
2102                .borrow()
2103                .get_source()
2104                .map(|src| Cow::Owned(String::from(get_until_newline(src, begin))))
2105        }
2106    }
2107
2108    pub fn is_real_file(&self) -> bool {
2109        self.name.is_real()
2110    }
2111
2112    #[inline]
2113    pub fn is_imported(&self) -> bool {
2114        self.src.is_none()
2115    }
2116
2117    pub fn count_lines(&self) -> usize {
2118        self.lines().len()
2119    }
2120
2121    #[inline]
2122    pub fn absolute_position(&self, pos: RelativeBytePos) -> BytePos {
2123        BytePos::from_u32(pos.to_u32() + self.start_pos.to_u32())
2124    }
2125
2126    #[inline]
2127    pub fn relative_position(&self, pos: BytePos) -> RelativeBytePos {
2128        RelativeBytePos::from_u32(pos.to_u32() - self.start_pos.to_u32())
2129    }
2130
2131    #[inline]
2132    pub fn end_position(&self) -> BytePos {
2133        self.absolute_position(self.source_len)
2134    }
2135
2136    /// Finds the line containing the given position. The return value is the
2137    /// index into the `lines` array of this `SourceFile`, not the 1-based line
2138    /// number. If the source_file is empty or the position is located before the
2139    /// first line, `None` is returned.
2140    pub fn lookup_line(&self, pos: RelativeBytePos) -> Option<usize> {
2141        self.lines().partition_point(|x| x <= &pos).checked_sub(1)
2142    }
2143
2144    pub fn line_bounds(&self, line_index: usize) -> Range<BytePos> {
2145        if self.is_empty() {
2146            return self.start_pos..self.start_pos;
2147        }
2148
2149        let lines = self.lines();
2150        assert!(line_index < lines.len());
2151        if line_index == (lines.len() - 1) {
2152            self.absolute_position(lines[line_index])..self.end_position()
2153        } else {
2154            self.absolute_position(lines[line_index])..self.absolute_position(lines[line_index + 1])
2155        }
2156    }
2157
2158    /// Returns whether or not the file contains the given `SourceMap` byte
2159    /// position. The position one past the end of the file is considered to be
2160    /// contained by the file. This implies that files for which `is_empty`
2161    /// returns true still contain one byte position according to this function.
2162    #[inline]
2163    pub fn contains(&self, byte_pos: BytePos) -> bool {
2164        byte_pos >= self.start_pos && byte_pos <= self.end_position()
2165    }
2166
2167    #[inline]
2168    pub fn is_empty(&self) -> bool {
2169        self.source_len.to_u32() == 0
2170    }
2171
2172    /// Calculates the original byte position relative to the start of the file
2173    /// based on the given byte position.
2174    pub fn original_relative_byte_pos(&self, pos: BytePos) -> RelativeBytePos {
2175        let pos = self.relative_position(pos);
2176
2177        // Diff before any records is 0. Otherwise use the previously recorded
2178        // diff as that applies to the following characters until a new diff
2179        // is recorded.
2180        let diff = match self.normalized_pos.binary_search_by(|np| np.pos.cmp(&pos)) {
2181            Ok(i) => self.normalized_pos[i].diff,
2182            Err(0) => 0,
2183            Err(i) => self.normalized_pos[i - 1].diff,
2184        };
2185
2186        RelativeBytePos::from_u32(pos.0 + diff)
2187    }
2188
2189    /// Calculates a normalized byte position from a byte offset relative to the
2190    /// start of the file.
2191    ///
2192    /// When we get an inline assembler error from LLVM during codegen, we
2193    /// import the expanded assembly code as a new `SourceFile`, which can then
2194    /// be used for error reporting with spans. However the byte offsets given
2195    /// to us by LLVM are relative to the start of the original buffer, not the
2196    /// normalized one. Hence we need to convert those offsets to the normalized
2197    /// form when constructing spans.
2198    pub fn normalized_byte_pos(&self, offset: u32) -> BytePos {
2199        let diff = match self
2200            .normalized_pos
2201            .binary_search_by(|np| (np.pos.0 + np.diff).cmp(&(self.start_pos.0 + offset)))
2202        {
2203            Ok(i) => self.normalized_pos[i].diff,
2204            Err(0) => 0,
2205            Err(i) => self.normalized_pos[i - 1].diff,
2206        };
2207
2208        BytePos::from_u32(self.start_pos.0 + offset - diff)
2209    }
2210
2211    /// Converts an relative `RelativeBytePos` to a `CharPos` relative to the `SourceFile`.
2212    fn bytepos_to_file_charpos(&self, bpos: RelativeBytePos) -> CharPos {
2213        // The number of extra bytes due to multibyte chars in the `SourceFile`.
2214        let mut total_extra_bytes = 0;
2215
2216        for mbc in self.multibyte_chars.iter() {
2217            debug!("{}-byte char at {:?}", mbc.bytes, mbc.pos);
2218            if mbc.pos < bpos {
2219                // Every character is at least one byte, so we only
2220                // count the actual extra bytes.
2221                total_extra_bytes += mbc.bytes as u32 - 1;
2222                // We should never see a byte position in the middle of a
2223                // character.
2224                assert!(bpos.to_u32() >= mbc.pos.to_u32() + mbc.bytes as u32);
2225            } else {
2226                break;
2227            }
2228        }
2229
2230        assert!(total_extra_bytes <= bpos.to_u32());
2231        CharPos(bpos.to_usize() - total_extra_bytes as usize)
2232    }
2233
2234    /// Looks up the file's (1-based) line number and (0-based `CharPos`) column offset, for a
2235    /// given `RelativeBytePos`.
2236    fn lookup_file_pos(&self, pos: RelativeBytePos) -> (usize, CharPos) {
2237        let chpos = self.bytepos_to_file_charpos(pos);
2238        match self.lookup_line(pos) {
2239            Some(a) => {
2240                let line = a + 1; // Line numbers start at 1
2241                let linebpos = self.lines()[a];
2242                let linechpos = self.bytepos_to_file_charpos(linebpos);
2243                let col = chpos - linechpos;
2244                debug!("byte pos {:?} is on the line at byte pos {:?}", pos, linebpos);
2245                debug!("char pos {:?} is on the line at char pos {:?}", chpos, linechpos);
2246                debug!("byte is on line: {}", line);
2247                assert!(chpos >= linechpos);
2248                (line, col)
2249            }
2250            None => (0, chpos),
2251        }
2252    }
2253
2254    /// Looks up the file's (1-based) line number, (0-based `CharPos`) column offset, and (0-based)
2255    /// column offset when displayed, for a given `BytePos`.
2256    pub fn lookup_file_pos_with_col_display(&self, pos: BytePos) -> (usize, CharPos, usize) {
2257        let pos = self.relative_position(pos);
2258        let (line, col_or_chpos) = self.lookup_file_pos(pos);
2259        if line > 0 {
2260            let Some(code) = self.get_line(line - 1) else {
2261                // If we don't have the code available, it is ok as a fallback to return the bytepos
2262                // instead of the "display" column, which is only used to properly show underlines
2263                // in the terminal.
2264                // FIXME: we'll want better handling of this in the future for the sake of tools
2265                // that want to use the display col instead of byte offsets to modify Rust code, but
2266                // that is a problem for another day, the previous code was already incorrect for
2267                // both displaying *and* third party tools using the json output naïvely.
2268                tracing::info!("couldn't find line {line} {:?}", self.name);
2269                return (line, col_or_chpos, col_or_chpos.0);
2270            };
2271            let display_col = code.chars().take(col_or_chpos.0).map(|ch| char_width(ch)).sum();
2272            (line, col_or_chpos, display_col)
2273        } else {
2274            // This is never meant to happen?
2275            (0, col_or_chpos, col_or_chpos.0)
2276        }
2277    }
2278}
2279
2280pub fn char_width(ch: char) -> usize {
2281    // FIXME: `unicode_width` sometimes disagrees with terminals on how wide a `char` is. For now,
2282    // just accept that sometimes the code line will be longer than desired.
2283    match ch {
2284        '\t' => 4,
2285        // Keep the following list in sync with `rustc_errors::emitter::OUTPUT_REPLACEMENTS`. These
2286        // are control points that we replace before printing with a visible codepoint for the sake
2287        // of being able to point at them with underlines.
2288        '\u{0000}' | '\u{0001}' | '\u{0002}' | '\u{0003}' | '\u{0004}' | '\u{0005}'
2289        | '\u{0006}' | '\u{0007}' | '\u{0008}' | '\u{000B}' | '\u{000C}' | '\u{000D}'
2290        | '\u{000E}' | '\u{000F}' | '\u{0010}' | '\u{0011}' | '\u{0012}' | '\u{0013}'
2291        | '\u{0014}' | '\u{0015}' | '\u{0016}' | '\u{0017}' | '\u{0018}' | '\u{0019}'
2292        | '\u{001A}' | '\u{001B}' | '\u{001C}' | '\u{001D}' | '\u{001E}' | '\u{001F}'
2293        | '\u{007F}' | '\u{202A}' | '\u{202B}' | '\u{202D}' | '\u{202E}' | '\u{2066}'
2294        | '\u{2067}' | '\u{2068}' | '\u{202C}' | '\u{2069}' => 1,
2295        _ => unicode_width::UnicodeWidthChar::width(ch).unwrap_or(1),
2296    }
2297}
2298
2299pub fn str_width(s: &str) -> usize {
2300    s.chars().map(char_width).sum()
2301}
2302
2303/// Normalizes the source code and records the normalizations.
2304fn normalize_src(src: &mut String) -> Vec<NormalizedPos> {
2305    let mut normalized_pos = vec![];
2306    remove_bom(src, &mut normalized_pos);
2307    normalize_newlines(src, &mut normalized_pos);
2308    normalized_pos
2309}
2310
2311/// Removes UTF-8 BOM, if any.
2312fn remove_bom(src: &mut String, normalized_pos: &mut Vec<NormalizedPos>) {
2313    if src.starts_with('\u{feff}') {
2314        src.drain(..3);
2315        normalized_pos.push(NormalizedPos { pos: RelativeBytePos(0), diff: 3 });
2316    }
2317}
2318
2319/// Replaces `\r\n` with `\n` in-place in `src`.
2320///
2321/// Leaves any occurrences of lone `\r` unchanged.
2322fn normalize_newlines(src: &mut String, normalized_pos: &mut Vec<NormalizedPos>) {
2323    if !src.as_bytes().contains(&b'\r') {
2324        return;
2325    }
2326
2327    // We replace `\r\n` with `\n` in-place, which doesn't break utf-8 encoding.
2328    // While we *can* call `as_mut_vec` and do surgery on the live string
2329    // directly, let's rather steal the contents of `src`. This makes the code
2330    // safe even if a panic occurs.
2331
2332    let mut buf = std::mem::replace(src, String::new()).into_bytes();
2333    let mut gap_len = 0;
2334    let mut tail = buf.as_mut_slice();
2335    let mut cursor = 0;
2336    let original_gap = normalized_pos.last().map_or(0, |l| l.diff);
2337    loop {
2338        let idx = match find_crlf(&tail[gap_len..]) {
2339            None => tail.len(),
2340            Some(idx) => idx + gap_len,
2341        };
2342        tail.copy_within(gap_len..idx, 0);
2343        tail = &mut tail[idx - gap_len..];
2344        if tail.len() == gap_len {
2345            break;
2346        }
2347        cursor += idx - gap_len;
2348        gap_len += 1;
2349        normalized_pos.push(NormalizedPos {
2350            pos: RelativeBytePos::from_usize(cursor + 1),
2351            diff: original_gap + gap_len as u32,
2352        });
2353    }
2354
2355    // Account for removed `\r`.
2356    // After `set_len`, `buf` is guaranteed to contain utf-8 again.
2357    let new_len = buf.len() - gap_len;
2358    unsafe {
2359        buf.set_len(new_len);
2360        *src = String::from_utf8_unchecked(buf);
2361    }
2362
2363    fn find_crlf(src: &[u8]) -> Option<usize> {
2364        let mut search_idx = 0;
2365        while let Some(idx) = find_cr(&src[search_idx..]) {
2366            if src[search_idx..].get(idx + 1) != Some(&b'\n') {
2367                search_idx += idx + 1;
2368                continue;
2369            }
2370            return Some(search_idx + idx);
2371        }
2372        None
2373    }
2374
2375    fn find_cr(src: &[u8]) -> Option<usize> {
2376        src.iter().position(|&b| b == b'\r')
2377    }
2378}
2379
2380// _____________________________________________________________________________
2381// Pos, BytePos, CharPos
2382//
2383
2384pub trait Pos {
2385    fn from_usize(n: usize) -> Self;
2386    fn to_usize(&self) -> usize;
2387    fn from_u32(n: u32) -> Self;
2388    fn to_u32(&self) -> u32;
2389}
2390
2391macro_rules! impl_pos {
2392    (
2393        $(
2394            $(#[$attr:meta])*
2395            $vis:vis struct $ident:ident($inner_vis:vis $inner_ty:ty);
2396        )*
2397    ) => {
2398        $(
2399            $(#[$attr])*
2400            $vis struct $ident($inner_vis $inner_ty);
2401
2402            impl Pos for $ident {
2403                #[inline(always)]
2404                fn from_usize(n: usize) -> $ident {
2405                    $ident(n as $inner_ty)
2406                }
2407
2408                #[inline(always)]
2409                fn to_usize(&self) -> usize {
2410                    self.0 as usize
2411                }
2412
2413                #[inline(always)]
2414                fn from_u32(n: u32) -> $ident {
2415                    $ident(n as $inner_ty)
2416                }
2417
2418                #[inline(always)]
2419                fn to_u32(&self) -> u32 {
2420                    self.0 as u32
2421                }
2422            }
2423
2424            impl Add for $ident {
2425                type Output = $ident;
2426
2427                #[inline(always)]
2428                fn add(self, rhs: $ident) -> $ident {
2429                    $ident(self.0 + rhs.0)
2430                }
2431            }
2432
2433            impl Sub for $ident {
2434                type Output = $ident;
2435
2436                #[inline(always)]
2437                fn sub(self, rhs: $ident) -> $ident {
2438                    $ident(self.0 - rhs.0)
2439                }
2440            }
2441        )*
2442    };
2443}
2444
2445impl_pos! {
2446    /// A byte offset.
2447    ///
2448    /// Keep this small (currently 32-bits), as AST contains a lot of them.
2449    #[derive(Clone, Copy, PartialEq, Eq, Hash, PartialOrd, Ord, Debug)]
2450    pub struct BytePos(pub u32);
2451
2452    /// A byte offset relative to file beginning.
2453    #[derive(Clone, Copy, PartialEq, Eq, Hash, PartialOrd, Ord, Debug)]
2454    pub struct RelativeBytePos(pub u32);
2455
2456    /// A character offset.
2457    ///
2458    /// Because of multibyte UTF-8 characters, a byte offset
2459    /// is not equivalent to a character offset. The [`SourceMap`] will convert [`BytePos`]
2460    /// values to `CharPos` values as necessary.
2461    #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Debug)]
2462    pub struct CharPos(pub usize);
2463}
2464
2465impl<S: Encoder> Encodable<S> for BytePos {
2466    fn encode(&self, s: &mut S) {
2467        s.emit_u32(self.0);
2468    }
2469}
2470
2471impl<D: Decoder> Decodable<D> for BytePos {
2472    fn decode(d: &mut D) -> BytePos {
2473        BytePos(d.read_u32())
2474    }
2475}
2476
2477impl<H: HashStableContext> HashStable<H> for RelativeBytePos {
2478    fn hash_stable(&self, hcx: &mut H, hasher: &mut StableHasher) {
2479        self.0.hash_stable(hcx, hasher);
2480    }
2481}
2482
2483impl<S: Encoder> Encodable<S> for RelativeBytePos {
2484    fn encode(&self, s: &mut S) {
2485        s.emit_u32(self.0);
2486    }
2487}
2488
2489impl<D: Decoder> Decodable<D> for RelativeBytePos {
2490    fn decode(d: &mut D) -> RelativeBytePos {
2491        RelativeBytePos(d.read_u32())
2492    }
2493}
2494
2495// _____________________________________________________________________________
2496// Loc, SourceFileAndLine, SourceFileAndBytePos
2497//
2498
2499/// A source code location used for error reporting.
2500#[derive(Debug, Clone)]
2501pub struct Loc {
2502    /// Information about the original source.
2503    pub file: Arc<SourceFile>,
2504    /// The (1-based) line number.
2505    pub line: usize,
2506    /// The (0-based) column offset.
2507    pub col: CharPos,
2508    /// The (0-based) column offset when displayed.
2509    pub col_display: usize,
2510}
2511
2512// Used to be structural records.
2513#[derive(Debug)]
2514pub struct SourceFileAndLine {
2515    pub sf: Arc<SourceFile>,
2516    /// Index of line, starting from 0.
2517    pub line: usize,
2518}
2519#[derive(Debug)]
2520pub struct SourceFileAndBytePos {
2521    pub sf: Arc<SourceFile>,
2522    pub pos: BytePos,
2523}
2524
2525#[derive(Copy, Clone, Debug, PartialEq, Eq)]
2526pub struct LineInfo {
2527    /// Index of line, starting from 0.
2528    pub line_index: usize,
2529
2530    /// Column in line where span begins, starting from 0.
2531    pub start_col: CharPos,
2532
2533    /// Column in line where span ends, starting from 0, exclusive.
2534    pub end_col: CharPos,
2535}
2536
2537pub struct FileLines {
2538    pub file: Arc<SourceFile>,
2539    pub lines: Vec<LineInfo>,
2540}
2541
2542pub static SPAN_TRACK: AtomicRef<fn(LocalDefId)> = AtomicRef::new(&((|_| {}) as fn(_)));
2543
2544// _____________________________________________________________________________
2545// SpanLinesError, SpanSnippetError, DistinctSources, MalformedSourceMapPositions
2546//
2547
2548pub type FileLinesResult = Result<FileLines, SpanLinesError>;
2549
2550#[derive(Clone, PartialEq, Eq, Debug)]
2551pub enum SpanLinesError {
2552    DistinctSources(Box<DistinctSources>),
2553}
2554
2555#[derive(Clone, PartialEq, Eq, Debug)]
2556pub enum SpanSnippetError {
2557    IllFormedSpan(Span),
2558    DistinctSources(Box<DistinctSources>),
2559    MalformedForSourcemap(MalformedSourceMapPositions),
2560    SourceNotAvailable { filename: FileName },
2561}
2562
2563#[derive(Clone, PartialEq, Eq, Debug)]
2564pub struct DistinctSources {
2565    pub begin: (FileName, BytePos),
2566    pub end: (FileName, BytePos),
2567}
2568
2569#[derive(Clone, PartialEq, Eq, Debug)]
2570pub struct MalformedSourceMapPositions {
2571    pub name: FileName,
2572    pub source_len: usize,
2573    pub begin_pos: BytePos,
2574    pub end_pos: BytePos,
2575}
2576
2577/// Range inside of a `Span` used for diagnostics when we only have access to relative positions.
2578#[derive(Copy, Clone, PartialEq, Eq, Debug)]
2579pub struct InnerSpan {
2580    pub start: usize,
2581    pub end: usize,
2582}
2583
2584impl InnerSpan {
2585    pub fn new(start: usize, end: usize) -> InnerSpan {
2586        InnerSpan { start, end }
2587    }
2588}
2589
2590/// Requirements for a `StableHashingContext` to be used in this crate.
2591///
2592/// This is a hack to allow using the [`HashStable_Generic`] derive macro
2593/// instead of implementing everything in rustc_middle.
2594pub trait HashStableContext {
2595    fn def_path_hash(&self, def_id: DefId) -> DefPathHash;
2596    fn hash_spans(&self) -> bool;
2597    /// Accesses `sess.opts.unstable_opts.incremental_ignore_spans` since
2598    /// we don't have easy access to a `Session`
2599    fn unstable_opts_incremental_ignore_spans(&self) -> bool;
2600    fn def_span(&self, def_id: LocalDefId) -> Span;
2601    fn span_data_to_lines_and_cols(
2602        &mut self,
2603        span: &SpanData,
2604    ) -> Option<(Arc<SourceFile>, usize, BytePos, usize, BytePos)>;
2605    fn hashing_controls(&self) -> HashingControls;
2606}
2607
2608impl<CTX> HashStable<CTX> for Span
2609where
2610    CTX: HashStableContext,
2611{
2612    /// Hashes a span in a stable way. We can't directly hash the span's `BytePos`
2613    /// fields (that would be similar to hashing pointers, since those are just
2614    /// offsets into the `SourceMap`). Instead, we hash the (file name, line, column)
2615    /// triple, which stays the same even if the containing `SourceFile` has moved
2616    /// within the `SourceMap`.
2617    ///
2618    /// Also note that we are hashing byte offsets for the column, not unicode
2619    /// codepoint offsets. For the purpose of the hash that's sufficient.
2620    /// Also, hashing filenames is expensive so we avoid doing it twice when the
2621    /// span starts and ends in the same file, which is almost always the case.
2622    fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
2623        const TAG_VALID_SPAN: u8 = 0;
2624        const TAG_INVALID_SPAN: u8 = 1;
2625        const TAG_RELATIVE_SPAN: u8 = 2;
2626
2627        if !ctx.hash_spans() {
2628            return;
2629        }
2630
2631        let span = self.data_untracked();
2632        span.ctxt.hash_stable(ctx, hasher);
2633        span.parent.hash_stable(ctx, hasher);
2634
2635        if span.is_dummy() {
2636            Hash::hash(&TAG_INVALID_SPAN, hasher);
2637            return;
2638        }
2639
2640        if let Some(parent) = span.parent {
2641            let def_span = ctx.def_span(parent).data_untracked();
2642            if def_span.contains(span) {
2643                // This span is enclosed in a definition: only hash the relative position.
2644                Hash::hash(&TAG_RELATIVE_SPAN, hasher);
2645                (span.lo - def_span.lo).to_u32().hash_stable(ctx, hasher);
2646                (span.hi - def_span.lo).to_u32().hash_stable(ctx, hasher);
2647                return;
2648            }
2649        }
2650
2651        // If this is not an empty or invalid span, we want to hash the last
2652        // position that belongs to it, as opposed to hashing the first
2653        // position past it.
2654        let Some((file, line_lo, col_lo, line_hi, col_hi)) = ctx.span_data_to_lines_and_cols(&span)
2655        else {
2656            Hash::hash(&TAG_INVALID_SPAN, hasher);
2657            return;
2658        };
2659
2660        Hash::hash(&TAG_VALID_SPAN, hasher);
2661        Hash::hash(&file.stable_id, hasher);
2662
2663        // Hash both the length and the end location (line/column) of a span. If we
2664        // hash only the length, for example, then two otherwise equal spans with
2665        // different end locations will have the same hash. This can cause a problem
2666        // during incremental compilation wherein a previous result for a query that
2667        // depends on the end location of a span will be incorrectly reused when the
2668        // end location of the span it depends on has changed (see issue #74890). A
2669        // similar analysis applies if some query depends specifically on the length
2670        // of the span, but we only hash the end location. So hash both.
2671
2672        let col_lo_trunc = (col_lo.0 as u64) & 0xFF;
2673        let line_lo_trunc = ((line_lo as u64) & 0xFF_FF_FF) << 8;
2674        let col_hi_trunc = (col_hi.0 as u64) & 0xFF << 32;
2675        let line_hi_trunc = ((line_hi as u64) & 0xFF_FF_FF) << 40;
2676        let col_line = col_lo_trunc | line_lo_trunc | col_hi_trunc | line_hi_trunc;
2677        let len = (span.hi - span.lo).0;
2678        Hash::hash(&col_line, hasher);
2679        Hash::hash(&len, hasher);
2680    }
2681}
2682
2683/// Useful type to use with `Result<>` indicate that an error has already
2684/// been reported to the user, so no need to continue checking.
2685///
2686/// The `()` field is necessary: it is non-`pub`, which means values of this
2687/// type cannot be constructed outside of this crate.
2688#[derive(Clone, Copy, Debug, Hash, PartialEq, Eq, PartialOrd, Ord)]
2689#[derive(HashStable_Generic)]
2690pub struct ErrorGuaranteed(());
2691
2692impl ErrorGuaranteed {
2693    /// Don't use this outside of `DiagCtxtInner::emit_diagnostic`!
2694    #[deprecated = "should only be used in `DiagCtxtInner::emit_diagnostic`"]
2695    pub fn unchecked_error_guaranteed() -> Self {
2696        ErrorGuaranteed(())
2697    }
2698
2699    pub fn raise_fatal(self) -> ! {
2700        FatalError.raise()
2701    }
2702}
2703
2704impl<E: rustc_serialize::Encoder> Encodable<E> for ErrorGuaranteed {
2705    #[inline]
2706    fn encode(&self, _e: &mut E) {
2707        panic!(
2708            "should never serialize an `ErrorGuaranteed`, as we do not write metadata or \
2709            incremental caches in case errors occurred"
2710        )
2711    }
2712}
2713impl<D: rustc_serialize::Decoder> Decodable<D> for ErrorGuaranteed {
2714    #[inline]
2715    fn decode(_d: &mut D) -> ErrorGuaranteed {
2716        panic!(
2717            "`ErrorGuaranteed` should never have been serialized to metadata or incremental caches"
2718        )
2719    }
2720}