rustc_type_ir/lib.rs
1// tidy-alphabetical-start
2#![allow(rustc::usage_of_ty_tykind)]
3#![allow(rustc::usage_of_type_ir_inherent)]
4#![allow(rustc::usage_of_type_ir_traits)]
5#![cfg_attr(
6 feature = "nightly",
7 feature(associated_type_defaults, never_type, rustc_attrs, negative_impls)
8)]
9#![cfg_attr(feature = "nightly", allow(internal_features))]
10// tidy-alphabetical-end
11
12extern crate self as rustc_type_ir;
13
14use std::fmt;
15use std::hash::Hash;
16
17#[cfg(feature = "nightly")]
18use rustc_macros::{Decodable, Encodable, HashStable_NoContext};
19
20// These modules are `pub` since they are not glob-imported.
21pub mod data_structures;
22pub mod elaborate;
23pub mod error;
24pub mod fast_reject;
25#[cfg_attr(feature = "nightly", rustc_diagnostic_item = "type_ir_inherent")]
26pub mod inherent;
27pub mod ir_print;
28pub mod lang_items;
29pub mod lift;
30pub mod outlives;
31pub mod relate;
32pub mod search_graph;
33pub mod solve;
34pub mod walk;
35
36// These modules are not `pub` since they are glob-imported.
37#[macro_use]
38mod macros;
39mod binder;
40mod canonical;
41mod const_kind;
42mod flags;
43mod fold;
44mod generic_arg;
45mod infer_ctxt;
46mod interner;
47mod opaque_ty;
48mod pattern;
49mod predicate;
50mod predicate_kind;
51mod region_kind;
52mod ty_info;
53mod ty_kind;
54mod upcast;
55mod visit;
56
57pub use AliasTyKind::*;
58pub use DynKind::*;
59pub use InferTy::*;
60pub use RegionKind::*;
61pub use TyKind::*;
62pub use Variance::*;
63pub use binder::*;
64pub use canonical::*;
65pub use const_kind::*;
66pub use flags::*;
67pub use fold::*;
68pub use generic_arg::*;
69pub use infer_ctxt::*;
70pub use interner::*;
71pub use opaque_ty::*;
72pub use pattern::*;
73pub use predicate::*;
74pub use predicate_kind::*;
75pub use region_kind::*;
76pub use rustc_ast_ir::{Movability, Mutability, Pinnedness};
77pub use ty_info::*;
78pub use ty_kind::*;
79pub use upcast::*;
80pub use visit::*;
81
82rustc_index::newtype_index! {
83 /// A [De Bruijn index][dbi] is a standard means of representing
84 /// regions (and perhaps later types) in a higher-ranked setting. In
85 /// particular, imagine a type like this:
86 /// ```ignore (illustrative)
87 /// for<'a> fn(for<'b> fn(&'b isize, &'a isize), &'a char)
88 /// // ^ ^ | | |
89 /// // | | | | |
90 /// // | +------------+ 0 | |
91 /// // | | |
92 /// // +----------------------------------+ 1 |
93 /// // | |
94 /// // +----------------------------------------------+ 0
95 /// ```
96 /// In this type, there are two binders (the outer fn and the inner
97 /// fn). We need to be able to determine, for any given region, which
98 /// fn type it is bound by, the inner or the outer one. There are
99 /// various ways you can do this, but a De Bruijn index is one of the
100 /// more convenient and has some nice properties. The basic idea is to
101 /// count the number of binders, inside out. Some examples should help
102 /// clarify what I mean.
103 ///
104 /// Let's start with the reference type `&'b isize` that is the first
105 /// argument to the inner function. This region `'b` is assigned a De
106 /// Bruijn index of 0, meaning "the innermost binder" (in this case, a
107 /// fn). The region `'a` that appears in the second argument type (`&'a
108 /// isize`) would then be assigned a De Bruijn index of 1, meaning "the
109 /// second-innermost binder". (These indices are written on the arrows
110 /// in the diagram).
111 ///
112 /// What is interesting is that De Bruijn index attached to a particular
113 /// variable will vary depending on where it appears. For example,
114 /// the final type `&'a char` also refers to the region `'a` declared on
115 /// the outermost fn. But this time, this reference is not nested within
116 /// any other binders (i.e., it is not an argument to the inner fn, but
117 /// rather the outer one). Therefore, in this case, it is assigned a
118 /// De Bruijn index of 0, because the innermost binder in that location
119 /// is the outer fn.
120 ///
121 /// [dbi]: https://en.wikipedia.org/wiki/De_Bruijn_index
122 #[cfg_attr(feature = "nightly", derive(HashStable_NoContext))]
123 #[encodable]
124 #[orderable]
125 #[debug_format = "DebruijnIndex({})"]
126 #[gate_rustc_only]
127 pub struct DebruijnIndex {
128 const INNERMOST = 0;
129 }
130}
131
132impl DebruijnIndex {
133 /// Returns the resulting index when this value is moved into
134 /// `amount` number of new binders. So, e.g., if you had
135 ///
136 /// for<'a> fn(&'a x)
137 ///
138 /// and you wanted to change it to
139 ///
140 /// for<'a> fn(for<'b> fn(&'a x))
141 ///
142 /// you would need to shift the index for `'a` into a new binder.
143 #[inline]
144 #[must_use]
145 pub fn shifted_in(self, amount: u32) -> DebruijnIndex {
146 DebruijnIndex::from_u32(self.as_u32() + amount)
147 }
148
149 /// Update this index in place by shifting it "in" through
150 /// `amount` number of binders.
151 #[inline]
152 pub fn shift_in(&mut self, amount: u32) {
153 *self = self.shifted_in(amount);
154 }
155
156 /// Returns the resulting index when this value is moved out from
157 /// `amount` number of new binders.
158 #[inline]
159 #[must_use]
160 pub fn shifted_out(self, amount: u32) -> DebruijnIndex {
161 DebruijnIndex::from_u32(self.as_u32() - amount)
162 }
163
164 /// Update in place by shifting out from `amount` binders.
165 #[inline]
166 pub fn shift_out(&mut self, amount: u32) {
167 *self = self.shifted_out(amount);
168 }
169
170 /// Adjusts any De Bruijn indices so as to make `to_binder` the
171 /// innermost binder. That is, if we have something bound at `to_binder`,
172 /// it will now be bound at INNERMOST. This is an appropriate thing to do
173 /// when moving a region out from inside binders:
174 ///
175 /// ```ignore (illustrative)
176 /// for<'a> fn(for<'b> for<'c> fn(&'a u32), _)
177 /// // Binder: D3 D2 D1 ^^
178 /// ```
179 ///
180 /// Here, the region `'a` would have the De Bruijn index D3,
181 /// because it is the bound 3 binders out. However, if we wanted
182 /// to refer to that region `'a` in the second argument (the `_`),
183 /// those two binders would not be in scope. In that case, we
184 /// might invoke `shift_out_to_binder(D3)`. This would adjust the
185 /// De Bruijn index of `'a` to D1 (the innermost binder).
186 ///
187 /// If we invoke `shift_out_to_binder` and the region is in fact
188 /// bound by one of the binders we are shifting out of, that is an
189 /// error (and should fail an assertion failure).
190 #[inline]
191 pub fn shifted_out_to_binder(self, to_binder: DebruijnIndex) -> Self {
192 self.shifted_out(to_binder.as_u32() - INNERMOST.as_u32())
193 }
194}
195
196pub fn debug_bound_var<T: std::fmt::Write>(
197 fmt: &mut T,
198 debruijn: DebruijnIndex,
199 var: impl std::fmt::Debug,
200) -> Result<(), std::fmt::Error> {
201 if debruijn == INNERMOST {
202 write!(fmt, "^{var:?}")
203 } else {
204 write!(fmt, "^{}_{:?}", debruijn.index(), var)
205 }
206}
207
208#[derive(Copy, Clone, PartialEq, Eq, Hash)]
209#[cfg_attr(feature = "nightly", derive(Decodable, Encodable, HashStable_NoContext))]
210#[cfg_attr(feature = "nightly", rustc_pass_by_value)]
211pub enum Variance {
212 Covariant, // T<A> <: T<B> iff A <: B -- e.g., function return type
213 Invariant, // T<A> <: T<B> iff B == A -- e.g., type of mutable cell
214 Contravariant, // T<A> <: T<B> iff B <: A -- e.g., function param type
215 Bivariant, // T<A> <: T<B> -- e.g., unused type parameter
216}
217
218impl Variance {
219 /// `a.xform(b)` combines the variance of a context with the
220 /// variance of a type with the following meaning. If we are in a
221 /// context with variance `a`, and we encounter a type argument in
222 /// a position with variance `b`, then `a.xform(b)` is the new
223 /// variance with which the argument appears.
224 ///
225 /// Example 1:
226 /// ```ignore (illustrative)
227 /// *mut Vec<i32>
228 /// ```
229 /// Here, the "ambient" variance starts as covariant. `*mut T` is
230 /// invariant with respect to `T`, so the variance in which the
231 /// `Vec<i32>` appears is `Covariant.xform(Invariant)`, which
232 /// yields `Invariant`. Now, the type `Vec<T>` is covariant with
233 /// respect to its type argument `T`, and hence the variance of
234 /// the `i32` here is `Invariant.xform(Covariant)`, which results
235 /// (again) in `Invariant`.
236 ///
237 /// Example 2:
238 /// ```ignore (illustrative)
239 /// fn(*const Vec<i32>, *mut Vec<i32)
240 /// ```
241 /// The ambient variance is covariant. A `fn` type is
242 /// contravariant with respect to its parameters, so the variance
243 /// within which both pointer types appear is
244 /// `Covariant.xform(Contravariant)`, or `Contravariant`. `*const
245 /// T` is covariant with respect to `T`, so the variance within
246 /// which the first `Vec<i32>` appears is
247 /// `Contravariant.xform(Covariant)` or `Contravariant`. The same
248 /// is true for its `i32` argument. In the `*mut T` case, the
249 /// variance of `Vec<i32>` is `Contravariant.xform(Invariant)`,
250 /// and hence the outermost type is `Invariant` with respect to
251 /// `Vec<i32>` (and its `i32` argument).
252 ///
253 /// Source: Figure 1 of "Taming the Wildcards:
254 /// Combining Definition- and Use-Site Variance" published in PLDI'11.
255 pub fn xform(self, v: Variance) -> Variance {
256 match (self, v) {
257 // Figure 1, column 1.
258 (Variance::Covariant, Variance::Covariant) => Variance::Covariant,
259 (Variance::Covariant, Variance::Contravariant) => Variance::Contravariant,
260 (Variance::Covariant, Variance::Invariant) => Variance::Invariant,
261 (Variance::Covariant, Variance::Bivariant) => Variance::Bivariant,
262
263 // Figure 1, column 2.
264 (Variance::Contravariant, Variance::Covariant) => Variance::Contravariant,
265 (Variance::Contravariant, Variance::Contravariant) => Variance::Covariant,
266 (Variance::Contravariant, Variance::Invariant) => Variance::Invariant,
267 (Variance::Contravariant, Variance::Bivariant) => Variance::Bivariant,
268
269 // Figure 1, column 3.
270 (Variance::Invariant, _) => Variance::Invariant,
271
272 // Figure 1, column 4.
273 (Variance::Bivariant, _) => Variance::Bivariant,
274 }
275 }
276}
277
278impl fmt::Debug for Variance {
279 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
280 f.write_str(match *self {
281 Variance::Covariant => "+",
282 Variance::Contravariant => "-",
283 Variance::Invariant => "o",
284 Variance::Bivariant => "*",
285 })
286 }
287}
288
289rustc_index::newtype_index! {
290 /// "Universes" are used during type- and trait-checking in the
291 /// presence of `for<..>` binders to control what sets of names are
292 /// visible. Universes are arranged into a tree: the root universe
293 /// contains names that are always visible. Each child then adds a new
294 /// set of names that are visible, in addition to those of its parent.
295 /// We say that the child universe "extends" the parent universe with
296 /// new names.
297 ///
298 /// To make this more concrete, consider this program:
299 ///
300 /// ```ignore (illustrative)
301 /// struct Foo { }
302 /// fn bar<T>(x: T) {
303 /// let y: for<'a> fn(&'a u8, Foo) = ...;
304 /// }
305 /// ```
306 ///
307 /// The struct name `Foo` is in the root universe U0. But the type
308 /// parameter `T`, introduced on `bar`, is in an extended universe U1
309 /// -- i.e., within `bar`, we can name both `T` and `Foo`, but outside
310 /// of `bar`, we cannot name `T`. Then, within the type of `y`, the
311 /// region `'a` is in a universe U2 that extends U1, because we can
312 /// name it inside the fn type but not outside.
313 ///
314 /// Universes are used to do type- and trait-checking around these
315 /// "forall" binders (also called **universal quantification**). The
316 /// idea is that when, in the body of `bar`, we refer to `T` as a
317 /// type, we aren't referring to any type in particular, but rather a
318 /// kind of "fresh" type that is distinct from all other types we have
319 /// actually declared. This is called a **placeholder** type, and we
320 /// use universes to talk about this. In other words, a type name in
321 /// universe 0 always corresponds to some "ground" type that the user
322 /// declared, but a type name in a non-zero universe is a placeholder
323 /// type -- an idealized representative of "types in general" that we
324 /// use for checking generic functions.
325 #[cfg_attr(feature = "nightly", derive(HashStable_NoContext))]
326 #[encodable]
327 #[orderable]
328 #[debug_format = "U{}"]
329 #[gate_rustc_only]
330 pub struct UniverseIndex {}
331}
332
333impl UniverseIndex {
334 pub const ROOT: UniverseIndex = UniverseIndex::ZERO;
335
336 /// Returns the "next" universe index in order -- this new index
337 /// is considered to extend all previous universes. This
338 /// corresponds to entering a `forall` quantifier. So, for
339 /// example, suppose we have this type in universe `U`:
340 ///
341 /// ```ignore (illustrative)
342 /// for<'a> fn(&'a u32)
343 /// ```
344 ///
345 /// Once we "enter" into this `for<'a>` quantifier, we are in a
346 /// new universe that extends `U` -- in this new universe, we can
347 /// name the region `'a`, but that region was not nameable from
348 /// `U` because it was not in scope there.
349 pub fn next_universe(self) -> UniverseIndex {
350 UniverseIndex::from_u32(self.as_u32().checked_add(1).unwrap())
351 }
352
353 /// Returns `true` if `self` can name a name from `other` -- in other words,
354 /// if the set of names in `self` is a superset of those in
355 /// `other` (`self >= other`).
356 pub fn can_name(self, other: UniverseIndex) -> bool {
357 self >= other
358 }
359
360 /// Returns `true` if `self` cannot name some names from `other` -- in other
361 /// words, if the set of names in `self` is a strict subset of
362 /// those in `other` (`self < other`).
363 pub fn cannot_name(self, other: UniverseIndex) -> bool {
364 self < other
365 }
366
367 /// Returns `true` if `self` is the root universe, otherwise false.
368 pub fn is_root(self) -> bool {
369 self == Self::ROOT
370 }
371}
372
373impl Default for UniverseIndex {
374 fn default() -> Self {
375 Self::ROOT
376 }
377}
378
379rustc_index::newtype_index! {
380 #[cfg_attr(feature = "nightly", derive(HashStable_NoContext))]
381 #[encodable]
382 #[orderable]
383 #[debug_format = "{}"]
384 #[gate_rustc_only]
385 pub struct BoundVar {}
386}
387
388impl<I: Interner> inherent::BoundVarLike<I> for BoundVar {
389 fn var(self) -> BoundVar {
390 self
391 }
392
393 fn assert_eq(self, _var: I::BoundVarKind) {
394 unreachable!("FIXME: We really should have a separate `BoundConst` for consts")
395 }
396}
397
398/// Represents the various closure traits in the language. This
399/// will determine the type of the environment (`self`, in the
400/// desugaring) argument that the closure expects.
401///
402/// You can get the environment type of a closure using
403/// `tcx.closure_env_ty()`.
404#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
405#[cfg_attr(feature = "nightly", derive(Encodable, Decodable, HashStable_NoContext))]
406pub enum ClosureKind {
407 Fn,
408 FnMut,
409 FnOnce,
410}
411
412impl ClosureKind {
413 /// This is the initial value used when doing upvar inference.
414 pub const LATTICE_BOTTOM: ClosureKind = ClosureKind::Fn;
415
416 pub const fn as_str(self) -> &'static str {
417 match self {
418 ClosureKind::Fn => "Fn",
419 ClosureKind::FnMut => "FnMut",
420 ClosureKind::FnOnce => "FnOnce",
421 }
422 }
423
424 /// Returns `true` if a type that impls this closure kind
425 /// must also implement `other`.
426 #[rustfmt::skip]
427 pub fn extends(self, other: ClosureKind) -> bool {
428 use ClosureKind::*;
429 match (self, other) {
430 (Fn, Fn | FnMut | FnOnce)
431 | (FnMut, FnMut | FnOnce)
432 | (FnOnce, FnOnce) => true,
433 _ => false,
434 }
435 }
436}
437
438impl fmt::Display for ClosureKind {
439 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
440 self.as_str().fmt(f)
441 }
442}