Note
Go to the end to download the full example code.
torch.export Tutorial#
Created On: Oct 02, 2023 | Last Updated: Jan 27, 2025 | Last Verified: Nov 05, 2024
Author: William Wen, Zhengxu Chen, Angela Yi, Pian Pawakapan
Warning
torch.export
and its related features are in prototype status and are subject to backwards compatibility
breaking changes. This tutorial provides a snapshot of torch.export
usage as of PyTorch 2.5.
torch.export()
is the PyTorch 2.X way to export PyTorch models into
standardized model representations, intended
to be run on different (i.e. Python-less) environments. The official
documentation can be found here.
In this tutorial, you will learn how to use torch.export()
to extract
ExportedProgram
’s (i.e. single-graph representations) from PyTorch programs.
We also detail some considerations/modifications that you may need
to make in order to make your model compatible with torch.export
.
Contents
Basic Usage#
torch.export
extracts single-graph representations from PyTorch programs
by tracing the target function, given example inputs.
torch.export.export()
is the main entry point for torch.export
.
In this tutorial, torch.export
and torch.export.export()
are practically synonymous,
though torch.export
generally refers to the PyTorch 2.X export process, and torch.export.export()
generally refers to the actual function call.
The signature of torch.export.export()
is:
export(
mod: torch.nn.Module,
args: Tuple[Any, ...],
kwargs: Optional[Dict[str, Any]] = None,
*,
dynamic_shapes: Optional[Dict[str, Dict[int, Dim]]] = None
) -> ExportedProgram
torch.export.export()
traces the tensor computation graph from calling mod(*args, **kwargs)
and wraps it in an ExportedProgram
, which can be serialized or executed later with
different inputs. To execute the ExportedProgram
we can call .module()
on it to return a torch.nn.Module
which is callable, just like the
original program.
We will detail the dynamic_shapes
argument later in the tutorial.
import torch
from torch.export import export
class MyModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.lin = torch.nn.Linear(100, 10)
def forward(self, x, y):
return torch.nn.functional.relu(self.lin(x + y), inplace=True)
mod = MyModule()
exported_mod = export(mod, (torch.randn(8, 100), torch.randn(8, 100)))
print(type(exported_mod))
print(exported_mod.module()(torch.randn(8, 100), torch.randn(8, 100)))
<class 'torch.export.exported_program.ExportedProgram'>
tensor([[1.1458, 0.8062, 0.0000, 0.1334, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000],
[0.0000, 0.4523, 0.0000, 1.4618, 0.4410, 0.2752, 2.0733, 1.5989, 0.0000,
0.3141],
[0.0000, 0.0000, 0.0000, 0.0000, 0.3722, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000],
[0.0000, 0.2722, 0.0000, 0.0000, 1.3927, 0.4187, 0.5760, 0.3823, 0.6965,
0.0712],
[0.2495, 0.3984, 0.0000, 0.0000, 1.1927, 0.7056, 0.8531, 0.5308, 0.0000,
0.4416],
[0.0000, 0.0000, 0.1674, 0.0000, 0.0000, 1.0321, 0.0000, 0.0192, 0.0363,
1.1450],
[0.4889, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.5664, 0.9543, 0.0000,
0.0000],
[0.0000, 1.4712, 0.0000, 0.0000, 1.5190, 0.0000, 0.0113, 0.9133, 1.3921,
0.3561]], grad_fn=<ReluBackward0>)
Let’s review some attributes of ExportedProgram
that are of interest.
The graph
attribute is an FX graph
traced from the function we exported, that is, the computation graph of all PyTorch operations.
The FX graph is in “ATen IR” meaning that it contains only “ATen-level” operations.
The graph_signature
attribute gives a more detailed description of the
input and output nodes in the exported graph, describing which ones are
parameters, buffers, user inputs, or user outputs.
The range_constraints
attributes will be covered later.
print(exported_mod)
ExportedProgram:
class GraphModule(torch.nn.Module):
def forward(self, p_lin_weight: "f32[10, 100]", p_lin_bias: "f32[10]", x: "f32[8, 100]", y: "f32[8, 100]"):
# File: /var/lib/workspace/intermediate_source/torch_export_tutorial.py:71 in forward, code: return torch.nn.functional.relu(self.lin(x + y), inplace=True)
add: "f32[8, 100]" = torch.ops.aten.add.Tensor(x, y); x = y = None
# File: /usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py:125 in forward, code: return F.linear(input, self.weight, self.bias)
linear: "f32[8, 10]" = torch.ops.aten.linear.default(add, p_lin_weight, p_lin_bias); add = p_lin_weight = p_lin_bias = None
# File: /var/lib/workspace/intermediate_source/torch_export_tutorial.py:71 in forward, code: return torch.nn.functional.relu(self.lin(x + y), inplace=True)
relu_: "f32[8, 10]" = torch.ops.aten.relu_.default(linear); linear = None
return (relu_,)
Graph signature:
# inputs
p_lin_weight: PARAMETER target='lin.weight'
p_lin_bias: PARAMETER target='lin.bias'
x: USER_INPUT
y: USER_INPUT
# outputs
relu_: USER_OUTPUT
Range constraints: {}
See the torch.export
documentation
for more details.
Graph Breaks#
Although torch.export
shares components with torch.compile
,
the key limitation of torch.export
, especially when compared to
torch.compile
, is that it does not support graph breaks. This is because
handling graph breaks involves interpreting the unsupported operation with
default Python evaluation, which is incompatible with the export use case.
Therefore, in order to make your model code compatible with torch.export
,
you will need to modify your code to remove graph breaks.
A graph break is necessary in cases such as:
data-dependent control flow
class Bad1(torch.nn.Module):
def forward(self, x):
if x.sum() > 0:
return torch.sin(x)
return torch.cos(x)
import traceback as tb
try:
export(Bad1(), (torch.randn(3, 3),))
except Exception:
tb.print_exc()
def forward(self, arg0_1: "f32[3, 3]"):
# File: /var/lib/workspace/intermediate_source/torch_export_tutorial.py:116 in forward, code: if x.sum() > 0:
sum_1: "f32[]" = torch.ops.aten.sum.default(arg0_1); arg0_1 = None
gt: "b8[]" = torch.ops.aten.gt.Scalar(sum_1, 0); sum_1 = None
ne: "b8[]" = torch.ops.aten.ne.Scalar(gt, 0); gt = None
item: "Sym(Eq(u0, 1))" = torch.ops.aten.item.default(ne); ne = item = None
def forward(self, arg0_1: "f32[3, 3]"):
# File: /var/lib/workspace/intermediate_source/torch_export_tutorial.py:116 in forward, code: if x.sum() > 0:
sum_1: "f32[]" = torch.ops.aten.sum.default(arg0_1); arg0_1 = None
gt: "b8[]" = torch.ops.aten.gt.Scalar(sum_1, 0); sum_1 = None
ne: "b8[]" = torch.ops.aten.ne.Scalar(gt, 0); gt = None
item: "Sym(Eq(u0, 1))" = torch.ops.aten.item.default(ne); ne = item = None
Traceback (most recent call last):
File "/var/lib/workspace/intermediate_source/torch_export_tutorial.py", line 122, in <module>
export(Bad1(), (torch.randn(3, 3),))
File "/usr/local/lib/python3.10/dist-packages/torch/export/__init__.py", line 319, in export
raise e
File "/usr/local/lib/python3.10/dist-packages/torch/export/__init__.py", line 286, in export
return _export(
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1164, in wrapper
raise e
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1130, in wrapper
ep = fn(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/export/exported_program.py", line 123, in wrapper
return fn(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 2176, in _export
ep = _export_for_training(
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1164, in wrapper
raise e
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1130, in wrapper
ep = fn(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/export/exported_program.py", line 123, in wrapper
return fn(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 2037, in _export_for_training
export_artifact = export_func(
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1979, in _non_strict_export
aten_export_artifact = _to_aten_func( # type: ignore[operator]
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1770, in _export_to_aten_ir_make_fx
gm, graph_signature = transform(_make_fx_helper)(
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1900, in _aot_export_non_strict
gm, sig = aot_export(wrapped_mod, args, kwargs=kwargs, **flags)
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1685, in _make_fx_helper
gm = make_fx(
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 2318, in wrapped
return make_fx_tracer.trace(f, *args)
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 2250, in trace
return self._trace_inner(f, *args)
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 2221, in _trace_inner
t = dispatch_trace(
File "/usr/local/lib/python3.10/dist-packages/torch/_compile.py", line 53, in inner
return disable_fn(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/eval_frame.py", line 929, in _fn
return fn(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1254, in dispatch_trace
graph = tracer.trace(root, concrete_args) # type: ignore[arg-type]
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1835, in trace
res = super().trace(root, concrete_args)
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 850, in trace
(self.create_arg(fn(*args)),),
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1312, in wrapped
out = f(*tensors) # type:ignore[call-arg]
File "<string>", line 1, in <lambda>
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1589, in wrapped_fn
return tuple(flat_fn(*args))
File "/usr/local/lib/python3.10/dist-packages/torch/_functorch/_aot_autograd/utils.py", line 184, in flat_fn
tree_out = fn(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/_functorch/_aot_autograd/traced_function_transforms.py", line 906, in functional_call
out = mod(*args[params_len:], **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 825, in module_call_wrapper
return self.call_module(mod, forward, args, kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1905, in call_module
return Tracer.call_module(self, m, forward, args, kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 542, in call_module
ret_val = forward(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 818, in forward
return _orig_module_call(mod, *args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1773, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1784, in _call_impl
return forward_call(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1884, in forward
tree_out = mod(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 825, in module_call_wrapper
return self.call_module(mod, forward, args, kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1905, in call_module
return Tracer.call_module(self, m, forward, args, kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 542, in call_module
ret_val = forward(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 818, in forward
return _orig_module_call(mod, *args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1773, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1784, in _call_impl
return forward_call(*args, **kwargs)
File "/var/lib/workspace/intermediate_source/torch_export_tutorial.py", line 116, in forward
if x.sum() > 0:
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1360, in __torch_function__
return func(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1407, in __torch_function__
return func(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/_export/non_strict_utils.py", line 1051, in __torch_function__
return func(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/sym_node.py", line 538, in guard_bool
r = self.evaluate()
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/sym_node.py", line 512, in evaluate
return self.shape_env.evaluate_sym_node(self, size_oblivious)
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 7223, in evaluate_sym_node
return self.evaluate_expr(
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 7323, in evaluate_expr
return self._inner_evaluate_expr(
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/recording.py", line 272, in wrapper
return retlog(fn(*args, **kwargs))
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 7346, in _inner_evaluate_expr
return self._evaluate_expr(
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 7570, in _evaluate_expr
raise self._make_data_dependent_error(
torch.fx.experimental.symbolic_shapes.GuardOnDataDependentSymNode: Could not guard on data-dependent expression Eq(u0, 1) (unhinted: Eq(u0, 1)). (Size-like symbols: none)
Caused by: (_export/non_strict_utils.py:1051 in __torch_function__)
For more information, run with TORCH_LOGS="dynamic"
For extended logs when we create symbols, also add TORCHDYNAMO_EXTENDED_DEBUG_CREATE_SYMBOL="u0"
If you suspect the guard was triggered from C++, add TORCHDYNAMO_EXTENDED_DEBUG_CPP=1
For more debugging help, see https://docs.google.com/document/d/1HSuTTVvYH1pTew89Rtpeu84Ht3nQEFTYhAX3Ypa_xJs/edit?usp=sharing
For C++ stack trace, run with TORCHDYNAMO_EXTENDED_DEBUG_CPP=1
The following call raised this error:
File "/var/lib/workspace/intermediate_source/torch_export_tutorial.py", line 116, in forward
if x.sum() > 0:
The error above occurred when calling torch.export.export. If you would like to view some more information about this error, and get a list of all other errors that may occur in your export call, you can replace your `export()` call with `draft_export()`.
accessing tensor data with
.data
class Bad2(torch.nn.Module):
def forward(self, x):
x.data[0, 0] = 3
return x
try:
export(Bad2(), (torch.randn(3, 3),))
except Exception:
tb.print_exc()
calling unsupported functions (such as many built-in functions)
class Bad3(torch.nn.Module):
def forward(self, x):
x = x + 1
return x + id(x)
try:
export(Bad3(), (torch.randn(3, 3),))
except Exception:
tb.print_exc()
Non-Strict Export#
To trace the program, torch.export
uses TorchDynamo by default, a byte
code analysis engine, to symbolically analyze the Python code and build a
graph based on the results. This analysis allows torch.export
to provide
stronger guarantees about safety, but not all Python code is supported,
causing these graph breaks.
To address this issue, in PyTorch 2.3, we introduced a new mode of
exporting called non-strict mode, where we trace through the program using the
Python interpreter executing it exactly as it would in eager mode, allowing us
to skip over unsupported Python features. This is done through adding a
strict=False
flag.
Looking at some of the previous examples which resulted in graph breaks:
Calling unsupported functions (such as many built-in functions) traces
through, but in this case, id(x)
gets specialized as a constant integer in
the graph. This is because id(x)
is not a tensor operation, so the
operation is not recorded in the graph.
class Bad3(torch.nn.Module):
def forward(self, x):
x = x + 1
return x + id(x)
bad3_nonstrict = export(Bad3(), (torch.randn(3, 3),), strict=False)
print(bad3_nonstrict)
print(bad3_nonstrict.module()(torch.ones(3, 3)))
ExportedProgram:
class GraphModule(torch.nn.Module):
def forward(self, x: "f32[3, 3]"):
# File: /var/lib/workspace/intermediate_source/torch_export_tutorial.py:179 in forward, code: x = x + 1
add: "f32[3, 3]" = torch.ops.aten.add.Tensor(x, 1); x = None
# File: /var/lib/workspace/intermediate_source/torch_export_tutorial.py:180 in forward, code: return x + id(x)
add_1: "f32[3, 3]" = torch.ops.aten.add.Tensor(add, 140111415213920); add = None
return (add_1,)
Graph signature:
# inputs
x: USER_INPUT
# outputs
add_1: USER_OUTPUT
Range constraints: {}
tensor([[1.4011e+14, 1.4011e+14, 1.4011e+14],
[1.4011e+14, 1.4011e+14, 1.4011e+14],
[1.4011e+14, 1.4011e+14, 1.4011e+14]])
However, there are still some features that require rewrites to the original module:
Control Flow Ops#
torch.export
actually does support data-dependent control flow.
But these need to be expressed using control flow ops. For example,
we can fix the control flow example above using the cond
op, like so:
class Bad1Fixed(torch.nn.Module):
def forward(self, x):
def true_fn(x):
return torch.sin(x)
def false_fn(x):
return torch.cos(x)
return torch.cond(x.sum() > 0, true_fn, false_fn, [x])
exported_bad1_fixed = export(Bad1Fixed(), (torch.randn(3, 3),))
print(exported_bad1_fixed)
print(exported_bad1_fixed.module()(torch.ones(3, 3)))
print(exported_bad1_fixed.module()(-torch.ones(3, 3)))
ExportedProgram:
class GraphModule(torch.nn.Module):
def forward(self, x: "f32[3, 3]"):
# File: /var/lib/workspace/intermediate_source/torch_export_tutorial.py:205 in forward, code: return torch.cond(x.sum() > 0, true_fn, false_fn, [x])
sum_1: "f32[]" = torch.ops.aten.sum.default(x)
gt: "b8[]" = torch.ops.aten.gt.Scalar(sum_1, 0); sum_1 = None
# File: <eval_with_key>.33:9 in forward, code: cond = torch.ops.higher_order.cond(l_args_0_, cond_true_0, cond_false_0, (l_args_3_0_,)); l_args_0_ = cond_true_0 = cond_false_0 = l_args_3_0_ = None
true_graph_0 = self.true_graph_0
false_graph_0 = self.false_graph_0
cond = torch.ops.higher_order.cond(gt, true_graph_0, false_graph_0, (x,)); gt = true_graph_0 = false_graph_0 = x = None
getitem: "f32[3, 3]" = cond[0]; cond = None
return (getitem,)
class true_graph_0(torch.nn.Module):
def forward(self, x: "f32[3, 3]"):
# File: <eval_with_key>.30:6 in forward, code: sin = torch.sin(l_args_3_0__1); l_args_3_0__1 = None
sin: "f32[3, 3]" = torch.ops.aten.sin.default(x); x = None
return (sin,)
class false_graph_0(torch.nn.Module):
def forward(self, x: "f32[3, 3]"):
# File: <eval_with_key>.31:6 in forward, code: cos = torch.cos(l_args_3_0__1); l_args_3_0__1 = None
cos: "f32[3, 3]" = torch.ops.aten.cos.default(x); x = None
return (cos,)
Graph signature:
# inputs
x: USER_INPUT
# outputs
getitem: USER_OUTPUT
Range constraints: {}
tensor([[0.8415, 0.8415, 0.8415],
[0.8415, 0.8415, 0.8415],
[0.8415, 0.8415, 0.8415]])
tensor([[0.5403, 0.5403, 0.5403],
[0.5403, 0.5403, 0.5403],
[0.5403, 0.5403, 0.5403]])
There are limitations to cond
that one should be aware of:
The predicate (i.e.
x.sum() > 0
) must result in a boolean or a single-element tensor.The operands (i.e.
[x]
) must be tensors.The branch function (i.e.
true_fn
andfalse_fn
) signature must match with the operands and they must both return a single tensor with the same metadata (for example,dtype
,shape
, etc.).Branch functions cannot mutate input or global variables.
Branch functions cannot access closure variables, except for
self
if the function is defined in the scope of a method.
For more details about cond
, check out the cond documentation.
We can also use map
, which applies a function across the first dimension
of the first tensor argument.
from torch._higher_order_ops.map import map as torch_map
class MapModule(torch.nn.Module):
def forward(self, xs, y, z):
def body(x, y, z):
return x + y + z
return torch_map(body, xs, y, z)
inps = (torch.ones(6, 4), torch.tensor(5), torch.tensor(4))
exported_map_example = export(MapModule(), inps)
print(exported_map_example)
print(exported_map_example.module()(*inps))
ExportedProgram:
class GraphModule(torch.nn.Module):
def forward(self, xs: "f32[6, 4]", y: "i64[]", z: "i64[]"):
# File: <eval_with_key>.58:9 in forward, code: map_impl = torch.ops.higher_order.map_impl(map_body_0, [l_flat_xs_0_], [l_flat_args_0_, l_flat_args_1_]); map_body_0 = l_flat_xs_0_ = l_flat_args_0_ = l_flat_args_1_ = None
body_graph_0 = self.body_graph_0
map_impl = torch.ops.higher_order.map_impl(body_graph_0, [xs], [y, z]); body_graph_0 = xs = y = z = None
getitem: "f32[6, 4]" = map_impl[0]; map_impl = None
return (getitem,)
class body_graph_0(torch.nn.Module):
def forward(self, xs: "f32[4]", y: "i64[]", z: "i64[]"):
# File: <eval_with_key>.56:5 in forward, code: add = child.add(l_flat_args_0_); child = l_flat_args_0_ = None
add: "f32[4]" = torch.ops.aten.add.Tensor(xs, y); xs = y = None
# File: <eval_with_key>.56:6 in forward, code: add_1 = add.add(l_flat_args_1_); add = l_flat_args_1_ = None
add_1: "f32[4]" = torch.ops.aten.add.Tensor(add, z); add = z = None
return (add_1,)
Graph signature:
# inputs
xs: USER_INPUT
y: USER_INPUT
z: USER_INPUT
# outputs
getitem: USER_OUTPUT
Range constraints: {}
tensor([[10., 10., 10., 10.],
[10., 10., 10., 10.],
[10., 10., 10., 10.],
[10., 10., 10., 10.],
[10., 10., 10., 10.],
[10., 10., 10., 10.]])
Other control flow ops include while_loop
, associative_scan
, and
scan
. For more documentation on each operator, please refer to
this page.
Constraints/Dynamic Shapes#
This section covers dynamic behavior and representation of exported programs. Dynamic behavior is subjective to the particular model being exported, so for the most part of this tutorial, we’ll focus on this particular toy model (with the resulting tensor shapes annotated):
class DynamicModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.l = torch.nn.Linear(5, 3)
def forward(
self,
w: torch.Tensor, # [6, 5]
x: torch.Tensor, # [4]
y: torch.Tensor, # [8, 4]
z: torch.Tensor, # [32]
):
x0 = x + y # [8, 4]
x1 = self.l(w) # [6, 3]
x2 = x0.flatten() # [32]
x3 = x2 + z # [32]
return x1, x3
By default, torch.export
produces a static program. One consequence of this is that at runtime,
the program won’t work on inputs with different shapes, even if they’re valid in eager mode.
w = torch.randn(6, 5)
x = torch.randn(4)
y = torch.randn(8, 4)
z = torch.randn(32)
model = DynamicModel()
ep = export(model, (w, x, y, z))
model(w, x, torch.randn(3, 4), torch.randn(12))
try:
ep.module()(w, x, torch.randn(3, 4), torch.randn(12))
except Exception:
tb.print_exc()
Traceback (most recent call last):
File "/var/lib/workspace/intermediate_source/torch_export_tutorial.py", line 286, in <module>
ep.module()(w, x, torch.randn(3, 4), torch.randn(12))
File "/usr/local/lib/python3.10/dist-packages/torch/fx/graph_module.py", line 848, in call_wrapped
return self._wrapped_call(self, *args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/fx/graph_module.py", line 424, in __call__
raise e
File "/usr/local/lib/python3.10/dist-packages/torch/fx/graph_module.py", line 411, in __call__
return super(self.cls, obj).__call__(*args, **kwargs) # type: ignore[misc]
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1773, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1879, in _call_impl
return inner()
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1806, in inner
args_kwargs_result = hook(self, args, kwargs) # type: ignore[misc]
File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/eval_frame.py", line 929, in _fn
return fn(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/export/_unlift.py", line 83, in _check_input_constraints_pre_hook
_check_input_constraints_for_graph(
File "/usr/local/lib/python3.10/dist-packages/torch/_export/utils.py", line 426, in _check_input_constraints_for_graph
_check_symint(
File "/usr/local/lib/python3.10/dist-packages/torch/_export/utils.py", line 390, in _check_symint
raise RuntimeError(
RuntimeError: Expected input at *args[2].shape[0] to be equal to 8, but got 3. If you meant for this dimension to be dynamic, please re-export and specify dynamic_shapes (e.g. with Dim.DYNAMIC)
Basic concepts: symbols and guards#
To enable dynamism, export()
provides a dynamic_shapes
argument. The easiest way to work with
dynamic shapes is using Dim.AUTO
and looking at the program that’s returned. Dynamic behavior is specified
at a input dimension-level; for each input we can specify a tuple of values:
Before we look at the program that’s produced, let’s understand what specifying dynamic_shapes
entails,
and how that interacts with export. For every input dimension where a Dim
object is specified, a symbol is
allocated,
taking on a range of [2, inf]
(why not [0, inf]
or [1, inf]
? we’ll explain later in the
0/1 specialization section).
Export then runs model tracing, looking at each operation that’s performed by the model. Each individual operation can emit
what’s called “guards”; basically boolean condition that are required to be true for the program to be valid.
When guards involve symbols allocated for input dimensions, the program contains restrictions on what input shapes are valid;
i.e. the program’s dynamic behavior. The symbolic shapes subsystem is the part responsible for taking in all the emitted guards
and producing a final program representation that adheres to all of these guards. Before we see this “final representation” in
an ExportedProgram
, let’s look at the guards emitted by the toy model we’re tracing.
Here, each forward input tensor is annotated with the symbol allocated at the start of tracing:
class DynamicModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.l = torch.nn.Linear(5, 3)
def forward(
self,
w: torch.Tensor, # [s0, s1]
x: torch.Tensor, # [s2]
y: torch.Tensor, # [s3, s4]
z: torch.Tensor, # [s5]
):
x0 = x + y # guard: s2 == s4
x1 = self.l(w) # guard: s1 == 5
x2 = x0.flatten() # no guard added here
x3 = x2 + z # guard: s3 * s4 == s5
return x1, x3
Let’s understand each of the operations and the emitted guards:
x0 = x + y
: This is an element-wise add with broadcasting, sincex
is a 1-d tensor andy
a 2-d tensor.x
is broadcasted along the last dimension ofy
, emitting the guards2 == s4
.x1 = self.l(w)
: Callingnn.Linear()
performs a matrix multiplication with model parameters. In export, parameters, buffers, and constants are considered program state, which is considered static, and so this is a matmul between a dynamic input (w: [s0, s1]
), and a statically-shaped tensor. This emits the guards1 == 5
.x2 = x0.flatten()
: This call actually doesn’t emit any guards! (at least none relevant to input shapes)x3 = x2 + z
:x2
has shape[s3*s4]
after flattening, and this element-wise add emitss3 * s4 == s5
.
Writing all of these guards down and summarizing is almost like a mathematical proof, which is what the symbolic shapes subsystem tries to do! In summary, we can conclude that the program must have the following input shapes to be valid:
w: [s0, 5]
x: [s2]
y: [s3, s2]
z: [s2*s3]
And when we do finally print out the exported program to see our result, those shapes are what we see annotated on the corresponding inputs:
print(ep)
ExportedProgram:
class GraphModule(torch.nn.Module):
def forward(self, p_l_weight: "f32[3, 5]", p_l_bias: "f32[3]", w: "f32[s15, 5]", x: "f32[s77]", y: "f32[s17, s77]", z: "f32[s17*s77]"):
#
sym_size_int_1 = torch.ops.aten.sym_size.int(w, 1)
sym_size_int_2: "Sym(s77)" = torch.ops.aten.sym_size.int(x, 0)
sym_size_int_3: "Sym(s17)" = torch.ops.aten.sym_size.int(y, 0)
sym_size_int_4: "Sym(s77)" = torch.ops.aten.sym_size.int(y, 1)
sym_size_int_5: "Sym(s17*s77)" = torch.ops.aten.sym_size.int(z, 0)
# File: /var/lib/workspace/intermediate_source/torch_export_tutorial.py:268 in forward, code: x0 = x + y # [8, 4]
add: "f32[s17, s77]" = torch.ops.aten.add.Tensor(x, y); x = y = None
#
eq: "Sym(True)" = sym_size_int_2 == sym_size_int_4; sym_size_int_4 = None
_assert_scalar_default = torch.ops.aten._assert_scalar.default(eq, "Runtime assertion failed for expression Eq(s77, s94) on node 'eq'"); eq = _assert_scalar_default = None
eq_1 = sym_size_int_1 == 5; sym_size_int_1 = None
_assert_scalar_default_1 = torch.ops.aten._assert_scalar.default(eq_1, "Runtime assertion failed for expression Eq(s21, 5) on node 'eq_1'"); eq_1 = _assert_scalar_default_1 = None
mul: "Sym(s17*s77)" = sym_size_int_3 * sym_size_int_2; sym_size_int_3 = sym_size_int_2 = None
eq_2: "Sym(True)" = mul == sym_size_int_5; mul = sym_size_int_5 = None
_assert_scalar_default_2 = torch.ops.aten._assert_scalar.default(eq_2, "Runtime assertion failed for expression Eq(s17*s77, s68) on node 'eq_2'"); eq_2 = _assert_scalar_default_2 = None
# File: /usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py:125 in forward, code: return F.linear(input, self.weight, self.bias)
linear: "f32[s15, 3]" = torch.ops.aten.linear.default(w, p_l_weight, p_l_bias); w = p_l_weight = p_l_bias = None
# File: /var/lib/workspace/intermediate_source/torch_export_tutorial.py:270 in forward, code: x2 = x0.flatten() # [32]
flatten: "f32[s17*s77]" = torch.ops.aten.flatten.using_ints(add); add = None
# File: /var/lib/workspace/intermediate_source/torch_export_tutorial.py:271 in forward, code: x3 = x2 + z # [32]
add_1: "f32[s17*s77]" = torch.ops.aten.add.Tensor(flatten, z); flatten = z = None
return (linear, add_1)
Graph signature:
# inputs
p_l_weight: PARAMETER target='l.weight'
p_l_bias: PARAMETER target='l.bias'
w: USER_INPUT
x: USER_INPUT
y: USER_INPUT
z: USER_INPUT
# outputs
linear: USER_OUTPUT
add_1: USER_OUTPUT
Range constraints: {s15: VR[2, int_oo], s77: VR[2, int_oo], s17: VR[2, int_oo], s17*s77: VR[4, int_oo]}
Another feature to notice is the range_constraints field above, which contains a valid range for each symbol. This isn’t so interesting currently, since this export call doesn’t emit any guards related to symbol bounds and each base symbol has a generic bound, but this will come up later.
So far, because we’ve been exporting this toy model, this experience has not been representative of how hard it typically is to debug dynamic shapes guards & issues. In most cases it isn’t obvious what guards are being emitted, and which operations and parts of user code are responsible. For this toy model we pinpoint the exact lines, and the guards are rather intuitive.
In more complicated cases, a helpful first step is always to enable verbose logging. This can be done either with the environment
variable TORCH_LOGS="+dynamic"
, or interactively with torch._logging.set_logs(dynamic=10)
:
I0813 15:28:42.264000 31208 torch/fx/experimental/symbolic_shapes.py:3767] create_env
I0813 15:28:42.266000 31208 torch/fx/experimental/symbolic_shapes.py:5110] create_symbol s15 = 6 for L['w'].size()[0] [2, int_oo] (_export/non_strict_utils.py:229 in fakify), for more info run with TORCHDYNAMO_EXTENDED_DEBUG_CREATE_SYMBOL="s15" or to suppress this message run with TORCHDYNAMO_EXTENDED_ADVICE="0"
I0813 15:28:42.266000 31208 torch/fx/experimental/symbolic_shapes.py:5110] create_symbol s21 = 5 for L['w'].size()[1] [2, int_oo] (_export/non_strict_utils.py:229 in fakify), for more info run with TORCHDYNAMO_EXTENDED_DEBUG_CREATE_SYMBOL="s21" or to suppress this message run with TORCHDYNAMO_EXTENDED_ADVICE="0"
V0813 15:28:42.267000 31208 torch/fx/experimental/symbolic_shapes.py:7694] runtime_assert True == True [statically known]
I0813 15:28:42.269000 31208 torch/fx/experimental/symbolic_shapes.py:5110] create_symbol s77 = 4 for L['x'].size()[0] [2, int_oo] (_export/non_strict_utils.py:229 in fakify), for more info run with TORCHDYNAMO_EXTENDED_DEBUG_CREATE_SYMBOL="s77" or to suppress this message run with TORCHDYNAMO_EXTENDED_ADVICE="0"
I0813 15:28:42.270000 31208 torch/fx/experimental/symbolic_shapes.py:5110] create_symbol s17 = 8 for L['y'].size()[0] [2, int_oo] (_export/non_strict_utils.py:229 in fakify), for more info run with TORCHDYNAMO_EXTENDED_DEBUG_CREATE_SYMBOL="s17" or to suppress this message run with TORCHDYNAMO_EXTENDED_ADVICE="0"
I0813 15:28:42.270000 31208 torch/fx/experimental/symbolic_shapes.py:5110] create_symbol s94 = 4 for L['y'].size()[1] [2, int_oo] (_export/non_strict_utils.py:229 in fakify), for more info run with TORCHDYNAMO_EXTENDED_DEBUG_CREATE_SYMBOL="s94" or to suppress this message run with TORCHDYNAMO_EXTENDED_ADVICE="0"
I0813 15:28:42.272000 31208 torch/fx/experimental/symbolic_shapes.py:5110] create_symbol s68 = 32 for L['z'].size()[0] [2, int_oo] (_export/non_strict_utils.py:229 in fakify), for more info run with TORCHDYNAMO_EXTENDED_DEBUG_CREATE_SYMBOL="s68" or to suppress this message run with TORCHDYNAMO_EXTENDED_ADVICE="0"
V0813 15:28:42.277000 31208 torch/fx/experimental/symbolic_shapes.py:7475] eval False == False [statically known]
V0813 15:28:42.278000 31208 torch/fx/experimental/symbolic_shapes.py:7475] eval False == False [statically known]
V0813 15:28:42.279000 31208 torch/fx/experimental/symbolic_shapes.py:7475] eval False == False [statically known]
V0813 15:28:42.280000 31208 torch/fx/experimental/symbolic_shapes.py:7475] eval False == False [statically known]
V0813 15:28:42.280000 31208 torch/fx/experimental/symbolic_shapes.py:7475] eval False == False [statically known]
V0813 15:28:42.281000 31208 torch/fx/experimental/symbolic_shapes.py:7475] eval False == False [statically known]
V0813 15:28:42.282000 31208 torch/fx/experimental/symbolic_shapes.py:7475] eval False == False [statically known]
V0813 15:28:42.283000 31208 torch/fx/experimental/symbolic_shapes.py:7475] eval False == False [statically known]
V0813 15:28:42.284000 31208 torch/fx/experimental/symbolic_shapes.py:7475] eval False == False [statically known]
V0813 15:28:42.284000 31208 torch/fx/experimental/symbolic_shapes.py:7475] eval False == False [statically known]
V0813 15:28:42.286000 31208 torch/fx/experimental/symbolic_shapes.py:7694] runtime_assert True == True [statically known]
I0813 15:28:42.287000 31208 torch/fx/experimental/symbolic_shapes.py:7197] runtime_assert Eq(s77, s94) [guard added] (_subclasses/fake_impls.py:922 in infer_size), for more info run with TORCHDYNAMO_EXTENDED_DEBUG_GUARD_ADDED="Eq(s77, s94)"
I0813 15:28:42.288000 31208 torch/fx/experimental/symbolic_shapes.py:6776] set_replacement s94 = s77 (solve) VR[2, int_oo]
V0813 15:28:42.290000 31208 torch/fx/experimental/symbolic_shapes.py:7475] eval False == False [statically known]
I0813 15:28:42.295000 31208 torch/fx/experimental/symbolic_shapes.py:7197] runtime_assert Eq(s21, 5) [guard added] (_meta_registrations.py:2417 in meta_mm), for more info run with TORCHDYNAMO_EXTENDED_DEBUG_GUARD_ADDED="Eq(s21, 5)"
V0813 15:28:42.296000 31208 torch/fx/experimental/symbolic_shapes.py:6606] _update_var_to_range s21 = VR[5, 5] (update)
I0813 15:28:42.297000 31208 torch/fx/experimental/symbolic_shapes.py:6776] set_replacement s21 = 5 (range_refined_to_singleton) VR[5, 5]
V0813 15:28:42.308000 31208 torch/fx/experimental/symbolic_shapes.py:7475] eval size_oblivious(Eq(s17*s77, 1)) == False [statically known]
V0813 15:28:42.310000 31208 torch/fx/experimental/symbolic_shapes.py:7475] eval False == False [statically known]
I0813 15:28:42.312000 31208 torch/fx/experimental/symbolic_shapes.py:7197] runtime_assert Eq(s17*s77, s68) [guard added] (_subclasses/fake_impls.py:922 in infer_size), for more info run with TORCHDYNAMO_EXTENDED_DEBUG_GUARD_ADDED="Eq(s17*s77, s68)"
V0813 15:28:42.313000 31208 torch/fx/experimental/symbolic_shapes.py:6606] _update_var_to_range s68 = VR[4, int_oo] (update)
I0813 15:28:42.314000 31208 torch/fx/experimental/symbolic_shapes.py:6776] set_replacement s68 = s17*s77 (solve) VR[4, int_oo]
I0813 15:28:42.318000 31208 torch/fx/experimental/symbolic_shapes.py:5238] produce_guards
V0813 15:28:42.319000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['w'].size()[0] s15 None
V0813 15:28:42.319000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['w'].size()[1] 5 None
V0813 15:28:42.319000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['w'].stride()[0] 5 None
V0813 15:28:42.320000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['w'].stride()[1] 1 None
V0813 15:28:42.320000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['w'].storage_offset() 0 None
V0813 15:28:42.320000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['x'].size()[0] s77 None
V0813 15:28:42.320000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['x'].stride()[0] 1 None
V0813 15:28:42.321000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['x'].storage_offset() 0 None
V0813 15:28:42.321000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['y'].size()[0] s17 None
V0813 15:28:42.321000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['y'].size()[1] s77 None
V0813 15:28:42.321000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['y'].stride()[0] s77 None
V0813 15:28:42.322000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['y'].stride()[1] 1 None
V0813 15:28:42.322000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['y'].storage_offset() 0 None
V0813 15:28:42.322000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['z'].size()[0] s17*s77 None
V0813 15:28:42.323000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['z'].stride()[0] 1 None
V0813 15:28:42.323000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['z'].storage_offset() 0 None
V0813 15:28:42.331000 31208 torch/fx/experimental/symbolic_shapes.py:7694] runtime_assert True == True [statically known]
V0813 15:28:42.337000 31208 torch/fx/experimental/symbolic_shapes.py:7461] eval 5 [trivial]
This spits out quite a handful, even with this simple toy model. The log lines here have been cut short at front and end to ignore unnecessary info, but looking through the logs we can see the lines relevant to what we described above; e.g. the allocation of symbols:
"""
create_symbol s0 = 6 for L['w'].size()[0] [2, int_oo] (_dynamo/variables/builder.py:2841 in <lambda>)
create_symbol s1 = 5 for L['w'].size()[1] [2, int_oo] (_dynamo/variables/builder.py:2841 in <lambda>)
runtime_assert True == True [statically known]
create_symbol s2 = 4 for L['x'].size()[0] [2, int_oo] (_dynamo/variables/builder.py:2841 in <lambda>)
create_symbol s3 = 8 for L['y'].size()[0] [2, int_oo] (_dynamo/variables/builder.py:2841 in <lambda>)
create_symbol s4 = 4 for L['y'].size()[1] [2, int_oo] (_dynamo/variables/builder.py:2841 in <lambda>)
create_symbol s5 = 32 for L['z'].size()[0] [2, int_oo] (_dynamo/variables/builder.py:2841 in <lambda>)
"""
"\ncreate_symbol s0 = 6 for L['w'].size()[0] [2, int_oo] (_dynamo/variables/builder.py:2841 in <lambda>)\ncreate_symbol s1 = 5 for L['w'].size()[1] [2, int_oo] (_dynamo/variables/builder.py:2841 in <lambda>)\nruntime_assert True == True [statically known]\ncreate_symbol s2 = 4 for L['x'].size()[0] [2, int_oo] (_dynamo/variables/builder.py:2841 in <lambda>)\ncreate_symbol s3 = 8 for L['y'].size()[0] [2, int_oo] (_dynamo/variables/builder.py:2841 in <lambda>)\ncreate_symbol s4 = 4 for L['y'].size()[1] [2, int_oo] (_dynamo/variables/builder.py:2841 in <lambda>)\ncreate_symbol s5 = 32 for L['z'].size()[0] [2, int_oo] (_dynamo/variables/builder.py:2841 in <lambda>)\n"
The lines with create_symbol show when a new symbol has been allocated, and the logs also identify the tensor variable names and dimensions they’ve been allocated for. In other lines we can also see the guards emitted:
"""
runtime_assert Eq(s2, s4) [guard added] x0 = x + y # output shape: [8, 4] # dynamic_shapes_tutorial.py:16 in forward (_subclasses/fake_impls.py:845 in infer_size), for more info run with TORCHDYNAMO_EXTENDED_DEBUG_GUARD_ADDED="Eq(s2, s4)"
runtime_assert Eq(s1, 5) [guard added] x1 = self.l(w) # [6, 3] # dynamic_shapes_tutorial.py:17 in forward (_meta_registrations.py:2127 in meta_mm), for more info run with TORCHDYNAMO_EXTENDED_DEBUG_GUARD_ADDED="Eq(s1, 5)"
runtime_assert Eq(s2*s3, s5) [guard added] x3 = x2 + z # [32] # dynamic_shapes_tutorial.py:19 in forward (_subclasses/fake_impls.py:845 in infer_size), for more info run with TORCHDYNAMO_EXTENDED_DEBUG_GUARD_ADDED="Eq(s2*s3, s5)"
"""
'\nruntime_assert Eq(s2, s4) [guard added] x0 = x + y # output shape: [8, 4] # dynamic_shapes_tutorial.py:16 in forward (_subclasses/fake_impls.py:845 in infer_size), for more info run with TORCHDYNAMO_EXTENDED_DEBUG_GUARD_ADDED="Eq(s2, s4)"\nruntime_assert Eq(s1, 5) [guard added] x1 = self.l(w) # [6, 3] # dynamic_shapes_tutorial.py:17 in forward (_meta_registrations.py:2127 in meta_mm), for more info run with TORCHDYNAMO_EXTENDED_DEBUG_GUARD_ADDED="Eq(s1, 5)"\nruntime_assert Eq(s2*s3, s5) [guard added] x3 = x2 + z # [32] # dynamic_shapes_tutorial.py:19 in forward (_subclasses/fake_impls.py:845 in infer_size), for more info run with TORCHDYNAMO_EXTENDED_DEBUG_GUARD_ADDED="Eq(s2*s3, s5)"\n'
Next to the [guard added]
messages, we also see the responsible user lines of code - luckily here the model is simple enough.
In many real-world cases it’s not so straightforward: high-level torch operations can have complicated fake-kernel implementations
or operator decompositions that complicate where and what guards are emitted. In such cases the best way to dig deeper and investigate
is to follow the logs’ suggestion, and re-run with environment variable TORCHDYNAMO_EXTENDED_DEBUG_GUARD_ADDED="..."
, to further
attribute the guard of interest.
Dim.AUTO
is just one of the available options for interacting with dynamic_shapes
; as of writing this 2 other options are available:
Dim.DYNAMIC
, and Dim.STATIC
. Dim.STATIC
simply marks a dimension static, while Dim.DYNAMIC
is similar to Dim.AUTO
in all
ways except one: it raises an error when specializing to a constant; this is designed to maintain dynamism. See for example what happens when a
static guard is emitted on a dynamically-marked dimension:
I0813 15:28:42.342000 31208 torch/fx/experimental/symbolic_shapes.py:3767] create_env
I0813 15:28:42.343000 31208 torch/fx/experimental/symbolic_shapes.py:5110] create_symbol s15 = 6 for L['w'].size()[0] [2, int_oo] (_export/non_strict_utils.py:229 in fakify), for more info run with TORCHDYNAMO_EXTENDED_DEBUG_CREATE_SYMBOL="s15" or to suppress this message run with TORCHDYNAMO_EXTENDED_ADVICE="0"
I0813 15:28:42.344000 31208 torch/fx/experimental/symbolic_shapes.py:5110] create_symbol s21 = 5 for L['w'].size()[1] [2, int_oo] (_export/non_strict_utils.py:229 in fakify), for more info run with TORCHDYNAMO_EXTENDED_DEBUG_CREATE_SYMBOL="s21" or to suppress this message run with TORCHDYNAMO_EXTENDED_ADVICE="0"
V0813 15:28:42.344000 31208 torch/fx/experimental/symbolic_shapes.py:7694] runtime_assert True == True [statically known]
I0813 15:28:42.346000 31208 torch/fx/experimental/symbolic_shapes.py:5110] create_symbol s77 = 4 for L['x'].size()[0] [2, int_oo] (_export/non_strict_utils.py:229 in fakify), for more info run with TORCHDYNAMO_EXTENDED_DEBUG_CREATE_SYMBOL="s77" or to suppress this message run with TORCHDYNAMO_EXTENDED_ADVICE="0"
I0813 15:28:42.347000 31208 torch/fx/experimental/symbolic_shapes.py:5110] create_symbol s17 = 8 for L['y'].size()[0] [2, int_oo] (_export/non_strict_utils.py:229 in fakify), for more info run with TORCHDYNAMO_EXTENDED_DEBUG_CREATE_SYMBOL="s17" or to suppress this message run with TORCHDYNAMO_EXTENDED_ADVICE="0"
I0813 15:28:42.348000 31208 torch/fx/experimental/symbolic_shapes.py:5110] create_symbol s94 = 4 for L['y'].size()[1] [2, int_oo] (_export/non_strict_utils.py:229 in fakify), for more info run with TORCHDYNAMO_EXTENDED_DEBUG_CREATE_SYMBOL="s94" or to suppress this message run with TORCHDYNAMO_EXTENDED_ADVICE="0"
I0813 15:28:42.350000 31208 torch/fx/experimental/symbolic_shapes.py:5110] create_symbol s68 = 32 for L['z'].size()[0] [2, int_oo] (_export/non_strict_utils.py:229 in fakify), for more info run with TORCHDYNAMO_EXTENDED_DEBUG_CREATE_SYMBOL="s68" or to suppress this message run with TORCHDYNAMO_EXTENDED_ADVICE="0"
V0813 15:28:42.355000 31208 torch/fx/experimental/symbolic_shapes.py:7475] eval False == False [statically known]
V0813 15:28:42.355000 31208 torch/fx/experimental/symbolic_shapes.py:7475] eval False == False [statically known]
V0813 15:28:42.356000 31208 torch/fx/experimental/symbolic_shapes.py:7475] eval False == False [statically known]
V0813 15:28:42.357000 31208 torch/fx/experimental/symbolic_shapes.py:7475] eval False == False [statically known]
V0813 15:28:42.358000 31208 torch/fx/experimental/symbolic_shapes.py:7475] eval False == False [statically known]
V0813 15:28:42.359000 31208 torch/fx/experimental/symbolic_shapes.py:7475] eval False == False [statically known]
V0813 15:28:42.359000 31208 torch/fx/experimental/symbolic_shapes.py:7475] eval False == False [statically known]
V0813 15:28:42.360000 31208 torch/fx/experimental/symbolic_shapes.py:7475] eval False == False [statically known]
V0813 15:28:42.361000 31208 torch/fx/experimental/symbolic_shapes.py:7475] eval False == False [statically known]
V0813 15:28:42.362000 31208 torch/fx/experimental/symbolic_shapes.py:7475] eval False == False [statically known]
V0813 15:28:42.364000 31208 torch/fx/experimental/symbolic_shapes.py:7694] runtime_assert True == True [statically known]
I0813 15:28:42.364000 31208 torch/fx/experimental/symbolic_shapes.py:7197] runtime_assert Eq(s77, s94) [guard added] (_subclasses/fake_impls.py:922 in infer_size), for more info run with TORCHDYNAMO_EXTENDED_DEBUG_GUARD_ADDED="Eq(s77, s94)"
I0813 15:28:42.365000 31208 torch/fx/experimental/symbolic_shapes.py:6776] set_replacement s94 = s77 (solve) VR[2, int_oo]
V0813 15:28:42.367000 31208 torch/fx/experimental/symbolic_shapes.py:7475] eval False == False [statically known]
I0813 15:28:42.373000 31208 torch/fx/experimental/symbolic_shapes.py:7197] runtime_assert Eq(s21, 5) [guard added] (_meta_registrations.py:2417 in meta_mm), for more info run with TORCHDYNAMO_EXTENDED_DEBUG_GUARD_ADDED="Eq(s21, 5)"
V0813 15:28:42.373000 31208 torch/fx/experimental/symbolic_shapes.py:6606] _update_var_to_range s21 = VR[5, 5] (update)
I0813 15:28:42.374000 31208 torch/fx/experimental/symbolic_shapes.py:6776] set_replacement s21 = 5 (range_refined_to_singleton) VR[5, 5]
V0813 15:28:42.386000 31208 torch/fx/experimental/symbolic_shapes.py:7475] eval size_oblivious(Eq(s17*s77, 1)) == False [statically known]
V0813 15:28:42.387000 31208 torch/fx/experimental/symbolic_shapes.py:7475] eval False == False [statically known]
I0813 15:28:42.389000 31208 torch/fx/experimental/symbolic_shapes.py:7197] runtime_assert Eq(s17*s77, s68) [guard added] (_subclasses/fake_impls.py:922 in infer_size), for more info run with TORCHDYNAMO_EXTENDED_DEBUG_GUARD_ADDED="Eq(s17*s77, s68)"
V0813 15:28:42.390000 31208 torch/fx/experimental/symbolic_shapes.py:6606] _update_var_to_range s68 = VR[4, int_oo] (update)
I0813 15:28:42.392000 31208 torch/fx/experimental/symbolic_shapes.py:6776] set_replacement s68 = s17*s77 (solve) VR[4, int_oo]
I0813 15:28:42.396000 31208 torch/fx/experimental/symbolic_shapes.py:5238] produce_guards
V0813 15:28:42.397000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['w'].size()[0] s15 None
V0813 15:28:42.397000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['w'].size()[1] 5 RelaxedUnspecConstraint(warn_only=False)
V0813 15:28:42.606000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['w'].stride()[0] 5 None
V0813 15:28:42.606000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['w'].stride()[1] 1 None
V0813 15:28:42.607000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['w'].storage_offset() 0 None
V0813 15:28:42.607000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['x'].size()[0] s77 None
V0813 15:28:42.607000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['x'].stride()[0] 1 None
V0813 15:28:42.608000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['x'].storage_offset() 0 None
V0813 15:28:42.608000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['y'].size()[0] s17 None
V0813 15:28:42.608000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['y'].size()[1] s77 None
V0813 15:28:42.609000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['y'].stride()[0] s77 None
V0813 15:28:42.609000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['y'].stride()[1] 1 None
V0813 15:28:42.609000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['y'].storage_offset() 0 None
V0813 15:28:42.609000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['z'].size()[0] s17*s77 None
V0813 15:28:42.610000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['z'].stride()[0] 1 None
V0813 15:28:42.610000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['z'].storage_offset() 0 None
Traceback (most recent call last):
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1798, in _export_to_aten_ir_make_fx
produce_guards_callback(gm)
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1944, in _produce_guards_callback
return produce_guards_and_solve_constraints(
File "/usr/local/lib/python3.10/dist-packages/torch/_export/non_strict_utils.py", line 549, in produce_guards_and_solve_constraints
raise constraint_violation_error
File "/usr/local/lib/python3.10/dist-packages/torch/_export/non_strict_utils.py", line 514, in produce_guards_and_solve_constraints
shape_env.produce_guards(
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 5200, in produce_guards
return self.produce_guards_verbose(*args, **kwargs, langs=("python",))[0].exprs
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 5932, in produce_guards_verbose
raise ConstraintViolationError(
torch.fx.experimental.symbolic_shapes.ConstraintViolationError: Constraints violated (L['w'].size()[1])! For more information, run with TORCH_LOGS="+dynamic".
- You marked L['w'].size()[1] as dynamic but your code specialized it to be a constant (5). If you're using mark_dynamic, either remove it or use maybe_mark_dynamic. If you're using Dim.DYNAMIC, replace it with either Dim.STATIC or Dim.AUTO.
Framework stack:
File "??", line 0, in _start
File "??", line 0, in __libc_start_main
File "??", line 0, in __libc_init_first
File "??", line 0, in Py_BytesMain
File "??", line 0, in Py_RunMain
File "??", line 0, in _PyRun_AnyFileObject
File "??", line 0, in _PyRun_SimpleFileObject
File "??", line 0, in PyUnicode_Tailmatch
File "??", line 0, in PyInit__collections
File "??", line 0, in PyUnicode_Tailmatch
File "??", line 0, in PyEval_EvalCode
File "??", line 0, in PyEval_EvalCode
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/bin/sphinx-build", line 7, in <module>
sys.exit(main())
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx/cmd/build.py", line 339, in main
return make_main(argv)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx/cmd/build.py", line 213, in make_main
return make_mode.run_make_mode(argv[1:])
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx/cmd/make_mode.py", line 181, in run_make_mode
return make.run_generic_build(args[0])
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx/cmd/make_mode.py", line 169, in run_generic_build
return build_main(args + opts)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx/cmd/build.py", line 293, in build_main
app = Sphinx(args.sourcedir, args.confdir, args.outputdir,
File "??", line 0, in _PyObject_MakeTpCall
File "??", line 0, in _PyStack_AsDict
File "??", line 0, in _PyObject_FastCallDictTstate
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx/application.py", line 272, in __init__
self._init_builder()
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx/application.py", line 343, in _init_builder
self.events.emit('builder-inited')
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx/events.py", line 97, in emit
results.append(listener.handler(self.app, *args))
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_gallery.py", line 757, in generate_gallery_rst
) = generate_dir_rst(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 606, in generate_dir_rst
results = parallel(
File "??", line 0, in PyUnicode_Decode
File "??", line 0, in _PyLong_FromByteArray
File "??", line 0, in PyObject_SelfIter
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 607, in <genexpr>
p_fun(fname, target_dir, src_dir, gallery_conf) for fname in iterator
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/var/lib/workspace/conf.py", line 85, in wrapper
p.start()
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/lib/python3.10/multiprocessing/process.py", line 121, in start
self._popen = self._Popen(self)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/lib/python3.10/multiprocessing/context.py", line 224, in _Popen
return _default_context.get_context().Process._Popen(process_obj)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/lib/python3.10/multiprocessing/context.py", line 281, in _Popen
return Popen(process_obj)
File "??", line 0, in _PyObject_MakeTpCall
File "??", line 0, in _PyStack_AsDict
File "??", line 0, in _PyObject_FastCallDictTstate
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/lib/python3.10/multiprocessing/popen_fork.py", line 19, in __init__
self._launch(process_obj)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/lib/python3.10/multiprocessing/popen_fork.py", line 71, in _launch
code = process_obj._bootstrap(parent_sentinel=child_r)
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/lib/python3.10/multiprocessing/process.py", line 314, in _bootstrap
self.run()
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/lib/python3.10/multiprocessing/process.py", line 108, in run
self._target(*self._args, **self._kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/var/lib/workspace/conf.py", line 73, in call_fn
result = func(*args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 1374, in generate_file_rst
output_blocks, time_elapsed = execute_script(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 1192, in execute_script
execute_code_block(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 1048, in execute_code_block
is_last_expr, mem_max = _exec_and_get_memory(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 876, in _exec_and_get_memory
mem_max, _ = call_memory(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 1725, in _sg_call_memory_noop
return 0.0, func()
File "??", line 0, in _PyObject_MakeTpCall
File "??", line 0, in PyInit__datetime
File "??", line 0, in _PyObject_Call_Prepend
File "??", line 0, in _PyObject_FastCallDictTstate
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 794, in __call__
exec(self.code, self.fake_main.__dict__)
File "??", line 0, in PyCell_New
File "??", line 0, in PyFrozenSet_New
File "??", line 0, in PyEval_EvalCode
File "??", line 0, in PyEval_EvalCode
File "??", line 0, in _PyEval_EvalFrameDefault
File "/var/lib/workspace/intermediate_source/torch_export_tutorial.py", line 418, in <module>
export(model, (w, x, y, z), dynamic_shapes=dynamic_shapes)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/__init__.py", line 286, in export
return _export(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1130, in wrapper
ep = fn(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/exported_program.py", line 123, in wrapper
return fn(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 2176, in _export
ep = _export_for_training(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1130, in wrapper
ep = fn(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/exported_program.py", line 123, in wrapper
return fn(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 2037, in _export_for_training
export_artifact = export_func(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1979, in _non_strict_export
aten_export_artifact = _to_aten_func( # type: ignore[operator]
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1770, in _export_to_aten_ir_make_fx
gm, graph_signature = transform(_make_fx_helper)(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1900, in _aot_export_non_strict
gm, sig = aot_export(wrapped_mod, args, kwargs=kwargs, **flags)
File "??", line 0, in PyObject_Call
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1685, in _make_fx_helper
gm = make_fx(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 2318, in wrapped
return make_fx_tracer.trace(f, *args)
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 2250, in trace
return self._trace_inner(f, *args)
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 2221, in _trace_inner
t = dispatch_trace(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_compile.py", line 53, in inner
return disable_fn(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/eval_frame.py", line 929, in _fn
return fn(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1254, in dispatch_trace
graph = tracer.trace(root, concrete_args) # type: ignore[arg-type]
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1835, in trace
res = super().trace(root, concrete_args)
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/eval_frame.py", line 929, in _fn
return fn(*args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 850, in trace
(self.create_arg(fn(*args)),),
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1312, in wrapped
out = f(*tensors) # type:ignore[call-arg]
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "<string>", line 1, in <lambda>
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1589, in wrapped_fn
return tuple(flat_fn(*args))
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_functorch/_aot_autograd/utils.py", line 184, in flat_fn
tree_out = fn(*args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_functorch/_aot_autograd/traced_function_transforms.py", line 906, in functional_call
out = mod(*args[params_len:], **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in PyInit__datetime
File "??", line 0, in _PyObject_Call_Prepend
File "??", line 0, in _PyObject_FastCallDictTstate
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 825, in module_call_wrapper
return self.call_module(mod, forward, args, kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1905, in call_module
return Tracer.call_module(self, m, forward, args, kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 542, in call_module
ret_val = forward(*args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 818, in forward
return _orig_module_call(mod, *args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1773, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1784, in _call_impl
return forward_call(*args, **kwargs)
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1884, in forward
tree_out = mod(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in PyInit__datetime
File "??", line 0, in _PyObject_Call_Prepend
File "??", line 0, in _PyObject_FastCallDictTstate
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 825, in module_call_wrapper
return self.call_module(mod, forward, args, kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1905, in call_module
return Tracer.call_module(self, m, forward, args, kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 542, in call_module
ret_val = forward(*args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 818, in forward
return _orig_module_call(mod, *args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1773, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1784, in _call_impl
return forward_call(*args, **kwargs)
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/var/lib/workspace/intermediate_source/torch_export_tutorial.py", line 269, in forward
x1 = self.l(w) # [6, 3]
File "??", line 0, in _PyObject_MakeTpCall
File "??", line 0, in PyInit__datetime
File "??", line 0, in _PyObject_Call_Prepend
File "??", line 0, in _PyObject_FastCallDictTstate
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 825, in module_call_wrapper
return self.call_module(mod, forward, args, kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1905, in call_module
return Tracer.call_module(self, m, forward, args, kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 542, in call_module
ret_val = forward(*args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 818, in forward
return _orig_module_call(mod, *args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1773, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1784, in _call_impl
return forward_call(*args, **kwargs)
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py", line 125, in forward
return F.linear(input, self.weight, self.bias)
File "??", line 0, in _PyObject_MakeTpCall
File "??", line 0, in PyObject_CallFunctionObjArgs
File "python_nn_functions.cpp", line 0, in torch::autograd::THPVariable_linear(_object*, _object*, _object*)
File "", line 0, in torch::handle_torch_function(torch::PythonArgs&, _object*, _object*, _object*, _object*, char const*, char const*)
File "??", line 0, in torch::handle_torch_function_no_python_arg_parser(c10::ArrayRef<_object*>, _object*, _object*, char const*, _object*, char const*, torch::TorchFunctionName)
File "??", line 0, in PyObject_CallMethod
File "??", line 0, in PyModule_AddObjectRef
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1360, in __torch_function__
return func(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in PyObject_CallFunctionObjArgs
File "python_nn_functions.cpp", line 0, in torch::autograd::THPVariable_linear(_object*, _object*, _object*)
File "", line 0, in torch::handle_torch_function(torch::PythonArgs&, _object*, _object*, _object*, _object*, char const*, char const*)
File "??", line 0, in torch::handle_torch_function_no_python_arg_parser(c10::ArrayRef<_object*>, _object*, _object*, char const*, _object*, char const*, torch::TorchFunctionName)
File "??", line 0, in PyObject_CallMethod
File "??", line 0, in PyModule_AddObjectRef
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1407, in __torch_function__
return func(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in PyObject_CallFunctionObjArgs
File "python_nn_functions.cpp", line 0, in torch::autograd::THPVariable_linear(_object*, _object*, _object*)
File "", line 0, in torch::handle_torch_function(torch::PythonArgs&, _object*, _object*, _object*, _object*, char const*, char const*)
File "??", line 0, in torch::handle_torch_function_no_python_arg_parser(c10::ArrayRef<_object*>, _object*, _object*, char const*, _object*, char const*, torch::TorchFunctionName)
File "??", line 0, in PyObject_CallMethod
File "??", line 0, in PyModule_AddObjectRef
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_export/non_strict_utils.py", line 1051, in __torch_function__
return func(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in PyObject_CallFunctionObjArgs
File "python_nn_functions.cpp", line 0, in torch::autograd::THPVariable_linear(_object*, _object*, _object*)
File "??", line 0, in at::_ops::linear::call(at::Tensor const&, at::Tensor const&, std::optional<at::Tensor> const&)
File "PyInterpreter.cpp", line 0, in torch::detail::(anonymous namespace)::ConcretePyInterpreterVTable::python_dispatcher(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_ops.py", line 950, in handler
return torch._library.utils.handle_dispatch_mode(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_library/utils.py", line 296, in handle_dispatch_mode
return curr_mode.__torch_dispatch__(op_overload, overload_types, args, kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/utils/_stats.py", line 28, in wrapper
return fn(*args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1462, in __torch_dispatch__
return proxy_call(self, func, self.pre_dispatch, args, kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 914, in proxy_call
out = func(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in PyInit__datetime
File "??", line 0, in _PyObject_Call_Prepend
File "??", line 0, in _PyObject_FastCallDictTstate
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_ops.py", line 829, in __call__
return self._op(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in PyObject_CallFunctionObjArgs
File "", line 0, in pybind11::cpp_function::dispatcher(_object*, _object*, _object*)
File "init.cpp", line 0, in pybind11::cpp_function::initialize<torch::jit::initJITBindings(_object*)::{lambda(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&)#2}::operator()(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) const::{lambda(pybind11::args const&, pybind11::kwargs const&)#1}, pybind11::object, pybind11::args const&, pybind11::kwargs const&>(torch::jit::initJITBindings(_object*)::{lambda(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&)#2}::operator()(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) const::{lambda(pybind11::args const&, pybind11::kwargs const&)#1}&&, pybind11::object (*)(pybind11::args const&, pybind11::kwargs const&))::{lambda(pybind11::detail::function_call&)#1}::_FUN(pybind11::detail::function_call&)
File "init.cpp", line 0, in torch::jit::initJITBindings(_object*)::{lambda(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&)#2}::operator()(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) const::{lambda(pybind11::args const&, pybind11::kwargs const&)#1}::operator()(pybind11::args const&, pybind11::kwargs const&) const
File "??", line 0, in torch::jit::_get_operation_for_overload_or_packet(std::vector<std::shared_ptr<torch::jit::Operator>, std::allocator<std::shared_ptr<torch::jit::Operator> > > const&, c10::Symbol, pybind11::args const&, pybind11::kwargs const&, bool, std::optional<c10::DispatchKey>)
File "??", line 0, in torch::jit::invokeOperatorFromPython(std::vector<std::shared_ptr<torch::jit::Operator>, std::allocator<std::shared_ptr<torch::jit::Operator> > > const&, pybind11::args const&, pybind11::kwargs const&, std::optional<c10::DispatchKey>)
File "register_c10_ops.cpp", line 0, in c10::Dispatcher::callBoxed(c10::OperatorHandle const&, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const [clone .isra.0]
File "PyInterpreter.cpp", line 0, in torch::detail::(anonymous namespace)::ConcretePyInterpreterVTable::python_dispatcher(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const
File "", line 0, in c10::OperatorHandle::callBoxedForDispatchKey(c10::DispatchKey, std::vector<c10::IValue, std::allocator<c10::IValue> >&) const
File "PythonFallbackKernel.cpp", line 0, in void c10::BoxedKernel::make_boxed_function<&(anonymous namespace)::pythonTLSSnapshotFallback>(c10::OperatorKernel*, c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*)
File "PyInterpreter.cpp", line 0, in torch::detail::(anonymous namespace)::ConcretePyInterpreterVTable::python_dispatcher(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const
File "", line 0, in c10::OperatorHandle::callBoxedForDispatchKey(c10::DispatchKey, std::vector<c10::IValue, std::allocator<c10::IValue> >&) const
File "RegisterCompositeImplicitAutograd_0.cpp", line 0, in c10::impl::make_boxed_from_unboxed_functor<c10::impl::detail::WrapFunctionIntoFunctor_<c10::CompileTimeFunctionPointer<at::Tensor (at::Tensor const&, at::Tensor const&, std::optional<at::Tensor> const&), &at::(anonymous namespace)::(anonymous namespace)::wrapper_CompositeImplicitAutograd__linear>, at::Tensor, c10::guts::typelist::typelist<at::Tensor const&, at::Tensor const&, std::optional<at::Tensor> const&> >, false>::call(c10::OperatorKernel*, c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*)
File "??", line 0, in at::native::linear(at::Tensor const&, at::Tensor const&, std::optional<at::Tensor> const&)
File "??", line 0, in at::_ops::addmm::call(at::Tensor const&, at::Tensor const&, at::Tensor const&, c10::Scalar const&, c10::Scalar const&)
File "", line 0, in c10::impl::BoxedKernelWrapper<at::Tensor (at::Tensor const&, at::Tensor const&, at::Tensor const&, c10::Scalar const&, c10::Scalar const&), void>::call(c10::BoxedKernel const&, c10::OperatorHandle const&, c10::DispatchKeySet, at::Tensor const&, at::Tensor const&, at::Tensor const&, c10::Scalar const&, c10::Scalar const&)
File "PyInterpreter.cpp", line 0, in torch::detail::(anonymous namespace)::ConcretePyInterpreterVTable::python_dispatcher(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const
File "", line 0, in c10::OperatorHandle::callBoxedForDispatchKey(c10::DispatchKey, std::vector<c10::IValue, std::allocator<c10::IValue> >&) const
File "PythonFallbackKernel.cpp", line 0, in void c10::BoxedKernel::make_boxed_function<&(anonymous namespace)::pythonTLSSnapshotFallback>(c10::OperatorKernel*, c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*)
File "PyInterpreter.cpp", line 0, in torch::detail::(anonymous namespace)::ConcretePyInterpreterVTable::python_dispatcher(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const
File "", line 0, in c10::OperatorHandle::callBoxedForDispatchKey(c10::DispatchKey, std::vector<c10::IValue, std::allocator<c10::IValue> >&) const
File "VariableType_0.cpp", line 0, in c10::impl::make_boxed_from_unboxed_functor<c10::impl::detail::WrapFunctionIntoFunctor_<c10::CompileTimeFunctionPointer<at::Tensor (c10::DispatchKeySet, at::Tensor const&, at::Tensor const&, at::Tensor const&, c10::Scalar const&, c10::Scalar const&), &torch::autograd::VariableType::(anonymous namespace)::addmm>, at::Tensor, c10::guts::typelist::typelist<c10::DispatchKeySet, at::Tensor const&, at::Tensor const&, at::Tensor const&, c10::Scalar const&, c10::Scalar const&> >, false>::call(c10::OperatorKernel*, c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*)
File "VariableType_0.cpp", line 0, in torch::autograd::VariableType::(anonymous namespace)::addmm(c10::DispatchKeySet, at::Tensor const&, at::Tensor const&, at::Tensor const&, c10::Scalar const&, c10::Scalar const&)
File "??", line 0, in at::_ops::addmm::redispatch(c10::DispatchKeySet, at::Tensor const&, at::Tensor const&, at::Tensor const&, c10::Scalar const&, c10::Scalar const&)
File "PyInterpreter.cpp", line 0, in torch::detail::(anonymous namespace)::ConcretePyInterpreterVTable::python_dispatcher(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const
File "", line 0, in c10::OperatorHandle::callBoxedForDispatchKey(c10::DispatchKey, std::vector<c10::IValue, std::allocator<c10::IValue> >&) const
File "PythonFallbackKernel.cpp", line 0, in (anonymous namespace)::pythonFallback(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*)
File "PyInterpreter.cpp", line 0, in torch::detail::(anonymous namespace)::ConcretePyInterpreterVTable::dispatch(c10::OperatorHandle const&, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const
File "??", line 0, in torch::handle_torch_function_no_python_arg_parser(c10::ArrayRef<_object*>, _object*, _object*, char const*, _object*, char const*, torch::TorchFunctionName)
File "??", line 0, in PyObject_CallMethod
File "??", line 0, in PyModule_AddObjectRef
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/utils/_stats.py", line 28, in wrapper
return fn(*args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_subclasses/fake_tensor.py", line 1352, in __torch_dispatch__
return self.dispatch(func, types, args, kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_subclasses/fake_tensor.py", line 2058, in dispatch
return self._cached_dispatch_impl(func, types, args, kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_subclasses/fake_tensor.py", line 1487, in _cached_dispatch_impl
output = self._dispatch_impl(func, types, args, kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_subclasses/fake_tensor.py", line 2601, in _dispatch_impl
decomposition_table[func](*args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_prims_common/wrappers.py", line 309, in _fn
result = fn(*args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_decomp/decompositions.py", line 90, in inner
r = f(*tree_map(increase_prec, args), **tree_map(increase_prec, kwargs))
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_decomp/decompositions.py", line 1462, in addmm
out = alpha * torch.mm(mat1, mat2)
File "??", line 0, in _PyObject_MakeTpCall
File "??", line 0, in PyObject_CallFunctionObjArgs
File "python_torch_functions_1.cpp", line 0, in torch::autograd::THPVariable_mm(_object*, _object*, _object*)
File "??", line 0, in at::_ops::mm::call(at::Tensor const&, at::Tensor const&)
File "", line 0, in c10::impl::BoxedKernelWrapper<at::Tensor (at::Tensor const&, at::Tensor const&), void>::call(c10::BoxedKernel const&, c10::OperatorHandle const&, c10::DispatchKeySet, at::Tensor const&, at::Tensor const&)
File "PyInterpreter.cpp", line 0, in torch::detail::(anonymous namespace)::ConcretePyInterpreterVTable::python_dispatcher(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const
File "", line 0, in c10::OperatorHandle::callBoxedForDispatchKey(c10::DispatchKey, std::vector<c10::IValue, std::allocator<c10::IValue> >&) const
File "PythonFallbackKernel.cpp", line 0, in (anonymous namespace)::pythonFallback(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*)
File "PyInterpreter.cpp", line 0, in torch::detail::(anonymous namespace)::ConcretePyInterpreterVTable::dispatch(c10::OperatorHandle const&, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const
File "??", line 0, in torch::handle_torch_function_no_python_arg_parser(c10::ArrayRef<_object*>, _object*, _object*, char const*, _object*, char const*, torch::TorchFunctionName)
File "??", line 0, in PyObject_CallMethod
File "??", line 0, in PyModule_AddObjectRef
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/utils/_stats.py", line 28, in wrapper
return fn(*args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_subclasses/fake_tensor.py", line 1352, in __torch_dispatch__
return self.dispatch(func, types, args, kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_subclasses/fake_tensor.py", line 2058, in dispatch
return self._cached_dispatch_impl(func, types, args, kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_subclasses/fake_tensor.py", line 1487, in _cached_dispatch_impl
output = self._dispatch_impl(func, types, args, kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_subclasses/fake_tensor.py", line 2717, in _dispatch_impl
r = func(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in PyInit__datetime
File "??", line 0, in _PyObject_Call_Prepend
File "??", line 0, in _PyObject_FastCallDictTstate
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_ops.py", line 829, in __call__
return self._op(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in PyObject_CallFunctionObjArgs
File "", line 0, in pybind11::cpp_function::dispatcher(_object*, _object*, _object*)
File "init.cpp", line 0, in pybind11::cpp_function::initialize<torch::jit::initJITBindings(_object*)::{lambda(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&)#2}::operator()(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) const::{lambda(pybind11::args const&, pybind11::kwargs const&)#1}, pybind11::object, pybind11::args const&, pybind11::kwargs const&>(torch::jit::initJITBindings(_object*)::{lambda(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&)#2}::operator()(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) const::{lambda(pybind11::args const&, pybind11::kwargs const&)#1}&&, pybind11::object (*)(pybind11::args const&, pybind11::kwargs const&))::{lambda(pybind11::detail::function_call&)#1}::_FUN(pybind11::detail::function_call&)
File "init.cpp", line 0, in torch::jit::initJITBindings(_object*)::{lambda(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&)#2}::operator()(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) const::{lambda(pybind11::args const&, pybind11::kwargs const&)#1}::operator()(pybind11::args const&, pybind11::kwargs const&) const
File "??", line 0, in torch::jit::_get_operation_for_overload_or_packet(std::vector<std::shared_ptr<torch::jit::Operator>, std::allocator<std::shared_ptr<torch::jit::Operator> > > const&, c10::Symbol, pybind11::args const&, pybind11::kwargs const&, bool, std::optional<c10::DispatchKey>)
File "??", line 0, in torch::jit::invokeOperatorFromPython(std::vector<std::shared_ptr<torch::jit::Operator>, std::allocator<std::shared_ptr<torch::jit::Operator> > > const&, pybind11::args const&, pybind11::kwargs const&, std::optional<c10::DispatchKey>)
File "register_c10_ops.cpp", line 0, in c10::Dispatcher::callBoxed(c10::OperatorHandle const&, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const [clone .isra.0]
File "PyInterpreter.cpp", line 0, in torch::detail::(anonymous namespace)::ConcretePyInterpreterVTable::python_dispatcher(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_prims_common/wrappers.py", line 309, in _fn
result = fn(*args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_meta_registrations.py", line 2417, in meta_mm
torch._check(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/__init__.py", line 1684, in _check
_check_with(RuntimeError, cond, message)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/__init__.py", line 1647, in _check_with
if expect_true(cond):
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 1702, in expect_true
return a.node.expect_true(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/sym_node.py", line 559, in expect_true
return self.shape_env.guard_or_defer_runtime_assert(
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyObject_MakeTpCall
File "??", line 0, in _PyCodec_EncodeText
File "??", line 0, in PyObject_Call
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/recording.py", line 272, in wrapper
return retlog(fn(*args, **kwargs))
File "??", line 0, in PyObject_Call
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 7730, in guard_or_defer_runtime_assert
self._maybe_guard_rel(expr)
File "??", line 0, in _PyObject_MakeTpCall
File "??", line 0, in _PyCodec_EncodeText
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 6868, in _maybe_guard_rel
self._refine_ranges(expr)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 7819, in _refine_ranges
self._set_replacement(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 6768, in _set_replacement
CapturedTraceback.extract(cpp=True)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/utils/_traceback.py", line 212, in extract
torch._C._profiler.gather_traceback(python=True, script=script, cpp=cpp),
File "??", line 0, in _PyObject_MakeTpCall
File "??", line 0, in PyObject_CallFunctionObjArgs
File "", line 0, in pybind11::cpp_function::dispatcher(_object*, _object*, _object*)
File "", line 0, in pybind11::cpp_function::initialize<std::shared_ptr<torch::CapturedTraceback> (*&)(bool, bool, bool), std::shared_ptr<torch::CapturedTraceback>, bool, bool, bool, pybind11::name, pybind11::scope, pybind11::sibling, pybind11::arg_v, pybind11::arg_v, pybind11::arg_v>(std::shared_ptr<torch::CapturedTraceback> (*&)(bool, bool, bool), std::shared_ptr<torch::CapturedTraceback> (*)(bool, bool, bool), pybind11::name const&, pybind11::scope const&, pybind11::sibling const&, pybind11::arg_v const&, pybind11::arg_v const&, pybind11::arg_v const&)::{lambda(pybind11::detail::function_call&)#3}::operator()(pybind11::detail::function_call&) const
File "??", line 0, in torch::CapturedTraceback::gather(bool, bool, bool)
File "??", line 0, in torch::unwind::unwind()
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/var/lib/workspace/intermediate_source/torch_export_tutorial.py", line 418, in <module>
export(model, (w, x, y, z), dynamic_shapes=dynamic_shapes)
File "/usr/local/lib/python3.10/dist-packages/torch/export/__init__.py", line 319, in export
raise e
File "/usr/local/lib/python3.10/dist-packages/torch/export/__init__.py", line 286, in export
return _export(
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1164, in wrapper
raise e
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1130, in wrapper
ep = fn(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/export/exported_program.py", line 123, in wrapper
return fn(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 2176, in _export
ep = _export_for_training(
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1164, in wrapper
raise e
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1130, in wrapper
ep = fn(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/export/exported_program.py", line 123, in wrapper
return fn(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 2037, in _export_for_training
export_artifact = export_func(
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1979, in _non_strict_export
aten_export_artifact = _to_aten_func( # type: ignore[operator]
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1800, in _export_to_aten_ir_make_fx
raise UserError(UserErrorType.CONSTRAINT_VIOLATION, str(e)) # noqa: B904
torch._dynamo.exc.UserError: Constraints violated (L['w'].size()[1])! For more information, run with TORCH_LOGS="+dynamic".
- You marked L['w'].size()[1] as dynamic but your code specialized it to be a constant (5). If you're using mark_dynamic, either remove it or use maybe_mark_dynamic. If you're using Dim.DYNAMIC, replace it with either Dim.STATIC or Dim.AUTO.
Framework stack:
File "??", line 0, in _start
File "??", line 0, in __libc_start_main
File "??", line 0, in __libc_init_first
File "??", line 0, in Py_BytesMain
File "??", line 0, in Py_RunMain
File "??", line 0, in _PyRun_AnyFileObject
File "??", line 0, in _PyRun_SimpleFileObject
File "??", line 0, in PyUnicode_Tailmatch
File "??", line 0, in PyInit__collections
File "??", line 0, in PyUnicode_Tailmatch
File "??", line 0, in PyEval_EvalCode
File "??", line 0, in PyEval_EvalCode
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/bin/sphinx-build", line 7, in <module>
sys.exit(main())
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx/cmd/build.py", line 339, in main
return make_main(argv)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx/cmd/build.py", line 213, in make_main
return make_mode.run_make_mode(argv[1:])
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx/cmd/make_mode.py", line 181, in run_make_mode
return make.run_generic_build(args[0])
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx/cmd/make_mode.py", line 169, in run_generic_build
return build_main(args + opts)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx/cmd/build.py", line 293, in build_main
app = Sphinx(args.sourcedir, args.confdir, args.outputdir,
File "??", line 0, in _PyObject_MakeTpCall
File "??", line 0, in _PyStack_AsDict
File "??", line 0, in _PyObject_FastCallDictTstate
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx/application.py", line 272, in __init__
self._init_builder()
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx/application.py", line 343, in _init_builder
self.events.emit('builder-inited')
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx/events.py", line 97, in emit
results.append(listener.handler(self.app, *args))
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_gallery.py", line 757, in generate_gallery_rst
) = generate_dir_rst(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 606, in generate_dir_rst
results = parallel(
File "??", line 0, in PyUnicode_Decode
File "??", line 0, in _PyLong_FromByteArray
File "??", line 0, in PyObject_SelfIter
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 607, in <genexpr>
p_fun(fname, target_dir, src_dir, gallery_conf) for fname in iterator
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/var/lib/workspace/conf.py", line 85, in wrapper
p.start()
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/lib/python3.10/multiprocessing/process.py", line 121, in start
self._popen = self._Popen(self)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/lib/python3.10/multiprocessing/context.py", line 224, in _Popen
return _default_context.get_context().Process._Popen(process_obj)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/lib/python3.10/multiprocessing/context.py", line 281, in _Popen
return Popen(process_obj)
File "??", line 0, in _PyObject_MakeTpCall
File "??", line 0, in _PyStack_AsDict
File "??", line 0, in _PyObject_FastCallDictTstate
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/lib/python3.10/multiprocessing/popen_fork.py", line 19, in __init__
self._launch(process_obj)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/lib/python3.10/multiprocessing/popen_fork.py", line 71, in _launch
code = process_obj._bootstrap(parent_sentinel=child_r)
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/lib/python3.10/multiprocessing/process.py", line 314, in _bootstrap
self.run()
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/lib/python3.10/multiprocessing/process.py", line 108, in run
self._target(*self._args, **self._kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/var/lib/workspace/conf.py", line 73, in call_fn
result = func(*args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 1374, in generate_file_rst
output_blocks, time_elapsed = execute_script(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 1192, in execute_script
execute_code_block(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 1048, in execute_code_block
is_last_expr, mem_max = _exec_and_get_memory(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 876, in _exec_and_get_memory
mem_max, _ = call_memory(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 1725, in _sg_call_memory_noop
return 0.0, func()
File "??", line 0, in _PyObject_MakeTpCall
File "??", line 0, in PyInit__datetime
File "??", line 0, in _PyObject_Call_Prepend
File "??", line 0, in _PyObject_FastCallDictTstate
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 794, in __call__
exec(self.code, self.fake_main.__dict__)
File "??", line 0, in PyCell_New
File "??", line 0, in PyFrozenSet_New
File "??", line 0, in PyEval_EvalCode
File "??", line 0, in PyEval_EvalCode
File "??", line 0, in _PyEval_EvalFrameDefault
File "/var/lib/workspace/intermediate_source/torch_export_tutorial.py", line 418, in <module>
export(model, (w, x, y, z), dynamic_shapes=dynamic_shapes)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/__init__.py", line 286, in export
return _export(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1130, in wrapper
ep = fn(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/exported_program.py", line 123, in wrapper
return fn(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 2176, in _export
ep = _export_for_training(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1130, in wrapper
ep = fn(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/exported_program.py", line 123, in wrapper
return fn(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 2037, in _export_for_training
export_artifact = export_func(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1979, in _non_strict_export
aten_export_artifact = _to_aten_func( # type: ignore[operator]
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1770, in _export_to_aten_ir_make_fx
gm, graph_signature = transform(_make_fx_helper)(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1900, in _aot_export_non_strict
gm, sig = aot_export(wrapped_mod, args, kwargs=kwargs, **flags)
File "??", line 0, in PyObject_Call
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1685, in _make_fx_helper
gm = make_fx(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 2318, in wrapped
return make_fx_tracer.trace(f, *args)
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 2250, in trace
return self._trace_inner(f, *args)
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 2221, in _trace_inner
t = dispatch_trace(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_compile.py", line 53, in inner
return disable_fn(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/eval_frame.py", line 929, in _fn
return fn(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1254, in dispatch_trace
graph = tracer.trace(root, concrete_args) # type: ignore[arg-type]
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1835, in trace
res = super().trace(root, concrete_args)
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/eval_frame.py", line 929, in _fn
return fn(*args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 850, in trace
(self.create_arg(fn(*args)),),
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1312, in wrapped
out = f(*tensors) # type:ignore[call-arg]
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "<string>", line 1, in <lambda>
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1589, in wrapped_fn
return tuple(flat_fn(*args))
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_functorch/_aot_autograd/utils.py", line 184, in flat_fn
tree_out = fn(*args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_functorch/_aot_autograd/traced_function_transforms.py", line 906, in functional_call
out = mod(*args[params_len:], **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in PyInit__datetime
File "??", line 0, in _PyObject_Call_Prepend
File "??", line 0, in _PyObject_FastCallDictTstate
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 825, in module_call_wrapper
return self.call_module(mod, forward, args, kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1905, in call_module
return Tracer.call_module(self, m, forward, args, kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 542, in call_module
ret_val = forward(*args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 818, in forward
return _orig_module_call(mod, *args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1773, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1784, in _call_impl
return forward_call(*args, **kwargs)
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1884, in forward
tree_out = mod(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in PyInit__datetime
File "??", line 0, in _PyObject_Call_Prepend
File "??", line 0, in _PyObject_FastCallDictTstate
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 825, in module_call_wrapper
return self.call_module(mod, forward, args, kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1905, in call_module
return Tracer.call_module(self, m, forward, args, kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 542, in call_module
ret_val = forward(*args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 818, in forward
return _orig_module_call(mod, *args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1773, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1784, in _call_impl
return forward_call(*args, **kwargs)
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/var/lib/workspace/intermediate_source/torch_export_tutorial.py", line 269, in forward
x1 = self.l(w) # [6, 3]
File "??", line 0, in _PyObject_MakeTpCall
File "??", line 0, in PyInit__datetime
File "??", line 0, in _PyObject_Call_Prepend
File "??", line 0, in _PyObject_FastCallDictTstate
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 825, in module_call_wrapper
return self.call_module(mod, forward, args, kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1905, in call_module
return Tracer.call_module(self, m, forward, args, kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 542, in call_module
ret_val = forward(*args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 818, in forward
return _orig_module_call(mod, *args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1773, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1784, in _call_impl
return forward_call(*args, **kwargs)
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py", line 125, in forward
return F.linear(input, self.weight, self.bias)
File "??", line 0, in _PyObject_MakeTpCall
File "??", line 0, in PyObject_CallFunctionObjArgs
File "python_nn_functions.cpp", line 0, in torch::autograd::THPVariable_linear(_object*, _object*, _object*)
File "", line 0, in torch::handle_torch_function(torch::PythonArgs&, _object*, _object*, _object*, _object*, char const*, char const*)
File "??", line 0, in torch::handle_torch_function_no_python_arg_parser(c10::ArrayRef<_object*>, _object*, _object*, char const*, _object*, char const*, torch::TorchFunctionName)
File "??", line 0, in PyObject_CallMethod
File "??", line 0, in PyModule_AddObjectRef
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1360, in __torch_function__
return func(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in PyObject_CallFunctionObjArgs
File "python_nn_functions.cpp", line 0, in torch::autograd::THPVariable_linear(_object*, _object*, _object*)
File "", line 0, in torch::handle_torch_function(torch::PythonArgs&, _object*, _object*, _object*, _object*, char const*, char const*)
File "??", line 0, in torch::handle_torch_function_no_python_arg_parser(c10::ArrayRef<_object*>, _object*, _object*, char const*, _object*, char const*, torch::TorchFunctionName)
File "??", line 0, in PyObject_CallMethod
File "??", line 0, in PyModule_AddObjectRef
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1407, in __torch_function__
return func(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in PyObject_CallFunctionObjArgs
File "python_nn_functions.cpp", line 0, in torch::autograd::THPVariable_linear(_object*, _object*, _object*)
File "", line 0, in torch::handle_torch_function(torch::PythonArgs&, _object*, _object*, _object*, _object*, char const*, char const*)
File "??", line 0, in torch::handle_torch_function_no_python_arg_parser(c10::ArrayRef<_object*>, _object*, _object*, char const*, _object*, char const*, torch::TorchFunctionName)
File "??", line 0, in PyObject_CallMethod
File "??", line 0, in PyModule_AddObjectRef
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_export/non_strict_utils.py", line 1051, in __torch_function__
return func(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in PyObject_CallFunctionObjArgs
File "python_nn_functions.cpp", line 0, in torch::autograd::THPVariable_linear(_object*, _object*, _object*)
File "??", line 0, in at::_ops::linear::call(at::Tensor const&, at::Tensor const&, std::optional<at::Tensor> const&)
File "PyInterpreter.cpp", line 0, in torch::detail::(anonymous namespace)::ConcretePyInterpreterVTable::python_dispatcher(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_ops.py", line 950, in handler
return torch._library.utils.handle_dispatch_mode(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_library/utils.py", line 296, in handle_dispatch_mode
return curr_mode.__torch_dispatch__(op_overload, overload_types, args, kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/utils/_stats.py", line 28, in wrapper
return fn(*args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1462, in __torch_dispatch__
return proxy_call(self, func, self.pre_dispatch, args, kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 914, in proxy_call
out = func(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in PyInit__datetime
File "??", line 0, in _PyObject_Call_Prepend
File "??", line 0, in _PyObject_FastCallDictTstate
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_ops.py", line 829, in __call__
return self._op(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in PyObject_CallFunctionObjArgs
File "", line 0, in pybind11::cpp_function::dispatcher(_object*, _object*, _object*)
File "init.cpp", line 0, in pybind11::cpp_function::initialize<torch::jit::initJITBindings(_object*)::{lambda(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&)#2}::operator()(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) const::{lambda(pybind11::args const&, pybind11::kwargs const&)#1}, pybind11::object, pybind11::args const&, pybind11::kwargs const&>(torch::jit::initJITBindings(_object*)::{lambda(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&)#2}::operator()(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) const::{lambda(pybind11::args const&, pybind11::kwargs const&)#1}&&, pybind11::object (*)(pybind11::args const&, pybind11::kwargs const&))::{lambda(pybind11::detail::function_call&)#1}::_FUN(pybind11::detail::function_call&)
File "init.cpp", line 0, in torch::jit::initJITBindings(_object*)::{lambda(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&)#2}::operator()(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) const::{lambda(pybind11::args const&, pybind11::kwargs const&)#1}::operator()(pybind11::args const&, pybind11::kwargs const&) const
File "??", line 0, in torch::jit::_get_operation_for_overload_or_packet(std::vector<std::shared_ptr<torch::jit::Operator>, std::allocator<std::shared_ptr<torch::jit::Operator> > > const&, c10::Symbol, pybind11::args const&, pybind11::kwargs const&, bool, std::optional<c10::DispatchKey>)
File "??", line 0, in torch::jit::invokeOperatorFromPython(std::vector<std::shared_ptr<torch::jit::Operator>, std::allocator<std::shared_ptr<torch::jit::Operator> > > const&, pybind11::args const&, pybind11::kwargs const&, std::optional<c10::DispatchKey>)
File "register_c10_ops.cpp", line 0, in c10::Dispatcher::callBoxed(c10::OperatorHandle const&, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const [clone .isra.0]
File "PyInterpreter.cpp", line 0, in torch::detail::(anonymous namespace)::ConcretePyInterpreterVTable::python_dispatcher(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const
File "", line 0, in c10::OperatorHandle::callBoxedForDispatchKey(c10::DispatchKey, std::vector<c10::IValue, std::allocator<c10::IValue> >&) const
File "PythonFallbackKernel.cpp", line 0, in void c10::BoxedKernel::make_boxed_function<&(anonymous namespace)::pythonTLSSnapshotFallback>(c10::OperatorKernel*, c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*)
File "PyInterpreter.cpp", line 0, in torch::detail::(anonymous namespace)::ConcretePyInterpreterVTable::python_dispatcher(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const
File "", line 0, in c10::OperatorHandle::callBoxedForDispatchKey(c10::DispatchKey, std::vector<c10::IValue, std::allocator<c10::IValue> >&) const
File "RegisterCompositeImplicitAutograd_0.cpp", line 0, in c10::impl::make_boxed_from_unboxed_functor<c10::impl::detail::WrapFunctionIntoFunctor_<c10::CompileTimeFunctionPointer<at::Tensor (at::Tensor const&, at::Tensor const&, std::optional<at::Tensor> const&), &at::(anonymous namespace)::(anonymous namespace)::wrapper_CompositeImplicitAutograd__linear>, at::Tensor, c10::guts::typelist::typelist<at::Tensor const&, at::Tensor const&, std::optional<at::Tensor> const&> >, false>::call(c10::OperatorKernel*, c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*)
File "??", line 0, in at::native::linear(at::Tensor const&, at::Tensor const&, std::optional<at::Tensor> const&)
File "??", line 0, in at::_ops::addmm::call(at::Tensor const&, at::Tensor const&, at::Tensor const&, c10::Scalar const&, c10::Scalar const&)
File "", line 0, in c10::impl::BoxedKernelWrapper<at::Tensor (at::Tensor const&, at::Tensor const&, at::Tensor const&, c10::Scalar const&, c10::Scalar const&), void>::call(c10::BoxedKernel const&, c10::OperatorHandle const&, c10::DispatchKeySet, at::Tensor const&, at::Tensor const&, at::Tensor const&, c10::Scalar const&, c10::Scalar const&)
File "PyInterpreter.cpp", line 0, in torch::detail::(anonymous namespace)::ConcretePyInterpreterVTable::python_dispatcher(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const
File "", line 0, in c10::OperatorHandle::callBoxedForDispatchKey(c10::DispatchKey, std::vector<c10::IValue, std::allocator<c10::IValue> >&) const
File "PythonFallbackKernel.cpp", line 0, in void c10::BoxedKernel::make_boxed_function<&(anonymous namespace)::pythonTLSSnapshotFallback>(c10::OperatorKernel*, c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*)
File "PyInterpreter.cpp", line 0, in torch::detail::(anonymous namespace)::ConcretePyInterpreterVTable::python_dispatcher(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const
File "", line 0, in c10::OperatorHandle::callBoxedForDispatchKey(c10::DispatchKey, std::vector<c10::IValue, std::allocator<c10::IValue> >&) const
File "VariableType_0.cpp", line 0, in c10::impl::make_boxed_from_unboxed_functor<c10::impl::detail::WrapFunctionIntoFunctor_<c10::CompileTimeFunctionPointer<at::Tensor (c10::DispatchKeySet, at::Tensor const&, at::Tensor const&, at::Tensor const&, c10::Scalar const&, c10::Scalar const&), &torch::autograd::VariableType::(anonymous namespace)::addmm>, at::Tensor, c10::guts::typelist::typelist<c10::DispatchKeySet, at::Tensor const&, at::Tensor const&, at::Tensor const&, c10::Scalar const&, c10::Scalar const&> >, false>::call(c10::OperatorKernel*, c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*)
File "VariableType_0.cpp", line 0, in torch::autograd::VariableType::(anonymous namespace)::addmm(c10::DispatchKeySet, at::Tensor const&, at::Tensor const&, at::Tensor const&, c10::Scalar const&, c10::Scalar const&)
File "??", line 0, in at::_ops::addmm::redispatch(c10::DispatchKeySet, at::Tensor const&, at::Tensor const&, at::Tensor const&, c10::Scalar const&, c10::Scalar const&)
File "PyInterpreter.cpp", line 0, in torch::detail::(anonymous namespace)::ConcretePyInterpreterVTable::python_dispatcher(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const
File "", line 0, in c10::OperatorHandle::callBoxedForDispatchKey(c10::DispatchKey, std::vector<c10::IValue, std::allocator<c10::IValue> >&) const
File "PythonFallbackKernel.cpp", line 0, in (anonymous namespace)::pythonFallback(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*)
File "PyInterpreter.cpp", line 0, in torch::detail::(anonymous namespace)::ConcretePyInterpreterVTable::dispatch(c10::OperatorHandle const&, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const
File "??", line 0, in torch::handle_torch_function_no_python_arg_parser(c10::ArrayRef<_object*>, _object*, _object*, char const*, _object*, char const*, torch::TorchFunctionName)
File "??", line 0, in PyObject_CallMethod
File "??", line 0, in PyModule_AddObjectRef
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/utils/_stats.py", line 28, in wrapper
return fn(*args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_subclasses/fake_tensor.py", line 1352, in __torch_dispatch__
return self.dispatch(func, types, args, kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_subclasses/fake_tensor.py", line 2058, in dispatch
return self._cached_dispatch_impl(func, types, args, kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_subclasses/fake_tensor.py", line 1487, in _cached_dispatch_impl
output = self._dispatch_impl(func, types, args, kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_subclasses/fake_tensor.py", line 2601, in _dispatch_impl
decomposition_table[func](*args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_prims_common/wrappers.py", line 309, in _fn
result = fn(*args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_decomp/decompositions.py", line 90, in inner
r = f(*tree_map(increase_prec, args), **tree_map(increase_prec, kwargs))
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_decomp/decompositions.py", line 1462, in addmm
out = alpha * torch.mm(mat1, mat2)
File "??", line 0, in _PyObject_MakeTpCall
File "??", line 0, in PyObject_CallFunctionObjArgs
File "python_torch_functions_1.cpp", line 0, in torch::autograd::THPVariable_mm(_object*, _object*, _object*)
File "??", line 0, in at::_ops::mm::call(at::Tensor const&, at::Tensor const&)
File "", line 0, in c10::impl::BoxedKernelWrapper<at::Tensor (at::Tensor const&, at::Tensor const&), void>::call(c10::BoxedKernel const&, c10::OperatorHandle const&, c10::DispatchKeySet, at::Tensor const&, at::Tensor const&)
File "PyInterpreter.cpp", line 0, in torch::detail::(anonymous namespace)::ConcretePyInterpreterVTable::python_dispatcher(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const
File "", line 0, in c10::OperatorHandle::callBoxedForDispatchKey(c10::DispatchKey, std::vector<c10::IValue, std::allocator<c10::IValue> >&) const
File "PythonFallbackKernel.cpp", line 0, in (anonymous namespace)::pythonFallback(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*)
File "PyInterpreter.cpp", line 0, in torch::detail::(anonymous namespace)::ConcretePyInterpreterVTable::dispatch(c10::OperatorHandle const&, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const
File "??", line 0, in torch::handle_torch_function_no_python_arg_parser(c10::ArrayRef<_object*>, _object*, _object*, char const*, _object*, char const*, torch::TorchFunctionName)
File "??", line 0, in PyObject_CallMethod
File "??", line 0, in PyModule_AddObjectRef
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/utils/_stats.py", line 28, in wrapper
return fn(*args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_subclasses/fake_tensor.py", line 1352, in __torch_dispatch__
return self.dispatch(func, types, args, kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_subclasses/fake_tensor.py", line 2058, in dispatch
return self._cached_dispatch_impl(func, types, args, kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_subclasses/fake_tensor.py", line 1487, in _cached_dispatch_impl
output = self._dispatch_impl(func, types, args, kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_subclasses/fake_tensor.py", line 2717, in _dispatch_impl
r = func(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in PyInit__datetime
File "??", line 0, in _PyObject_Call_Prepend
File "??", line 0, in _PyObject_FastCallDictTstate
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_ops.py", line 829, in __call__
return self._op(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in PyObject_CallFunctionObjArgs
File "", line 0, in pybind11::cpp_function::dispatcher(_object*, _object*, _object*)
File "init.cpp", line 0, in pybind11::cpp_function::initialize<torch::jit::initJITBindings(_object*)::{lambda(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&)#2}::operator()(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) const::{lambda(pybind11::args const&, pybind11::kwargs const&)#1}, pybind11::object, pybind11::args const&, pybind11::kwargs const&>(torch::jit::initJITBindings(_object*)::{lambda(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&)#2}::operator()(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) const::{lambda(pybind11::args const&, pybind11::kwargs const&)#1}&&, pybind11::object (*)(pybind11::args const&, pybind11::kwargs const&))::{lambda(pybind11::detail::function_call&)#1}::_FUN(pybind11::detail::function_call&)
File "init.cpp", line 0, in torch::jit::initJITBindings(_object*)::{lambda(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&)#2}::operator()(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) const::{lambda(pybind11::args const&, pybind11::kwargs const&)#1}::operator()(pybind11::args const&, pybind11::kwargs const&) const
File "??", line 0, in torch::jit::_get_operation_for_overload_or_packet(std::vector<std::shared_ptr<torch::jit::Operator>, std::allocator<std::shared_ptr<torch::jit::Operator> > > const&, c10::Symbol, pybind11::args const&, pybind11::kwargs const&, bool, std::optional<c10::DispatchKey>)
File "??", line 0, in torch::jit::invokeOperatorFromPython(std::vector<std::shared_ptr<torch::jit::Operator>, std::allocator<std::shared_ptr<torch::jit::Operator> > > const&, pybind11::args const&, pybind11::kwargs const&, std::optional<c10::DispatchKey>)
File "register_c10_ops.cpp", line 0, in c10::Dispatcher::callBoxed(c10::OperatorHandle const&, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const [clone .isra.0]
File "PyInterpreter.cpp", line 0, in torch::detail::(anonymous namespace)::ConcretePyInterpreterVTable::python_dispatcher(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_prims_common/wrappers.py", line 309, in _fn
result = fn(*args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_meta_registrations.py", line 2417, in meta_mm
torch._check(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/__init__.py", line 1684, in _check
_check_with(RuntimeError, cond, message)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/__init__.py", line 1647, in _check_with
if expect_true(cond):
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 1702, in expect_true
return a.node.expect_true(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/sym_node.py", line 559, in expect_true
return self.shape_env.guard_or_defer_runtime_assert(
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyObject_MakeTpCall
File "??", line 0, in _PyCodec_EncodeText
File "??", line 0, in PyObject_Call
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/recording.py", line 272, in wrapper
return retlog(fn(*args, **kwargs))
File "??", line 0, in PyObject_Call
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 7730, in guard_or_defer_runtime_assert
self._maybe_guard_rel(expr)
File "??", line 0, in _PyObject_MakeTpCall
File "??", line 0, in _PyCodec_EncodeText
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 6868, in _maybe_guard_rel
self._refine_ranges(expr)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 7819, in _refine_ranges
self._set_replacement(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 6768, in _set_replacement
CapturedTraceback.extract(cpp=True)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/utils/_traceback.py", line 212, in extract
torch._C._profiler.gather_traceback(python=True, script=script, cpp=cpp),
File "??", line 0, in _PyObject_MakeTpCall
File "??", line 0, in PyObject_CallFunctionObjArgs
File "", line 0, in pybind11::cpp_function::dispatcher(_object*, _object*, _object*)
File "", line 0, in pybind11::cpp_function::initialize<std::shared_ptr<torch::CapturedTraceback> (*&)(bool, bool, bool), std::shared_ptr<torch::CapturedTraceback>, bool, bool, bool, pybind11::name, pybind11::scope, pybind11::sibling, pybind11::arg_v, pybind11::arg_v, pybind11::arg_v>(std::shared_ptr<torch::CapturedTraceback> (*&)(bool, bool, bool), std::shared_ptr<torch::CapturedTraceback> (*)(bool, bool, bool), pybind11::name const&, pybind11::scope const&, pybind11::sibling const&, pybind11::arg_v const&, pybind11::arg_v const&, pybind11::arg_v const&)::{lambda(pybind11::detail::function_call&)#3}::operator()(pybind11::detail::function_call&) const
File "??", line 0, in torch::CapturedTraceback::gather(bool, bool, bool)
File "??", line 0, in torch::unwind::unwind()
The error above occurred when calling torch.export.export. If you would like to view some more information about this error, and get a list of all other errors that may occur in your export call, you can replace your `export()` call with `draft_export()`.
Static guards also aren’t always inherent to the model; they can also come from user specifications. In fact, a common pitfall leading to shape
specializations is when the user specifies conflicting markers for equivalent dimensions; one dynamic and another static. The same error type is
raised when this is the case for x.shape[0]
and y.shape[1]
:
I0813 15:28:42.671000 31208 torch/fx/experimental/symbolic_shapes.py:3767] create_env
I0813 15:28:42.673000 31208 torch/fx/experimental/symbolic_shapes.py:5110] create_symbol s15 = 6 for L['w'].size()[0] [2, int_oo] (_export/non_strict_utils.py:229 in fakify), for more info run with TORCHDYNAMO_EXTENDED_DEBUG_CREATE_SYMBOL="s15" or to suppress this message run with TORCHDYNAMO_EXTENDED_ADVICE="0"
I0813 15:28:42.674000 31208 torch/fx/experimental/symbolic_shapes.py:5110] create_symbol s21 = 5 for L['w'].size()[1] [2, int_oo] (_export/non_strict_utils.py:229 in fakify), for more info run with TORCHDYNAMO_EXTENDED_DEBUG_CREATE_SYMBOL="s21" or to suppress this message run with TORCHDYNAMO_EXTENDED_ADVICE="0"
V0813 15:28:42.675000 31208 torch/fx/experimental/symbolic_shapes.py:7694] runtime_assert True == True [statically known]
I0813 15:28:42.677000 31208 torch/fx/experimental/symbolic_shapes.py:5110] create_symbol s17 = 8 for L['y'].size()[0] [2, int_oo] (_export/non_strict_utils.py:229 in fakify), for more info run with TORCHDYNAMO_EXTENDED_DEBUG_CREATE_SYMBOL="s17" or to suppress this message run with TORCHDYNAMO_EXTENDED_ADVICE="0"
I0813 15:28:42.677000 31208 torch/fx/experimental/symbolic_shapes.py:5110] create_symbol s94 = 4 for L['y'].size()[1] [2, int_oo] (_export/non_strict_utils.py:229 in fakify), for more info run with TORCHDYNAMO_EXTENDED_DEBUG_CREATE_SYMBOL="s94" or to suppress this message run with TORCHDYNAMO_EXTENDED_ADVICE="0"
I0813 15:28:42.680000 31208 torch/fx/experimental/symbolic_shapes.py:5110] create_symbol s68 = 32 for L['z'].size()[0] [2, int_oo] (_export/non_strict_utils.py:229 in fakify), for more info run with TORCHDYNAMO_EXTENDED_DEBUG_CREATE_SYMBOL="s68" or to suppress this message run with TORCHDYNAMO_EXTENDED_ADVICE="0"
V0813 15:28:42.686000 31208 torch/fx/experimental/symbolic_shapes.py:7475] eval False == False [statically known]
V0813 15:28:42.687000 31208 torch/fx/experimental/symbolic_shapes.py:7475] eval False == False [statically known]
V0813 15:28:42.687000 31208 torch/fx/experimental/symbolic_shapes.py:7475] eval False == False [statically known]
V0813 15:28:42.689000 31208 torch/fx/experimental/symbolic_shapes.py:7475] eval False == False [statically known]
V0813 15:28:42.689000 31208 torch/fx/experimental/symbolic_shapes.py:7475] eval False == False [statically known]
V0813 15:28:42.690000 31208 torch/fx/experimental/symbolic_shapes.py:7475] eval False == False [statically known]
V0813 15:28:42.691000 31208 torch/fx/experimental/symbolic_shapes.py:7475] eval False == False [statically known]
V0813 15:28:42.692000 31208 torch/fx/experimental/symbolic_shapes.py:7475] eval False == False [statically known]
I0813 15:28:42.697000 31208 torch/fx/experimental/symbolic_shapes.py:7197] runtime_assert Eq(s94, 4) [guard added] (_subclasses/fake_impls.py:922 in infer_size), for more info run with TORCHDYNAMO_EXTENDED_DEBUG_GUARD_ADDED="Eq(s94, 4)"
V0813 15:28:42.698000 31208 torch/fx/experimental/symbolic_shapes.py:6606] _update_var_to_range s94 = VR[4, 4] (update)
I0813 15:28:42.699000 31208 torch/fx/experimental/symbolic_shapes.py:6776] set_replacement s94 = 4 (range_refined_to_singleton) VR[4, 4]
I0813 15:28:42.707000 31208 torch/fx/experimental/symbolic_shapes.py:7197] runtime_assert Eq(s21, 5) [guard added] (_meta_registrations.py:2417 in meta_mm), for more info run with TORCHDYNAMO_EXTENDED_DEBUG_GUARD_ADDED="Eq(s21, 5)"
V0813 15:28:42.708000 31208 torch/fx/experimental/symbolic_shapes.py:6606] _update_var_to_range s21 = VR[5, 5] (update)
I0813 15:28:42.709000 31208 torch/fx/experimental/symbolic_shapes.py:6776] set_replacement s21 = 5 (range_refined_to_singleton) VR[5, 5]
V0813 15:28:42.711000 31208 torch/fx/experimental/symbolic_shapes.py:7694] runtime_assert True == True [statically known]
I0813 15:28:42.727000 31208 torch/fx/experimental/symbolic_shapes.py:7197] runtime_assert Eq(4*s17, s68) [guard added] (_subclasses/fake_impls.py:922 in infer_size), for more info run with TORCHDYNAMO_EXTENDED_DEBUG_GUARD_ADDED="Eq(4*s17, s68)"
V0813 15:28:42.730000 31208 torch/fx/experimental/symbolic_shapes.py:6606] _update_var_to_range s68 = VR[8, int_oo] (update)
I0813 15:28:42.730000 31208 torch/fx/experimental/symbolic_shapes.py:6776] set_replacement s68 = 4*s17 (solve) VR[8, int_oo]
I0813 15:28:42.735000 31208 torch/fx/experimental/symbolic_shapes.py:5238] produce_guards
V0813 15:28:42.736000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['w'].size()[0] s15 None
V0813 15:28:42.736000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['w'].size()[1] 5 None
V0813 15:28:42.736000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['w'].stride()[0] 5 None
V0813 15:28:42.736000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['w'].stride()[1] 1 None
V0813 15:28:42.737000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['w'].storage_offset() 0 None
V0813 15:28:42.737000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['x'].size()[0] 4 None
V0813 15:28:42.737000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['x'].stride()[0] 1 None
V0813 15:28:42.737000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['x'].storage_offset() 0 None
V0813 15:28:42.738000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['y'].size()[0] s17 None
V0813 15:28:42.738000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['y'].size()[1] 4 RelaxedUnspecConstraint(warn_only=False)
V0813 15:28:42.772000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['y'].stride()[0] 4 None
V0813 15:28:42.773000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['y'].stride()[1] 1 None
V0813 15:28:42.773000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['y'].storage_offset() 0 None
V0813 15:28:42.773000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['z'].size()[0] 4*s17 None
V0813 15:28:42.774000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['z'].stride()[0] 1 None
V0813 15:28:42.774000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['z'].storage_offset() 0 None
Traceback (most recent call last):
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1798, in _export_to_aten_ir_make_fx
produce_guards_callback(gm)
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1944, in _produce_guards_callback
return produce_guards_and_solve_constraints(
File "/usr/local/lib/python3.10/dist-packages/torch/_export/non_strict_utils.py", line 549, in produce_guards_and_solve_constraints
raise constraint_violation_error
File "/usr/local/lib/python3.10/dist-packages/torch/_export/non_strict_utils.py", line 514, in produce_guards_and_solve_constraints
shape_env.produce_guards(
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 5200, in produce_guards
return self.produce_guards_verbose(*args, **kwargs, langs=("python",))[0].exprs
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 5932, in produce_guards_verbose
raise ConstraintViolationError(
torch.fx.experimental.symbolic_shapes.ConstraintViolationError: Constraints violated (L['y'].size()[1])! For more information, run with TORCH_LOGS="+dynamic".
- You marked L['y'].size()[1] as dynamic but your code specialized it to be a constant (4). If you're using mark_dynamic, either remove it or use maybe_mark_dynamic. If you're using Dim.DYNAMIC, replace it with either Dim.STATIC or Dim.AUTO.
Framework stack:
File "??", line 0, in _start
File "??", line 0, in __libc_start_main
File "??", line 0, in __libc_init_first
File "??", line 0, in Py_BytesMain
File "??", line 0, in Py_RunMain
File "??", line 0, in _PyRun_AnyFileObject
File "??", line 0, in _PyRun_SimpleFileObject
File "??", line 0, in PyUnicode_Tailmatch
File "??", line 0, in PyInit__collections
File "??", line 0, in PyUnicode_Tailmatch
File "??", line 0, in PyEval_EvalCode
File "??", line 0, in PyEval_EvalCode
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/bin/sphinx-build", line 7, in <module>
sys.exit(main())
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx/cmd/build.py", line 339, in main
return make_main(argv)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx/cmd/build.py", line 213, in make_main
return make_mode.run_make_mode(argv[1:])
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx/cmd/make_mode.py", line 181, in run_make_mode
return make.run_generic_build(args[0])
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx/cmd/make_mode.py", line 169, in run_generic_build
return build_main(args + opts)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx/cmd/build.py", line 293, in build_main
app = Sphinx(args.sourcedir, args.confdir, args.outputdir,
File "??", line 0, in _PyObject_MakeTpCall
File "??", line 0, in _PyStack_AsDict
File "??", line 0, in _PyObject_FastCallDictTstate
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx/application.py", line 272, in __init__
self._init_builder()
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx/application.py", line 343, in _init_builder
self.events.emit('builder-inited')
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx/events.py", line 97, in emit
results.append(listener.handler(self.app, *args))
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_gallery.py", line 757, in generate_gallery_rst
) = generate_dir_rst(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 606, in generate_dir_rst
results = parallel(
File "??", line 0, in PyUnicode_Decode
File "??", line 0, in _PyLong_FromByteArray
File "??", line 0, in PyObject_SelfIter
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 607, in <genexpr>
p_fun(fname, target_dir, src_dir, gallery_conf) for fname in iterator
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/var/lib/workspace/conf.py", line 85, in wrapper
p.start()
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/lib/python3.10/multiprocessing/process.py", line 121, in start
self._popen = self._Popen(self)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/lib/python3.10/multiprocessing/context.py", line 224, in _Popen
return _default_context.get_context().Process._Popen(process_obj)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/lib/python3.10/multiprocessing/context.py", line 281, in _Popen
return Popen(process_obj)
File "??", line 0, in _PyObject_MakeTpCall
File "??", line 0, in _PyStack_AsDict
File "??", line 0, in _PyObject_FastCallDictTstate
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/lib/python3.10/multiprocessing/popen_fork.py", line 19, in __init__
self._launch(process_obj)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/lib/python3.10/multiprocessing/popen_fork.py", line 71, in _launch
code = process_obj._bootstrap(parent_sentinel=child_r)
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/lib/python3.10/multiprocessing/process.py", line 314, in _bootstrap
self.run()
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/lib/python3.10/multiprocessing/process.py", line 108, in run
self._target(*self._args, **self._kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/var/lib/workspace/conf.py", line 73, in call_fn
result = func(*args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 1374, in generate_file_rst
output_blocks, time_elapsed = execute_script(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 1192, in execute_script
execute_code_block(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 1048, in execute_code_block
is_last_expr, mem_max = _exec_and_get_memory(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 876, in _exec_and_get_memory
mem_max, _ = call_memory(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 1725, in _sg_call_memory_noop
return 0.0, func()
File "??", line 0, in _PyObject_MakeTpCall
File "??", line 0, in PyInit__datetime
File "??", line 0, in _PyObject_Call_Prepend
File "??", line 0, in _PyObject_FastCallDictTstate
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 794, in __call__
exec(self.code, self.fake_main.__dict__)
File "??", line 0, in PyCell_New
File "??", line 0, in PyFrozenSet_New
File "??", line 0, in PyEval_EvalCode
File "??", line 0, in PyEval_EvalCode
File "??", line 0, in _PyEval_EvalFrameDefault
File "/var/lib/workspace/intermediate_source/torch_export_tutorial.py", line 431, in <module>
export(model, (w, x, y, z), dynamic_shapes=dynamic_shapes)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/__init__.py", line 286, in export
return _export(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1130, in wrapper
ep = fn(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/exported_program.py", line 123, in wrapper
return fn(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 2176, in _export
ep = _export_for_training(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1130, in wrapper
ep = fn(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/exported_program.py", line 123, in wrapper
return fn(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 2037, in _export_for_training
export_artifact = export_func(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1979, in _non_strict_export
aten_export_artifact = _to_aten_func( # type: ignore[operator]
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1770, in _export_to_aten_ir_make_fx
gm, graph_signature = transform(_make_fx_helper)(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1900, in _aot_export_non_strict
gm, sig = aot_export(wrapped_mod, args, kwargs=kwargs, **flags)
File "??", line 0, in PyObject_Call
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1685, in _make_fx_helper
gm = make_fx(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 2318, in wrapped
return make_fx_tracer.trace(f, *args)
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 2250, in trace
return self._trace_inner(f, *args)
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 2221, in _trace_inner
t = dispatch_trace(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_compile.py", line 53, in inner
return disable_fn(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/eval_frame.py", line 929, in _fn
return fn(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1254, in dispatch_trace
graph = tracer.trace(root, concrete_args) # type: ignore[arg-type]
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1835, in trace
res = super().trace(root, concrete_args)
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/eval_frame.py", line 929, in _fn
return fn(*args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 850, in trace
(self.create_arg(fn(*args)),),
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1312, in wrapped
out = f(*tensors) # type:ignore[call-arg]
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "<string>", line 1, in <lambda>
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1589, in wrapped_fn
return tuple(flat_fn(*args))
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_functorch/_aot_autograd/utils.py", line 184, in flat_fn
tree_out = fn(*args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_functorch/_aot_autograd/traced_function_transforms.py", line 906, in functional_call
out = mod(*args[params_len:], **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in PyInit__datetime
File "??", line 0, in _PyObject_Call_Prepend
File "??", line 0, in _PyObject_FastCallDictTstate
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 825, in module_call_wrapper
return self.call_module(mod, forward, args, kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1905, in call_module
return Tracer.call_module(self, m, forward, args, kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 542, in call_module
ret_val = forward(*args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 818, in forward
return _orig_module_call(mod, *args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1773, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1784, in _call_impl
return forward_call(*args, **kwargs)
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1884, in forward
tree_out = mod(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in PyInit__datetime
File "??", line 0, in _PyObject_Call_Prepend
File "??", line 0, in _PyObject_FastCallDictTstate
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 825, in module_call_wrapper
return self.call_module(mod, forward, args, kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1905, in call_module
return Tracer.call_module(self, m, forward, args, kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 542, in call_module
ret_val = forward(*args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 818, in forward
return _orig_module_call(mod, *args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1773, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1784, in _call_impl
return forward_call(*args, **kwargs)
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/var/lib/workspace/intermediate_source/torch_export_tutorial.py", line 268, in forward
x0 = x + y # [8, 4]
File "??", line 0, in PyNumber_Add
File "??", line 0, in _Py_c_pow
File "??", line 0, in PyThread_start_new_thread
File "??", line 0, in _PyType_LookupId
File "??", line 0, in _PyObject_GetDictPtr
File "python_variable_methods.cpp", line 0, in _object* torch::autograd::TypeError_to_NotImplemented_<&torch::autograd::THPVariable_add>(_object*, _object*, _object*)
File "python_variable_methods.cpp", line 0, in torch::autograd::THPVariable_add(_object*, _object*, _object*)
File "", line 0, in torch::handle_torch_function(torch::PythonArgs&, _object*, _object*, _object*, _object*, char const*, char const*)
File "??", line 0, in torch::handle_torch_function_no_python_arg_parser(c10::ArrayRef<_object*>, _object*, _object*, char const*, _object*, char const*, torch::TorchFunctionName)
File "??", line 0, in PyObject_CallMethod
File "??", line 0, in PyModule_AddObjectRef
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1360, in __torch_function__
return func(*args, **kwargs)
File "??", line 0, in _PyObject_GetDictPtr
File "python_variable_methods.cpp", line 0, in torch::autograd::THPVariable_add(_object*, _object*, _object*)
File "", line 0, in torch::handle_torch_function(torch::PythonArgs&, _object*, _object*, _object*, _object*, char const*, char const*)
File "??", line 0, in torch::handle_torch_function_no_python_arg_parser(c10::ArrayRef<_object*>, _object*, _object*, char const*, _object*, char const*, torch::TorchFunctionName)
File "??", line 0, in PyObject_CallMethod
File "??", line 0, in PyModule_AddObjectRef
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1407, in __torch_function__
return func(*args, **kwargs)
File "??", line 0, in _PyObject_GetDictPtr
File "python_variable_methods.cpp", line 0, in torch::autograd::THPVariable_add(_object*, _object*, _object*)
File "", line 0, in torch::handle_torch_function(torch::PythonArgs&, _object*, _object*, _object*, _object*, char const*, char const*)
File "??", line 0, in torch::handle_torch_function_no_python_arg_parser(c10::ArrayRef<_object*>, _object*, _object*, char const*, _object*, char const*, torch::TorchFunctionName)
File "??", line 0, in PyObject_CallMethod
File "??", line 0, in PyModule_AddObjectRef
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_export/non_strict_utils.py", line 1051, in __torch_function__
return func(*args, **kwargs)
File "??", line 0, in _PyObject_GetDictPtr
File "python_variable_methods.cpp", line 0, in torch::autograd::THPVariable_add(_object*, _object*, _object*)
File "??", line 0, in at::_ops::add_Tensor::call(at::Tensor const&, at::Tensor const&, c10::Scalar const&)
File "PyInterpreter.cpp", line 0, in torch::detail::(anonymous namespace)::ConcretePyInterpreterVTable::python_dispatcher(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_ops.py", line 950, in handler
return torch._library.utils.handle_dispatch_mode(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_library/utils.py", line 296, in handle_dispatch_mode
return curr_mode.__torch_dispatch__(op_overload, overload_types, args, kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/utils/_stats.py", line 28, in wrapper
return fn(*args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1462, in __torch_dispatch__
return proxy_call(self, func, self.pre_dispatch, args, kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 914, in proxy_call
out = func(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in PyInit__datetime
File "??", line 0, in _PyObject_Call_Prepend
File "??", line 0, in _PyObject_FastCallDictTstate
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_ops.py", line 829, in __call__
return self._op(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in PyObject_CallFunctionObjArgs
File "", line 0, in pybind11::cpp_function::dispatcher(_object*, _object*, _object*)
File "init.cpp", line 0, in pybind11::cpp_function::initialize<torch::jit::initJITBindings(_object*)::{lambda(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&)#2}::operator()(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) const::{lambda(pybind11::args const&, pybind11::kwargs const&)#1}, pybind11::object, pybind11::args const&, pybind11::kwargs const&>(torch::jit::initJITBindings(_object*)::{lambda(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&)#2}::operator()(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) const::{lambda(pybind11::args const&, pybind11::kwargs const&)#1}&&, pybind11::object (*)(pybind11::args const&, pybind11::kwargs const&))::{lambda(pybind11::detail::function_call&)#1}::_FUN(pybind11::detail::function_call&)
File "init.cpp", line 0, in torch::jit::initJITBindings(_object*)::{lambda(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&)#2}::operator()(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) const::{lambda(pybind11::args const&, pybind11::kwargs const&)#1}::operator()(pybind11::args const&, pybind11::kwargs const&) const
File "??", line 0, in torch::jit::_get_operation_for_overload_or_packet(std::vector<std::shared_ptr<torch::jit::Operator>, std::allocator<std::shared_ptr<torch::jit::Operator> > > const&, c10::Symbol, pybind11::args const&, pybind11::kwargs const&, bool, std::optional<c10::DispatchKey>)
File "??", line 0, in torch::jit::invokeOperatorFromPython(std::vector<std::shared_ptr<torch::jit::Operator>, std::allocator<std::shared_ptr<torch::jit::Operator> > > const&, pybind11::args const&, pybind11::kwargs const&, std::optional<c10::DispatchKey>)
File "register_c10_ops.cpp", line 0, in c10::Dispatcher::callBoxed(c10::OperatorHandle const&, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const [clone .isra.0]
File "PyInterpreter.cpp", line 0, in torch::detail::(anonymous namespace)::ConcretePyInterpreterVTable::python_dispatcher(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const
File "", line 0, in c10::OperatorHandle::callBoxedForDispatchKey(c10::DispatchKey, std::vector<c10::IValue, std::allocator<c10::IValue> >&) const
File "PythonFallbackKernel.cpp", line 0, in void c10::BoxedKernel::make_boxed_function<&(anonymous namespace)::pythonTLSSnapshotFallback>(c10::OperatorKernel*, c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*)
File "PyInterpreter.cpp", line 0, in torch::detail::(anonymous namespace)::ConcretePyInterpreterVTable::python_dispatcher(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const
File "", line 0, in c10::OperatorHandle::callBoxedForDispatchKey(c10::DispatchKey, std::vector<c10::IValue, std::allocator<c10::IValue> >&) const
File "VariableType_2.cpp", line 0, in c10::impl::make_boxed_from_unboxed_functor<c10::impl::detail::WrapFunctionIntoFunctor_<c10::CompileTimeFunctionPointer<at::Tensor (c10::DispatchKeySet, at::Tensor const&, at::Tensor const&, c10::Scalar const&), &torch::autograd::VariableType::(anonymous namespace)::add_Tensor>, at::Tensor, c10::guts::typelist::typelist<c10::DispatchKeySet, at::Tensor const&, at::Tensor const&, c10::Scalar const&> >, false>::call(c10::OperatorKernel*, c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*)
File "VariableType_2.cpp", line 0, in torch::autograd::VariableType::(anonymous namespace)::add_Tensor(c10::DispatchKeySet, at::Tensor const&, at::Tensor const&, c10::Scalar const&)
File "??", line 0, in at::_ops::add_Tensor::redispatch(c10::DispatchKeySet, at::Tensor const&, at::Tensor const&, c10::Scalar const&)
File "PyInterpreter.cpp", line 0, in torch::detail::(anonymous namespace)::ConcretePyInterpreterVTable::python_dispatcher(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const
File "", line 0, in c10::OperatorHandle::callBoxedForDispatchKey(c10::DispatchKey, std::vector<c10::IValue, std::allocator<c10::IValue> >&) const
File "PythonFallbackKernel.cpp", line 0, in (anonymous namespace)::pythonFallback(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*)
File "PyInterpreter.cpp", line 0, in torch::detail::(anonymous namespace)::ConcretePyInterpreterVTable::dispatch(c10::OperatorHandle const&, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const
File "??", line 0, in torch::handle_torch_function_no_python_arg_parser(c10::ArrayRef<_object*>, _object*, _object*, char const*, _object*, char const*, torch::TorchFunctionName)
File "??", line 0, in PyObject_CallMethod
File "??", line 0, in PyModule_AddObjectRef
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/utils/_stats.py", line 28, in wrapper
return fn(*args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_subclasses/fake_tensor.py", line 1352, in __torch_dispatch__
return self.dispatch(func, types, args, kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_subclasses/fake_tensor.py", line 2058, in dispatch
return self._cached_dispatch_impl(func, types, args, kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_subclasses/fake_tensor.py", line 1487, in _cached_dispatch_impl
output = self._dispatch_impl(func, types, args, kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_subclasses/fake_tensor.py", line 2581, in _dispatch_impl
return maybe_propagate_real_tensors(fast_impl(self, *args, **kwargs))
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_subclasses/fake_impls.py", line 962, in fast_binary_impl
final_shape = infer_size(final_shape, shape)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_subclasses/fake_impls.py", line 922, in infer_size
torch._check(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/__init__.py", line 1684, in _check
_check_with(RuntimeError, cond, message)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/__init__.py", line 1647, in _check_with
if expect_true(cond):
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 1702, in expect_true
return a.node.expect_true(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/sym_node.py", line 559, in expect_true
return self.shape_env.guard_or_defer_runtime_assert(
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyObject_MakeTpCall
File "??", line 0, in _PyCodec_EncodeText
File "??", line 0, in PyObject_Call
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/recording.py", line 272, in wrapper
return retlog(fn(*args, **kwargs))
File "??", line 0, in PyObject_Call
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 7730, in guard_or_defer_runtime_assert
self._maybe_guard_rel(expr)
File "??", line 0, in _PyObject_MakeTpCall
File "??", line 0, in _PyCodec_EncodeText
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 6868, in _maybe_guard_rel
self._refine_ranges(expr)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 7819, in _refine_ranges
self._set_replacement(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 6768, in _set_replacement
CapturedTraceback.extract(cpp=True)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/utils/_traceback.py", line 212, in extract
torch._C._profiler.gather_traceback(python=True, script=script, cpp=cpp),
File "??", line 0, in _PyObject_MakeTpCall
File "??", line 0, in PyObject_CallFunctionObjArgs
File "", line 0, in pybind11::cpp_function::dispatcher(_object*, _object*, _object*)
File "", line 0, in pybind11::cpp_function::initialize<std::shared_ptr<torch::CapturedTraceback> (*&)(bool, bool, bool), std::shared_ptr<torch::CapturedTraceback>, bool, bool, bool, pybind11::name, pybind11::scope, pybind11::sibling, pybind11::arg_v, pybind11::arg_v, pybind11::arg_v>(std::shared_ptr<torch::CapturedTraceback> (*&)(bool, bool, bool), std::shared_ptr<torch::CapturedTraceback> (*)(bool, bool, bool), pybind11::name const&, pybind11::scope const&, pybind11::sibling const&, pybind11::arg_v const&, pybind11::arg_v const&, pybind11::arg_v const&)::{lambda(pybind11::detail::function_call&)#3}::operator()(pybind11::detail::function_call&) const
File "??", line 0, in torch::CapturedTraceback::gather(bool, bool, bool)
File "??", line 0, in torch::unwind::unwind()
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/var/lib/workspace/intermediate_source/torch_export_tutorial.py", line 431, in <module>
export(model, (w, x, y, z), dynamic_shapes=dynamic_shapes)
File "/usr/local/lib/python3.10/dist-packages/torch/export/__init__.py", line 319, in export
raise e
File "/usr/local/lib/python3.10/dist-packages/torch/export/__init__.py", line 286, in export
return _export(
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1164, in wrapper
raise e
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1130, in wrapper
ep = fn(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/export/exported_program.py", line 123, in wrapper
return fn(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 2176, in _export
ep = _export_for_training(
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1164, in wrapper
raise e
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1130, in wrapper
ep = fn(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/export/exported_program.py", line 123, in wrapper
return fn(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 2037, in _export_for_training
export_artifact = export_func(
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1979, in _non_strict_export
aten_export_artifact = _to_aten_func( # type: ignore[operator]
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1800, in _export_to_aten_ir_make_fx
raise UserError(UserErrorType.CONSTRAINT_VIOLATION, str(e)) # noqa: B904
torch._dynamo.exc.UserError: Constraints violated (L['y'].size()[1])! For more information, run with TORCH_LOGS="+dynamic".
- You marked L['y'].size()[1] as dynamic but your code specialized it to be a constant (4). If you're using mark_dynamic, either remove it or use maybe_mark_dynamic. If you're using Dim.DYNAMIC, replace it with either Dim.STATIC or Dim.AUTO.
Framework stack:
File "??", line 0, in _start
File "??", line 0, in __libc_start_main
File "??", line 0, in __libc_init_first
File "??", line 0, in Py_BytesMain
File "??", line 0, in Py_RunMain
File "??", line 0, in _PyRun_AnyFileObject
File "??", line 0, in _PyRun_SimpleFileObject
File "??", line 0, in PyUnicode_Tailmatch
File "??", line 0, in PyInit__collections
File "??", line 0, in PyUnicode_Tailmatch
File "??", line 0, in PyEval_EvalCode
File "??", line 0, in PyEval_EvalCode
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/bin/sphinx-build", line 7, in <module>
sys.exit(main())
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx/cmd/build.py", line 339, in main
return make_main(argv)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx/cmd/build.py", line 213, in make_main
return make_mode.run_make_mode(argv[1:])
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx/cmd/make_mode.py", line 181, in run_make_mode
return make.run_generic_build(args[0])
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx/cmd/make_mode.py", line 169, in run_generic_build
return build_main(args + opts)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx/cmd/build.py", line 293, in build_main
app = Sphinx(args.sourcedir, args.confdir, args.outputdir,
File "??", line 0, in _PyObject_MakeTpCall
File "??", line 0, in _PyStack_AsDict
File "??", line 0, in _PyObject_FastCallDictTstate
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx/application.py", line 272, in __init__
self._init_builder()
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx/application.py", line 343, in _init_builder
self.events.emit('builder-inited')
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx/events.py", line 97, in emit
results.append(listener.handler(self.app, *args))
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_gallery.py", line 757, in generate_gallery_rst
) = generate_dir_rst(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 606, in generate_dir_rst
results = parallel(
File "??", line 0, in PyUnicode_Decode
File "??", line 0, in _PyLong_FromByteArray
File "??", line 0, in PyObject_SelfIter
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 607, in <genexpr>
p_fun(fname, target_dir, src_dir, gallery_conf) for fname in iterator
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/var/lib/workspace/conf.py", line 85, in wrapper
p.start()
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/lib/python3.10/multiprocessing/process.py", line 121, in start
self._popen = self._Popen(self)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/lib/python3.10/multiprocessing/context.py", line 224, in _Popen
return _default_context.get_context().Process._Popen(process_obj)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/lib/python3.10/multiprocessing/context.py", line 281, in _Popen
return Popen(process_obj)
File "??", line 0, in _PyObject_MakeTpCall
File "??", line 0, in _PyStack_AsDict
File "??", line 0, in _PyObject_FastCallDictTstate
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/lib/python3.10/multiprocessing/popen_fork.py", line 19, in __init__
self._launch(process_obj)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/lib/python3.10/multiprocessing/popen_fork.py", line 71, in _launch
code = process_obj._bootstrap(parent_sentinel=child_r)
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/lib/python3.10/multiprocessing/process.py", line 314, in _bootstrap
self.run()
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/lib/python3.10/multiprocessing/process.py", line 108, in run
self._target(*self._args, **self._kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/var/lib/workspace/conf.py", line 73, in call_fn
result = func(*args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 1374, in generate_file_rst
output_blocks, time_elapsed = execute_script(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 1192, in execute_script
execute_code_block(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 1048, in execute_code_block
is_last_expr, mem_max = _exec_and_get_memory(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 876, in _exec_and_get_memory
mem_max, _ = call_memory(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 1725, in _sg_call_memory_noop
return 0.0, func()
File "??", line 0, in _PyObject_MakeTpCall
File "??", line 0, in PyInit__datetime
File "??", line 0, in _PyObject_Call_Prepend
File "??", line 0, in _PyObject_FastCallDictTstate
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 794, in __call__
exec(self.code, self.fake_main.__dict__)
File "??", line 0, in PyCell_New
File "??", line 0, in PyFrozenSet_New
File "??", line 0, in PyEval_EvalCode
File "??", line 0, in PyEval_EvalCode
File "??", line 0, in _PyEval_EvalFrameDefault
File "/var/lib/workspace/intermediate_source/torch_export_tutorial.py", line 431, in <module>
export(model, (w, x, y, z), dynamic_shapes=dynamic_shapes)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/__init__.py", line 286, in export
return _export(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1130, in wrapper
ep = fn(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/exported_program.py", line 123, in wrapper
return fn(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 2176, in _export
ep = _export_for_training(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1130, in wrapper
ep = fn(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/exported_program.py", line 123, in wrapper
return fn(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 2037, in _export_for_training
export_artifact = export_func(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1979, in _non_strict_export
aten_export_artifact = _to_aten_func( # type: ignore[operator]
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1770, in _export_to_aten_ir_make_fx
gm, graph_signature = transform(_make_fx_helper)(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1900, in _aot_export_non_strict
gm, sig = aot_export(wrapped_mod, args, kwargs=kwargs, **flags)
File "??", line 0, in PyObject_Call
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1685, in _make_fx_helper
gm = make_fx(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 2318, in wrapped
return make_fx_tracer.trace(f, *args)
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 2250, in trace
return self._trace_inner(f, *args)
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 2221, in _trace_inner
t = dispatch_trace(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_compile.py", line 53, in inner
return disable_fn(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/eval_frame.py", line 929, in _fn
return fn(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1254, in dispatch_trace
graph = tracer.trace(root, concrete_args) # type: ignore[arg-type]
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1835, in trace
res = super().trace(root, concrete_args)
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/eval_frame.py", line 929, in _fn
return fn(*args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 850, in trace
(self.create_arg(fn(*args)),),
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1312, in wrapped
out = f(*tensors) # type:ignore[call-arg]
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "<string>", line 1, in <lambda>
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1589, in wrapped_fn
return tuple(flat_fn(*args))
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_functorch/_aot_autograd/utils.py", line 184, in flat_fn
tree_out = fn(*args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_functorch/_aot_autograd/traced_function_transforms.py", line 906, in functional_call
out = mod(*args[params_len:], **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in PyInit__datetime
File "??", line 0, in _PyObject_Call_Prepend
File "??", line 0, in _PyObject_FastCallDictTstate
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 825, in module_call_wrapper
return self.call_module(mod, forward, args, kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1905, in call_module
return Tracer.call_module(self, m, forward, args, kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 542, in call_module
ret_val = forward(*args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 818, in forward
return _orig_module_call(mod, *args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1773, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1784, in _call_impl
return forward_call(*args, **kwargs)
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1884, in forward
tree_out = mod(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in PyInit__datetime
File "??", line 0, in _PyObject_Call_Prepend
File "??", line 0, in _PyObject_FastCallDictTstate
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 825, in module_call_wrapper
return self.call_module(mod, forward, args, kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1905, in call_module
return Tracer.call_module(self, m, forward, args, kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 542, in call_module
ret_val = forward(*args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 818, in forward
return _orig_module_call(mod, *args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1773, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1784, in _call_impl
return forward_call(*args, **kwargs)
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/var/lib/workspace/intermediate_source/torch_export_tutorial.py", line 268, in forward
x0 = x + y # [8, 4]
File "??", line 0, in PyNumber_Add
File "??", line 0, in _Py_c_pow
File "??", line 0, in PyThread_start_new_thread
File "??", line 0, in _PyType_LookupId
File "??", line 0, in _PyObject_GetDictPtr
File "python_variable_methods.cpp", line 0, in _object* torch::autograd::TypeError_to_NotImplemented_<&torch::autograd::THPVariable_add>(_object*, _object*, _object*)
File "python_variable_methods.cpp", line 0, in torch::autograd::THPVariable_add(_object*, _object*, _object*)
File "", line 0, in torch::handle_torch_function(torch::PythonArgs&, _object*, _object*, _object*, _object*, char const*, char const*)
File "??", line 0, in torch::handle_torch_function_no_python_arg_parser(c10::ArrayRef<_object*>, _object*, _object*, char const*, _object*, char const*, torch::TorchFunctionName)
File "??", line 0, in PyObject_CallMethod
File "??", line 0, in PyModule_AddObjectRef
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1360, in __torch_function__
return func(*args, **kwargs)
File "??", line 0, in _PyObject_GetDictPtr
File "python_variable_methods.cpp", line 0, in torch::autograd::THPVariable_add(_object*, _object*, _object*)
File "", line 0, in torch::handle_torch_function(torch::PythonArgs&, _object*, _object*, _object*, _object*, char const*, char const*)
File "??", line 0, in torch::handle_torch_function_no_python_arg_parser(c10::ArrayRef<_object*>, _object*, _object*, char const*, _object*, char const*, torch::TorchFunctionName)
File "??", line 0, in PyObject_CallMethod
File "??", line 0, in PyModule_AddObjectRef
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1407, in __torch_function__
return func(*args, **kwargs)
File "??", line 0, in _PyObject_GetDictPtr
File "python_variable_methods.cpp", line 0, in torch::autograd::THPVariable_add(_object*, _object*, _object*)
File "", line 0, in torch::handle_torch_function(torch::PythonArgs&, _object*, _object*, _object*, _object*, char const*, char const*)
File "??", line 0, in torch::handle_torch_function_no_python_arg_parser(c10::ArrayRef<_object*>, _object*, _object*, char const*, _object*, char const*, torch::TorchFunctionName)
File "??", line 0, in PyObject_CallMethod
File "??", line 0, in PyModule_AddObjectRef
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_export/non_strict_utils.py", line 1051, in __torch_function__
return func(*args, **kwargs)
File "??", line 0, in _PyObject_GetDictPtr
File "python_variable_methods.cpp", line 0, in torch::autograd::THPVariable_add(_object*, _object*, _object*)
File "??", line 0, in at::_ops::add_Tensor::call(at::Tensor const&, at::Tensor const&, c10::Scalar const&)
File "PyInterpreter.cpp", line 0, in torch::detail::(anonymous namespace)::ConcretePyInterpreterVTable::python_dispatcher(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_ops.py", line 950, in handler
return torch._library.utils.handle_dispatch_mode(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_library/utils.py", line 296, in handle_dispatch_mode
return curr_mode.__torch_dispatch__(op_overload, overload_types, args, kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/utils/_stats.py", line 28, in wrapper
return fn(*args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1462, in __torch_dispatch__
return proxy_call(self, func, self.pre_dispatch, args, kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 914, in proxy_call
out = func(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in PyInit__datetime
File "??", line 0, in _PyObject_Call_Prepend
File "??", line 0, in _PyObject_FastCallDictTstate
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_ops.py", line 829, in __call__
return self._op(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in PyObject_CallFunctionObjArgs
File "", line 0, in pybind11::cpp_function::dispatcher(_object*, _object*, _object*)
File "init.cpp", line 0, in pybind11::cpp_function::initialize<torch::jit::initJITBindings(_object*)::{lambda(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&)#2}::operator()(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) const::{lambda(pybind11::args const&, pybind11::kwargs const&)#1}, pybind11::object, pybind11::args const&, pybind11::kwargs const&>(torch::jit::initJITBindings(_object*)::{lambda(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&)#2}::operator()(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) const::{lambda(pybind11::args const&, pybind11::kwargs const&)#1}&&, pybind11::object (*)(pybind11::args const&, pybind11::kwargs const&))::{lambda(pybind11::detail::function_call&)#1}::_FUN(pybind11::detail::function_call&)
File "init.cpp", line 0, in torch::jit::initJITBindings(_object*)::{lambda(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&)#2}::operator()(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) const::{lambda(pybind11::args const&, pybind11::kwargs const&)#1}::operator()(pybind11::args const&, pybind11::kwargs const&) const
File "??", line 0, in torch::jit::_get_operation_for_overload_or_packet(std::vector<std::shared_ptr<torch::jit::Operator>, std::allocator<std::shared_ptr<torch::jit::Operator> > > const&, c10::Symbol, pybind11::args const&, pybind11::kwargs const&, bool, std::optional<c10::DispatchKey>)
File "??", line 0, in torch::jit::invokeOperatorFromPython(std::vector<std::shared_ptr<torch::jit::Operator>, std::allocator<std::shared_ptr<torch::jit::Operator> > > const&, pybind11::args const&, pybind11::kwargs const&, std::optional<c10::DispatchKey>)
File "register_c10_ops.cpp", line 0, in c10::Dispatcher::callBoxed(c10::OperatorHandle const&, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const [clone .isra.0]
File "PyInterpreter.cpp", line 0, in torch::detail::(anonymous namespace)::ConcretePyInterpreterVTable::python_dispatcher(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const
File "", line 0, in c10::OperatorHandle::callBoxedForDispatchKey(c10::DispatchKey, std::vector<c10::IValue, std::allocator<c10::IValue> >&) const
File "PythonFallbackKernel.cpp", line 0, in void c10::BoxedKernel::make_boxed_function<&(anonymous namespace)::pythonTLSSnapshotFallback>(c10::OperatorKernel*, c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*)
File "PyInterpreter.cpp", line 0, in torch::detail::(anonymous namespace)::ConcretePyInterpreterVTable::python_dispatcher(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const
File "", line 0, in c10::OperatorHandle::callBoxedForDispatchKey(c10::DispatchKey, std::vector<c10::IValue, std::allocator<c10::IValue> >&) const
File "VariableType_2.cpp", line 0, in c10::impl::make_boxed_from_unboxed_functor<c10::impl::detail::WrapFunctionIntoFunctor_<c10::CompileTimeFunctionPointer<at::Tensor (c10::DispatchKeySet, at::Tensor const&, at::Tensor const&, c10::Scalar const&), &torch::autograd::VariableType::(anonymous namespace)::add_Tensor>, at::Tensor, c10::guts::typelist::typelist<c10::DispatchKeySet, at::Tensor const&, at::Tensor const&, c10::Scalar const&> >, false>::call(c10::OperatorKernel*, c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*)
File "VariableType_2.cpp", line 0, in torch::autograd::VariableType::(anonymous namespace)::add_Tensor(c10::DispatchKeySet, at::Tensor const&, at::Tensor const&, c10::Scalar const&)
File "??", line 0, in at::_ops::add_Tensor::redispatch(c10::DispatchKeySet, at::Tensor const&, at::Tensor const&, c10::Scalar const&)
File "PyInterpreter.cpp", line 0, in torch::detail::(anonymous namespace)::ConcretePyInterpreterVTable::python_dispatcher(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const
File "", line 0, in c10::OperatorHandle::callBoxedForDispatchKey(c10::DispatchKey, std::vector<c10::IValue, std::allocator<c10::IValue> >&) const
File "PythonFallbackKernel.cpp", line 0, in (anonymous namespace)::pythonFallback(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*)
File "PyInterpreter.cpp", line 0, in torch::detail::(anonymous namespace)::ConcretePyInterpreterVTable::dispatch(c10::OperatorHandle const&, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const
File "??", line 0, in torch::handle_torch_function_no_python_arg_parser(c10::ArrayRef<_object*>, _object*, _object*, char const*, _object*, char const*, torch::TorchFunctionName)
File "??", line 0, in PyObject_CallMethod
File "??", line 0, in PyModule_AddObjectRef
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/utils/_stats.py", line 28, in wrapper
return fn(*args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_subclasses/fake_tensor.py", line 1352, in __torch_dispatch__
return self.dispatch(func, types, args, kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_subclasses/fake_tensor.py", line 2058, in dispatch
return self._cached_dispatch_impl(func, types, args, kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_subclasses/fake_tensor.py", line 1487, in _cached_dispatch_impl
output = self._dispatch_impl(func, types, args, kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_subclasses/fake_tensor.py", line 2581, in _dispatch_impl
return maybe_propagate_real_tensors(fast_impl(self, *args, **kwargs))
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_subclasses/fake_impls.py", line 962, in fast_binary_impl
final_shape = infer_size(final_shape, shape)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_subclasses/fake_impls.py", line 922, in infer_size
torch._check(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/__init__.py", line 1684, in _check
_check_with(RuntimeError, cond, message)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/__init__.py", line 1647, in _check_with
if expect_true(cond):
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 1702, in expect_true
return a.node.expect_true(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/sym_node.py", line 559, in expect_true
return self.shape_env.guard_or_defer_runtime_assert(
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyObject_MakeTpCall
File "??", line 0, in _PyCodec_EncodeText
File "??", line 0, in PyObject_Call
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/recording.py", line 272, in wrapper
return retlog(fn(*args, **kwargs))
File "??", line 0, in PyObject_Call
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 7730, in guard_or_defer_runtime_assert
self._maybe_guard_rel(expr)
File "??", line 0, in _PyObject_MakeTpCall
File "??", line 0, in _PyCodec_EncodeText
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 6868, in _maybe_guard_rel
self._refine_ranges(expr)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 7819, in _refine_ranges
self._set_replacement(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 6768, in _set_replacement
CapturedTraceback.extract(cpp=True)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/utils/_traceback.py", line 212, in extract
torch._C._profiler.gather_traceback(python=True, script=script, cpp=cpp),
File "??", line 0, in _PyObject_MakeTpCall
File "??", line 0, in PyObject_CallFunctionObjArgs
File "", line 0, in pybind11::cpp_function::dispatcher(_object*, _object*, _object*)
File "", line 0, in pybind11::cpp_function::initialize<std::shared_ptr<torch::CapturedTraceback> (*&)(bool, bool, bool), std::shared_ptr<torch::CapturedTraceback>, bool, bool, bool, pybind11::name, pybind11::scope, pybind11::sibling, pybind11::arg_v, pybind11::arg_v, pybind11::arg_v>(std::shared_ptr<torch::CapturedTraceback> (*&)(bool, bool, bool), std::shared_ptr<torch::CapturedTraceback> (*)(bool, bool, bool), pybind11::name const&, pybind11::scope const&, pybind11::sibling const&, pybind11::arg_v const&, pybind11::arg_v const&, pybind11::arg_v const&)::{lambda(pybind11::detail::function_call&)#3}::operator()(pybind11::detail::function_call&) const
File "??", line 0, in torch::CapturedTraceback::gather(bool, bool, bool)
File "??", line 0, in torch::unwind::unwind()
The error above occurred when calling torch.export.export. If you would like to view some more information about this error, and get a list of all other errors that may occur in your export call, you can replace your `export()` call with `draft_export()`.
Here you might ask why export “specializes”, i.e. why we resolve this static/dynamic conflict by going with the static route. The answer is because
of the symbolic shapes system described above, of symbols and guards. When x.shape[0]
is marked static, we don’t allocate a symbol, and compile
treating this shape as a concrete integer 4. A symbol is allocated for y.shape[1]
, and so we finally emit the guard s3 == 4
, leading to
specialization.
One feature of export is that during tracing, statements like asserts, torch._check()
, and if/else
conditions will also emit guards.
See what happens when we augment the existing model with such statements:
class DynamicModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.l = torch.nn.Linear(5, 3)
def forward(self, w, x, y, z):
assert w.shape[0] <= 512
torch._check(x.shape[0] >= 4)
if w.shape[0] == x.shape[0] + 2:
x0 = x + y
x1 = self.l(w)
x2 = x0.flatten()
x3 = x2 + z
return x1, x3
else:
return w
dynamic_shapes = {
"w": (Dim.AUTO, Dim.AUTO),
"x": (Dim.AUTO,),
"y": (Dim.AUTO, Dim.AUTO),
"z": (Dim.AUTO,),
}
try:
ep = export(DynamicModel(), (w, x, y, z), dynamic_shapes=dynamic_shapes)
except Exception:
tb.print_exc()
I0813 15:28:42.830000 31208 torch/fx/experimental/symbolic_shapes.py:3767] create_env
I0813 15:28:42.832000 31208 torch/fx/experimental/symbolic_shapes.py:5110] create_symbol s15 = 6 for L['w'].size()[0] [2, int_oo] (_export/non_strict_utils.py:229 in fakify), for more info run with TORCHDYNAMO_EXTENDED_DEBUG_CREATE_SYMBOL="s15" or to suppress this message run with TORCHDYNAMO_EXTENDED_ADVICE="0"
I0813 15:28:42.833000 31208 torch/fx/experimental/symbolic_shapes.py:5110] create_symbol s21 = 5 for L['w'].size()[1] [2, int_oo] (_export/non_strict_utils.py:229 in fakify), for more info run with TORCHDYNAMO_EXTENDED_DEBUG_CREATE_SYMBOL="s21" or to suppress this message run with TORCHDYNAMO_EXTENDED_ADVICE="0"
V0813 15:28:42.834000 31208 torch/fx/experimental/symbolic_shapes.py:7694] runtime_assert True == True [statically known]
I0813 15:28:42.835000 31208 torch/fx/experimental/symbolic_shapes.py:5110] create_symbol s77 = 4 for L['x'].size()[0] [2, int_oo] (_export/non_strict_utils.py:229 in fakify), for more info run with TORCHDYNAMO_EXTENDED_DEBUG_CREATE_SYMBOL="s77" or to suppress this message run with TORCHDYNAMO_EXTENDED_ADVICE="0"
I0813 15:28:42.837000 31208 torch/fx/experimental/symbolic_shapes.py:5110] create_symbol s17 = 8 for L['y'].size()[0] [2, int_oo] (_export/non_strict_utils.py:229 in fakify), for more info run with TORCHDYNAMO_EXTENDED_DEBUG_CREATE_SYMBOL="s17" or to suppress this message run with TORCHDYNAMO_EXTENDED_ADVICE="0"
I0813 15:28:42.837000 31208 torch/fx/experimental/symbolic_shapes.py:5110] create_symbol s94 = 4 for L['y'].size()[1] [2, int_oo] (_export/non_strict_utils.py:229 in fakify), for more info run with TORCHDYNAMO_EXTENDED_DEBUG_CREATE_SYMBOL="s94" or to suppress this message run with TORCHDYNAMO_EXTENDED_ADVICE="0"
I0813 15:28:42.839000 31208 torch/fx/experimental/symbolic_shapes.py:5110] create_symbol s68 = 32 for L['z'].size()[0] [2, int_oo] (_export/non_strict_utils.py:229 in fakify), for more info run with TORCHDYNAMO_EXTENDED_DEBUG_CREATE_SYMBOL="s68" or to suppress this message run with TORCHDYNAMO_EXTENDED_ADVICE="0"
V0813 15:28:42.844000 31208 torch/fx/experimental/symbolic_shapes.py:7475] eval False == False [statically known]
V0813 15:28:42.845000 31208 torch/fx/experimental/symbolic_shapes.py:7475] eval False == False [statically known]
V0813 15:28:42.846000 31208 torch/fx/experimental/symbolic_shapes.py:7475] eval False == False [statically known]
V0813 15:28:42.847000 31208 torch/fx/experimental/symbolic_shapes.py:7475] eval False == False [statically known]
V0813 15:28:42.847000 31208 torch/fx/experimental/symbolic_shapes.py:7475] eval False == False [statically known]
V0813 15:28:42.849000 31208 torch/fx/experimental/symbolic_shapes.py:7475] eval False == False [statically known]
V0813 15:28:42.849000 31208 torch/fx/experimental/symbolic_shapes.py:7475] eval False == False [statically known]
V0813 15:28:42.850000 31208 torch/fx/experimental/symbolic_shapes.py:7475] eval False == False [statically known]
V0813 15:28:42.851000 31208 torch/fx/experimental/symbolic_shapes.py:7475] eval False == False [statically known]
V0813 15:28:42.851000 31208 torch/fx/experimental/symbolic_shapes.py:7475] eval False == False [statically known]
I0813 15:28:42.857000 31208 torch/fx/experimental/symbolic_shapes.py:7197] eval s15 <= 512 [guard added] (ar/lib/workspace/intermediate_source/torch_export_tutorial.py:450 in forward), for more info run with TORCHDYNAMO_EXTENDED_DEBUG_GUARD_ADDED="s15 <= 512"
V0813 15:28:42.858000 31208 torch/fx/experimental/symbolic_shapes.py:6606] _update_var_to_range s15 = VR[2, 512] (update)
I0813 15:28:42.861000 31208 torch/fx/experimental/symbolic_shapes.py:7197] runtime_assert s77 >= 4 [guard added] (ar/lib/workspace/intermediate_source/torch_export_tutorial.py:451 in forward), for more info run with TORCHDYNAMO_EXTENDED_DEBUG_GUARD_ADDED="s77 >= 4"
V0813 15:28:42.862000 31208 torch/fx/experimental/symbolic_shapes.py:6606] _update_var_to_range s77 = VR[4, int_oo] (update)
I0813 15:28:42.867000 31208 torch/fx/experimental/symbolic_shapes.py:7197] eval Eq(s15, s77 + 2) [guard added] (ar/lib/workspace/intermediate_source/torch_export_tutorial.py:452 in forward), for more info run with TORCHDYNAMO_EXTENDED_DEBUG_GUARD_ADDED="Eq(s15, s77 + 2)"
V0813 15:28:42.869000 31208 torch/fx/experimental/symbolic_shapes.py:6606] _update_var_to_range s77 = VR[4, 510] (update)
V0813 15:28:42.870000 31208 torch/fx/experimental/symbolic_shapes.py:6606] _update_var_to_range s15 = VR[6, 512] (update)
I0813 15:28:42.871000 31208 torch/fx/experimental/symbolic_shapes.py:6776] set_replacement s15 = s77 + 2 (solve) VR[6, 512]
V0813 15:28:42.873000 31208 torch/fx/experimental/symbolic_shapes.py:7694] runtime_assert True == True [statically known]
I0813 15:28:42.875000 31208 torch/fx/experimental/symbolic_shapes.py:7197] runtime_assert Eq(s77, s94) [guard added] (_subclasses/fake_impls.py:922 in infer_size), for more info run with TORCHDYNAMO_EXTENDED_DEBUG_GUARD_ADDED="Eq(s77, s94)"
V0813 15:28:42.876000 31208 torch/fx/experimental/symbolic_shapes.py:6606] _update_var_to_range s94 = VR[4, 510] (update)
I0813 15:28:42.877000 31208 torch/fx/experimental/symbolic_shapes.py:6776] set_replacement s94 = s77 (solve) VR[4, 510]
V0813 15:28:42.880000 31208 torch/fx/experimental/symbolic_shapes.py:7475] eval False == False [statically known]
I0813 15:28:42.887000 31208 torch/fx/experimental/symbolic_shapes.py:7197] runtime_assert Eq(s21, 5) [guard added] (_meta_registrations.py:2417 in meta_mm), for more info run with TORCHDYNAMO_EXTENDED_DEBUG_GUARD_ADDED="Eq(s21, 5)"
V0813 15:28:42.887000 31208 torch/fx/experimental/symbolic_shapes.py:6606] _update_var_to_range s21 = VR[5, 5] (update)
I0813 15:28:42.888000 31208 torch/fx/experimental/symbolic_shapes.py:6776] set_replacement s21 = 5 (range_refined_to_singleton) VR[5, 5]
V0813 15:28:42.902000 31208 torch/fx/experimental/symbolic_shapes.py:7475] eval size_oblivious(Eq(s17*s77, 1)) == False [statically known]
V0813 15:28:42.903000 31208 torch/fx/experimental/symbolic_shapes.py:7475] eval False == False [statically known]
I0813 15:28:42.911000 31208 torch/fx/experimental/symbolic_shapes.py:7197] runtime_assert Eq(s17*s77, s68) [guard added] (_subclasses/fake_impls.py:922 in infer_size), for more info run with TORCHDYNAMO_EXTENDED_DEBUG_GUARD_ADDED="Eq(s17*s77, s68)"
V0813 15:28:42.912000 31208 torch/fx/experimental/symbolic_shapes.py:6606] _update_var_to_range s68 = VR[8, int_oo] (update)
I0813 15:28:42.913000 31208 torch/fx/experimental/symbolic_shapes.py:6776] set_replacement s68 = s17*s77 (solve) VR[8, int_oo]
I0813 15:28:42.918000 31208 torch/fx/experimental/symbolic_shapes.py:5238] produce_guards
V0813 15:28:42.918000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['w'].size()[0] s77 + 2 None
V0813 15:28:42.919000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['w'].size()[1] 5 None
V0813 15:28:42.919000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['w'].stride()[0] 5 None
V0813 15:28:42.919000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['w'].stride()[1] 1 None
V0813 15:28:42.920000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['w'].storage_offset() 0 None
V0813 15:28:42.920000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['x'].size()[0] s77 None
V0813 15:28:42.920000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['x'].stride()[0] 1 None
V0813 15:28:42.920000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['x'].storage_offset() 0 None
V0813 15:28:42.921000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['y'].size()[0] s17 None
V0813 15:28:42.921000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['y'].size()[1] s77 None
V0813 15:28:42.921000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['y'].stride()[0] s77 None
V0813 15:28:42.922000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['y'].stride()[1] 1 None
V0813 15:28:42.922000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['y'].storage_offset() 0 None
V0813 15:28:42.922000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['z'].size()[0] s17*s77 None
V0813 15:28:42.923000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['z'].stride()[0] 1 None
V0813 15:28:42.923000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['z'].storage_offset() 0 None
V0813 15:28:42.935000 31208 torch/fx/experimental/symbolic_shapes.py:7694] runtime_assert s77 >= 4 == True [statically known]
V0813 15:28:42.936000 31208 torch/fx/experimental/symbolic_shapes.py:7694] runtime_assert True == True [statically known]
V0813 15:28:42.943000 31208 torch/fx/experimental/symbolic_shapes.py:7461] eval 5 [trivial]
Each of these statements emits an additional guard, and the exported program shows the changes; s0
is eliminated in favor of s2 + 2
,
and s2
now contains lower and upper bounds, reflected in range_constraints
.
For the if/else condition, you might ask why the True branch was taken, and why it wasn’t the w.shape[0] != x.shape[0] + 2
guard that
got emitted from tracing. The answer is that export is guided by the sample inputs provided by tracing, and specializes on the branches taken.
If different sample input shapes were provided that fail the if
condition, export would trace and emit guards corresponding to the else
branch.
Additionally, you might ask why we traced only the if
branch, and if it’s possible to maintain control-flow in your program and keep both branches
alive. For that, refer to rewriting your model code following the Control Flow Ops
section above.
0/1 specialization#
Since we’re talking about guards and specializations, it’s a good time to talk about the 0/1 specialization issue we brought up earlier. The bottom line is that export will specialize on sample input dimensions with value 0 or 1, because these shapes have trace-time properties that don’t generalize to other shapes. For example, size 1 tensors can broadcast while other sizes fail; and size 0 … . This just means that you should specify 0/1 sample inputs when you’d like your program to hardcode them, and non-0/1 sample inputs when dynamic behavior is desirable. See what happens at runtime when we export this linear layer:
ep = export(
torch.nn.Linear(4, 3),
(torch.randn(1, 4),),
dynamic_shapes={
"input": (Dim.AUTO, Dim.STATIC),
},
)
try:
ep.module()(torch.randn(2, 4))
except Exception:
tb.print_exc()
I0813 15:28:42.948000 31208 torch/fx/experimental/symbolic_shapes.py:3767] create_env
I0813 15:28:42.959000 31208 torch/fx/experimental/symbolic_shapes.py:5238] produce_guards
V0813 15:28:42.959000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['input'].size()[0] 1 None
V0813 15:28:42.960000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['input'].size()[1] 4 None
V0813 15:28:42.960000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['input'].stride()[0] 4 None
V0813 15:28:42.960000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['input'].stride()[1] 1 None
V0813 15:28:42.960000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['input'].storage_offset() 0 None
W0813 15:28:42.963000 31208 torch/_export/non_strict_utils.py:580] dimension inputs['input'].shape[0] 0/1 specialized; Dim.AUTO was specified along with a sample input with hint = 1.
Traceback (most recent call last):
File "/var/lib/workspace/intermediate_source/torch_export_tutorial.py", line 500, in <module>
ep.module()(torch.randn(2, 4))
File "/usr/local/lib/python3.10/dist-packages/torch/fx/graph_module.py", line 848, in call_wrapped
return self._wrapped_call(self, *args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/fx/graph_module.py", line 424, in __call__
raise e
File "/usr/local/lib/python3.10/dist-packages/torch/fx/graph_module.py", line 411, in __call__
return super(self.cls, obj).__call__(*args, **kwargs) # type: ignore[misc]
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1773, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1879, in _call_impl
return inner()
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1806, in inner
args_kwargs_result = hook(self, args, kwargs) # type: ignore[misc]
File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/eval_frame.py", line 929, in _fn
return fn(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/export/_unlift.py", line 83, in _check_input_constraints_pre_hook
_check_input_constraints_for_graph(
File "/usr/local/lib/python3.10/dist-packages/torch/_export/utils.py", line 426, in _check_input_constraints_for_graph
_check_symint(
File "/usr/local/lib/python3.10/dist-packages/torch/_export/utils.py", line 390, in _check_symint
raise RuntimeError(
RuntimeError: Expected input at *args[0].shape[0] to be equal to 1, but got 2. If you meant for this dimension to be dynamic, please re-export and specify dynamic_shapes (e.g. with Dim.DYNAMIC)
Named Dims#
So far we’ve only been talking about 3 ways to specify dynamic shapes: Dim.AUTO
, Dim.DYNAMIC
, and Dim.STATIC
. The attraction of these is the
low-friction user experience; all the guards emitted during model tracing are adhered to, and dynamic behavior like min/max ranges, relations, and static/dynamic
dimensions are automatically figured out underneath export. The dynamic shapes subsystem essentially acts as a “discovery” process, summarizing these guards
and presenting what export believes is the overall dynamic behavior of the program. The drawback of this design appears once the user has stronger expectations or
beliefs about the dynamic behavior of these models - maybe there is a strong desire on dynamism and specializations on particular dimensions are to be avoided at
all costs, or maybe we just want to catch changes in dynamic behavior with changes to the original model code, or possibly underlying decompositions or meta-kernels.
These changes won’t be detected and the export()
call will most likely succeed, unless tests are in place that check the resulting ExportedProgram
representation.
For such cases, our stance is to recommend the “traditional” way of specifying dynamic shapes, which longer-term users of export might be familiar with: named Dims
:
This style of dynamic shapes allows the user to specify what symbols are allocated for input dimensions, min/max bounds on those symbols, and places restrictions on the
dynamic behavior of the ExportedProgram
produced; ConstraintViolation
errors will be raised if model tracing emits guards that conflict with the relations or static/dynamic
specifications given. For example, in the above specification, the following is asserted:
x.shape[0]
is to have range[4, 256]
, and related toy.shape[0]
byy.shape[0] == 2 * x.shape[0]
.x.shape[1]
is static.y.shape[1]
has range[2, 512]
, and is unrelated to any other dimension.
In this design, we allow relations between dimensions to be specified with univariate linear expressions: A * dim + B
can be specified for any dimension. This allows users
to specify more complex constraints like integer divisibility for dynamic dimensions:
Constraint violations, suggested fixes#
One common issue with this specification style (before Dim.AUTO
was introduced), is that the specification would often be mismatched with what was produced by model tracing.
That would lead to ConstraintViolation
errors and export suggested fixes - see for example with this model & specification, where the model inherently requires equality between
dimensions 0 of x
and y
, and requires dimension 1 to be static.
class Foo(torch.nn.Module):
def forward(self, x, y):
w = x + y
return w + torch.ones(4)
dx, dy, d1 = torch.export.dims("dx", "dy", "d1")
try:
ep = export(
Foo(),
(torch.randn(6, 4), torch.randn(6, 4)),
dynamic_shapes={
"x": (dx, d1),
"y": (dy, d1),
},
)
except Exception:
tb.print_exc()
I0813 15:28:42.970000 31208 torch/fx/experimental/symbolic_shapes.py:3767] create_env
I0813 15:28:42.972000 31208 torch/fx/experimental/symbolic_shapes.py:5110] create_symbol s77 = 6 for L['x'].size()[0] [2, int_oo] (_export/non_strict_utils.py:229 in fakify), for more info run with TORCHDYNAMO_EXTENDED_DEBUG_CREATE_SYMBOL="s77" or to suppress this message run with TORCHDYNAMO_EXTENDED_ADVICE="0"
I0813 15:28:42.974000 31208 torch/fx/experimental/symbolic_shapes.py:5110] create_symbol s27 = 4 for L['x'].size()[1] [2, int_oo] (_export/non_strict_utils.py:229 in fakify), for more info run with TORCHDYNAMO_EXTENDED_DEBUG_CREATE_SYMBOL="s27" or to suppress this message run with TORCHDYNAMO_EXTENDED_ADVICE="0"
V0813 15:28:42.975000 31208 torch/fx/experimental/symbolic_shapes.py:7694] runtime_assert True == True [statically known]
I0813 15:28:42.977000 31208 torch/fx/experimental/symbolic_shapes.py:5110] create_symbol s17 = 6 for L['y'].size()[0] [2, int_oo] (_export/non_strict_utils.py:229 in fakify), for more info run with TORCHDYNAMO_EXTENDED_DEBUG_CREATE_SYMBOL="s17" or to suppress this message run with TORCHDYNAMO_EXTENDED_ADVICE="0"
I0813 15:28:42.977000 31208 torch/fx/experimental/symbolic_shapes.py:5110] create_symbol s94 = 4 for L['y'].size()[1] [2, int_oo] (_export/non_strict_utils.py:229 in fakify), for more info run with TORCHDYNAMO_EXTENDED_DEBUG_CREATE_SYMBOL="s94" or to suppress this message run with TORCHDYNAMO_EXTENDED_ADVICE="0"
V0813 15:28:42.983000 31208 torch/fx/experimental/symbolic_shapes.py:7475] eval False == False [statically known]
V0813 15:28:42.984000 31208 torch/fx/experimental/symbolic_shapes.py:7475] eval False == False [statically known]
V0813 15:28:42.985000 31208 torch/fx/experimental/symbolic_shapes.py:7475] eval False == False [statically known]
V0813 15:28:42.987000 31208 torch/fx/experimental/symbolic_shapes.py:7475] eval False == False [statically known]
V0813 15:28:42.987000 31208 torch/fx/experimental/symbolic_shapes.py:7475] eval False == False [statically known]
V0813 15:28:42.988000 31208 torch/fx/experimental/symbolic_shapes.py:7475] eval False == False [statically known]
V0813 15:28:42.991000 31208 torch/fx/experimental/symbolic_shapes.py:7694] runtime_assert True == True [statically known]
I0813 15:28:42.993000 31208 torch/fx/experimental/symbolic_shapes.py:7197] runtime_assert Eq(s27, s94) [guard added] (_subclasses/fake_impls.py:922 in infer_size), for more info run with TORCHDYNAMO_EXTENDED_DEBUG_GUARD_ADDED="Eq(s27, s94)"
I0813 15:28:42.994000 31208 torch/fx/experimental/symbolic_shapes.py:6776] set_replacement s94 = s27 (solve) VR[2, int_oo]
I0813 15:28:42.996000 31208 torch/fx/experimental/symbolic_shapes.py:7197] runtime_assert Eq(s77, s17) [guard added] (_subclasses/fake_impls.py:922 in infer_size), for more info run with TORCHDYNAMO_EXTENDED_DEBUG_GUARD_ADDED="Eq(s77, s17)"
I0813 15:28:42.997000 31208 torch/fx/experimental/symbolic_shapes.py:6776] set_replacement s77 = s17 (solve) VR[2, int_oo]
V0813 15:28:43.000000 31208 torch/fx/experimental/symbolic_shapes.py:7475] eval False == False [statically known]
I0813 15:28:43.009000 31208 torch/fx/experimental/symbolic_shapes.py:7197] runtime_assert Eq(s27, 4) [guard added] (_subclasses/fake_impls.py:922 in infer_size), for more info run with TORCHDYNAMO_EXTENDED_DEBUG_GUARD_ADDED="Eq(s27, 4)"
V0813 15:28:43.010000 31208 torch/fx/experimental/symbolic_shapes.py:6606] _update_var_to_range s27 = VR[4, 4] (update)
I0813 15:28:43.010000 31208 torch/fx/experimental/symbolic_shapes.py:6776] set_replacement s27 = 4 (range_refined_to_singleton) VR[4, 4]
I0813 15:28:43.015000 31208 torch/fx/experimental/symbolic_shapes.py:5238] produce_guards
V0813 15:28:43.016000 31208 torch/fx/experimental/symbolic_shapes.py:6606] _update_var_to_range s94 = VR[4, 4] (update)
I0813 15:28:43.016000 31208 torch/fx/experimental/symbolic_shapes.py:6776] set_replacement s94 = 4 (find) VR[4, 4]
V0813 15:28:43.017000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['x'].size()[0] s17 StrictMinMaxConstraint(warn_only=False, vr=VR[0, int_oo])
V0813 15:28:43.017000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['x'].size()[1] 4 StrictMinMaxConstraint(warn_only=False, vr=VR[0, int_oo])
V0813 15:28:43.035000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['x'].stride()[0] 4 None
V0813 15:28:43.035000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['x'].stride()[1] 1 None
V0813 15:28:43.035000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['x'].storage_offset() 0 None
V0813 15:28:43.036000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['y'].size()[0] s17 StrictMinMaxConstraint(warn_only=False, vr=VR[0, int_oo])
V0813 15:28:43.036000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['y'].size()[1] 4 StrictMinMaxConstraint(warn_only=False, vr=VR[0, int_oo])
V0813 15:28:43.045000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['y'].stride()[0] 4 None
V0813 15:28:43.045000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['y'].stride()[1] 1 None
V0813 15:28:43.045000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['y'].storage_offset() 0 None
Traceback (most recent call last):
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1798, in _export_to_aten_ir_make_fx
produce_guards_callback(gm)
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1944, in _produce_guards_callback
return produce_guards_and_solve_constraints(
File "/usr/local/lib/python3.10/dist-packages/torch/_export/non_strict_utils.py", line 549, in produce_guards_and_solve_constraints
raise constraint_violation_error
File "/usr/local/lib/python3.10/dist-packages/torch/_export/non_strict_utils.py", line 514, in produce_guards_and_solve_constraints
shape_env.produce_guards(
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 5200, in produce_guards
return self.produce_guards_verbose(*args, **kwargs, langs=("python",))[0].exprs
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 5932, in produce_guards_verbose
raise ConstraintViolationError(
torch.fx.experimental.symbolic_shapes.ConstraintViolationError: Constraints violated (d1, dy)! For more information, run with TORCH_LOGS="+dynamic".
- You marked d1 as dynamic but your code specialized it to be a constant (4). If you're using mark_dynamic, either remove it or use maybe_mark_dynamic. If you're using Dim.DYNAMIC, replace it with either Dim.STATIC or Dim.AUTO.
Framework stack:
File "??", line 0, in _start
File "??", line 0, in __libc_start_main
File "??", line 0, in __libc_init_first
File "??", line 0, in Py_BytesMain
File "??", line 0, in Py_RunMain
File "??", line 0, in _PyRun_AnyFileObject
File "??", line 0, in _PyRun_SimpleFileObject
File "??", line 0, in PyUnicode_Tailmatch
File "??", line 0, in PyInit__collections
File "??", line 0, in PyUnicode_Tailmatch
File "??", line 0, in PyEval_EvalCode
File "??", line 0, in PyEval_EvalCode
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/bin/sphinx-build", line 7, in <module>
sys.exit(main())
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx/cmd/build.py", line 339, in main
return make_main(argv)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx/cmd/build.py", line 213, in make_main
return make_mode.run_make_mode(argv[1:])
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx/cmd/make_mode.py", line 181, in run_make_mode
return make.run_generic_build(args[0])
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx/cmd/make_mode.py", line 169, in run_generic_build
return build_main(args + opts)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx/cmd/build.py", line 293, in build_main
app = Sphinx(args.sourcedir, args.confdir, args.outputdir,
File "??", line 0, in _PyObject_MakeTpCall
File "??", line 0, in _PyStack_AsDict
File "??", line 0, in _PyObject_FastCallDictTstate
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx/application.py", line 272, in __init__
self._init_builder()
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx/application.py", line 343, in _init_builder
self.events.emit('builder-inited')
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx/events.py", line 97, in emit
results.append(listener.handler(self.app, *args))
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_gallery.py", line 757, in generate_gallery_rst
) = generate_dir_rst(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 606, in generate_dir_rst
results = parallel(
File "??", line 0, in PyUnicode_Decode
File "??", line 0, in _PyLong_FromByteArray
File "??", line 0, in PyObject_SelfIter
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 607, in <genexpr>
p_fun(fname, target_dir, src_dir, gallery_conf) for fname in iterator
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/var/lib/workspace/conf.py", line 85, in wrapper
p.start()
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/lib/python3.10/multiprocessing/process.py", line 121, in start
self._popen = self._Popen(self)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/lib/python3.10/multiprocessing/context.py", line 224, in _Popen
return _default_context.get_context().Process._Popen(process_obj)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/lib/python3.10/multiprocessing/context.py", line 281, in _Popen
return Popen(process_obj)
File "??", line 0, in _PyObject_MakeTpCall
File "??", line 0, in _PyStack_AsDict
File "??", line 0, in _PyObject_FastCallDictTstate
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/lib/python3.10/multiprocessing/popen_fork.py", line 19, in __init__
self._launch(process_obj)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/lib/python3.10/multiprocessing/popen_fork.py", line 71, in _launch
code = process_obj._bootstrap(parent_sentinel=child_r)
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/lib/python3.10/multiprocessing/process.py", line 314, in _bootstrap
self.run()
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/lib/python3.10/multiprocessing/process.py", line 108, in run
self._target(*self._args, **self._kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/var/lib/workspace/conf.py", line 73, in call_fn
result = func(*args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 1374, in generate_file_rst
output_blocks, time_elapsed = execute_script(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 1192, in execute_script
execute_code_block(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 1048, in execute_code_block
is_last_expr, mem_max = _exec_and_get_memory(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 876, in _exec_and_get_memory
mem_max, _ = call_memory(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 1725, in _sg_call_memory_noop
return 0.0, func()
File "??", line 0, in _PyObject_MakeTpCall
File "??", line 0, in PyInit__datetime
File "??", line 0, in _PyObject_Call_Prepend
File "??", line 0, in _PyObject_FastCallDictTstate
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 794, in __call__
exec(self.code, self.fake_main.__dict__)
File "??", line 0, in PyCell_New
File "??", line 0, in PyFrozenSet_New
File "??", line 0, in PyEval_EvalCode
File "??", line 0, in PyEval_EvalCode
File "??", line 0, in _PyEval_EvalFrameDefault
File "/var/lib/workspace/intermediate_source/torch_export_tutorial.py", line 557, in <module>
ep = export(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/__init__.py", line 286, in export
return _export(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1130, in wrapper
ep = fn(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/exported_program.py", line 123, in wrapper
return fn(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 2176, in _export
ep = _export_for_training(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1130, in wrapper
ep = fn(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/exported_program.py", line 123, in wrapper
return fn(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 2037, in _export_for_training
export_artifact = export_func(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1979, in _non_strict_export
aten_export_artifact = _to_aten_func( # type: ignore[operator]
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1770, in _export_to_aten_ir_make_fx
gm, graph_signature = transform(_make_fx_helper)(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1900, in _aot_export_non_strict
gm, sig = aot_export(wrapped_mod, args, kwargs=kwargs, **flags)
File "??", line 0, in PyObject_Call
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1685, in _make_fx_helper
gm = make_fx(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 2318, in wrapped
return make_fx_tracer.trace(f, *args)
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 2250, in trace
return self._trace_inner(f, *args)
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 2221, in _trace_inner
t = dispatch_trace(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_compile.py", line 53, in inner
return disable_fn(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/eval_frame.py", line 929, in _fn
return fn(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1254, in dispatch_trace
graph = tracer.trace(root, concrete_args) # type: ignore[arg-type]
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1835, in trace
res = super().trace(root, concrete_args)
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/eval_frame.py", line 929, in _fn
return fn(*args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 850, in trace
(self.create_arg(fn(*args)),),
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1312, in wrapped
out = f(*tensors) # type:ignore[call-arg]
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "<string>", line 1, in <lambda>
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1589, in wrapped_fn
return tuple(flat_fn(*args))
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_functorch/_aot_autograd/utils.py", line 184, in flat_fn
tree_out = fn(*args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_functorch/_aot_autograd/traced_function_transforms.py", line 906, in functional_call
out = mod(*args[params_len:], **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in PyInit__datetime
File "??", line 0, in _PyObject_Call_Prepend
File "??", line 0, in _PyObject_FastCallDictTstate
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 825, in module_call_wrapper
return self.call_module(mod, forward, args, kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1905, in call_module
return Tracer.call_module(self, m, forward, args, kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 542, in call_module
ret_val = forward(*args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 818, in forward
return _orig_module_call(mod, *args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1773, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1784, in _call_impl
return forward_call(*args, **kwargs)
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1884, in forward
tree_out = mod(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in PyInit__datetime
File "??", line 0, in _PyObject_Call_Prepend
File "??", line 0, in _PyObject_FastCallDictTstate
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 825, in module_call_wrapper
return self.call_module(mod, forward, args, kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1905, in call_module
return Tracer.call_module(self, m, forward, args, kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 542, in call_module
ret_val = forward(*args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 818, in forward
return _orig_module_call(mod, *args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1773, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1784, in _call_impl
return forward_call(*args, **kwargs)
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/var/lib/workspace/intermediate_source/torch_export_tutorial.py", line 553, in forward
return w + torch.ones(4)
File "??", line 0, in PyNumber_Add
File "??", line 0, in _Py_c_pow
File "??", line 0, in PyThread_start_new_thread
File "??", line 0, in _PyType_LookupId
File "??", line 0, in _PyObject_GetDictPtr
File "python_variable_methods.cpp", line 0, in _object* torch::autograd::TypeError_to_NotImplemented_<&torch::autograd::THPVariable_add>(_object*, _object*, _object*)
File "python_variable_methods.cpp", line 0, in torch::autograd::THPVariable_add(_object*, _object*, _object*)
File "", line 0, in torch::handle_torch_function(torch::PythonArgs&, _object*, _object*, _object*, _object*, char const*, char const*)
File "??", line 0, in torch::handle_torch_function_no_python_arg_parser(c10::ArrayRef<_object*>, _object*, _object*, char const*, _object*, char const*, torch::TorchFunctionName)
File "??", line 0, in PyObject_CallMethod
File "??", line 0, in PyModule_AddObjectRef
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1360, in __torch_function__
return func(*args, **kwargs)
File "??", line 0, in _PyObject_GetDictPtr
File "python_variable_methods.cpp", line 0, in torch::autograd::THPVariable_add(_object*, _object*, _object*)
File "", line 0, in torch::handle_torch_function(torch::PythonArgs&, _object*, _object*, _object*, _object*, char const*, char const*)
File "??", line 0, in torch::handle_torch_function_no_python_arg_parser(c10::ArrayRef<_object*>, _object*, _object*, char const*, _object*, char const*, torch::TorchFunctionName)
File "??", line 0, in PyObject_CallMethod
File "??", line 0, in PyModule_AddObjectRef
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1407, in __torch_function__
return func(*args, **kwargs)
File "??", line 0, in _PyObject_GetDictPtr
File "python_variable_methods.cpp", line 0, in torch::autograd::THPVariable_add(_object*, _object*, _object*)
File "", line 0, in torch::handle_torch_function(torch::PythonArgs&, _object*, _object*, _object*, _object*, char const*, char const*)
File "??", line 0, in torch::handle_torch_function_no_python_arg_parser(c10::ArrayRef<_object*>, _object*, _object*, char const*, _object*, char const*, torch::TorchFunctionName)
File "??", line 0, in PyObject_CallMethod
File "??", line 0, in PyModule_AddObjectRef
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_export/non_strict_utils.py", line 1051, in __torch_function__
return func(*args, **kwargs)
File "??", line 0, in _PyObject_GetDictPtr
File "python_variable_methods.cpp", line 0, in torch::autograd::THPVariable_add(_object*, _object*, _object*)
File "??", line 0, in at::_ops::add_Tensor::call(at::Tensor const&, at::Tensor const&, c10::Scalar const&)
File "PyInterpreter.cpp", line 0, in torch::detail::(anonymous namespace)::ConcretePyInterpreterVTable::python_dispatcher(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_ops.py", line 950, in handler
return torch._library.utils.handle_dispatch_mode(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_library/utils.py", line 296, in handle_dispatch_mode
return curr_mode.__torch_dispatch__(op_overload, overload_types, args, kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/utils/_stats.py", line 28, in wrapper
return fn(*args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1462, in __torch_dispatch__
return proxy_call(self, func, self.pre_dispatch, args, kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 914, in proxy_call
out = func(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in PyInit__datetime
File "??", line 0, in _PyObject_Call_Prepend
File "??", line 0, in _PyObject_FastCallDictTstate
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_ops.py", line 829, in __call__
return self._op(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in PyObject_CallFunctionObjArgs
File "", line 0, in pybind11::cpp_function::dispatcher(_object*, _object*, _object*)
File "init.cpp", line 0, in pybind11::cpp_function::initialize<torch::jit::initJITBindings(_object*)::{lambda(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&)#2}::operator()(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) const::{lambda(pybind11::args const&, pybind11::kwargs const&)#1}, pybind11::object, pybind11::args const&, pybind11::kwargs const&>(torch::jit::initJITBindings(_object*)::{lambda(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&)#2}::operator()(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) const::{lambda(pybind11::args const&, pybind11::kwargs const&)#1}&&, pybind11::object (*)(pybind11::args const&, pybind11::kwargs const&))::{lambda(pybind11::detail::function_call&)#1}::_FUN(pybind11::detail::function_call&)
File "init.cpp", line 0, in torch::jit::initJITBindings(_object*)::{lambda(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&)#2}::operator()(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) const::{lambda(pybind11::args const&, pybind11::kwargs const&)#1}::operator()(pybind11::args const&, pybind11::kwargs const&) const
File "??", line 0, in torch::jit::_get_operation_for_overload_or_packet(std::vector<std::shared_ptr<torch::jit::Operator>, std::allocator<std::shared_ptr<torch::jit::Operator> > > const&, c10::Symbol, pybind11::args const&, pybind11::kwargs const&, bool, std::optional<c10::DispatchKey>)
File "??", line 0, in torch::jit::invokeOperatorFromPython(std::vector<std::shared_ptr<torch::jit::Operator>, std::allocator<std::shared_ptr<torch::jit::Operator> > > const&, pybind11::args const&, pybind11::kwargs const&, std::optional<c10::DispatchKey>)
File "register_c10_ops.cpp", line 0, in c10::Dispatcher::callBoxed(c10::OperatorHandle const&, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const [clone .isra.0]
File "PyInterpreter.cpp", line 0, in torch::detail::(anonymous namespace)::ConcretePyInterpreterVTable::python_dispatcher(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const
File "", line 0, in c10::OperatorHandle::callBoxedForDispatchKey(c10::DispatchKey, std::vector<c10::IValue, std::allocator<c10::IValue> >&) const
File "PythonFallbackKernel.cpp", line 0, in void c10::BoxedKernel::make_boxed_function<&(anonymous namespace)::pythonTLSSnapshotFallback>(c10::OperatorKernel*, c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*)
File "PyInterpreter.cpp", line 0, in torch::detail::(anonymous namespace)::ConcretePyInterpreterVTable::python_dispatcher(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const
File "", line 0, in c10::OperatorHandle::callBoxedForDispatchKey(c10::DispatchKey, std::vector<c10::IValue, std::allocator<c10::IValue> >&) const
File "VariableType_2.cpp", line 0, in c10::impl::make_boxed_from_unboxed_functor<c10::impl::detail::WrapFunctionIntoFunctor_<c10::CompileTimeFunctionPointer<at::Tensor (c10::DispatchKeySet, at::Tensor const&, at::Tensor const&, c10::Scalar const&), &torch::autograd::VariableType::(anonymous namespace)::add_Tensor>, at::Tensor, c10::guts::typelist::typelist<c10::DispatchKeySet, at::Tensor const&, at::Tensor const&, c10::Scalar const&> >, false>::call(c10::OperatorKernel*, c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*)
File "VariableType_2.cpp", line 0, in torch::autograd::VariableType::(anonymous namespace)::add_Tensor(c10::DispatchKeySet, at::Tensor const&, at::Tensor const&, c10::Scalar const&)
File "??", line 0, in at::_ops::add_Tensor::redispatch(c10::DispatchKeySet, at::Tensor const&, at::Tensor const&, c10::Scalar const&)
File "PyInterpreter.cpp", line 0, in torch::detail::(anonymous namespace)::ConcretePyInterpreterVTable::python_dispatcher(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const
File "", line 0, in c10::OperatorHandle::callBoxedForDispatchKey(c10::DispatchKey, std::vector<c10::IValue, std::allocator<c10::IValue> >&) const
File "PythonFallbackKernel.cpp", line 0, in (anonymous namespace)::pythonFallback(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*)
File "PyInterpreter.cpp", line 0, in torch::detail::(anonymous namespace)::ConcretePyInterpreterVTable::dispatch(c10::OperatorHandle const&, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const
File "??", line 0, in torch::handle_torch_function_no_python_arg_parser(c10::ArrayRef<_object*>, _object*, _object*, char const*, _object*, char const*, torch::TorchFunctionName)
File "??", line 0, in PyObject_CallMethod
File "??", line 0, in PyModule_AddObjectRef
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/utils/_stats.py", line 28, in wrapper
return fn(*args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_subclasses/fake_tensor.py", line 1352, in __torch_dispatch__
return self.dispatch(func, types, args, kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_subclasses/fake_tensor.py", line 2058, in dispatch
return self._cached_dispatch_impl(func, types, args, kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_subclasses/fake_tensor.py", line 1487, in _cached_dispatch_impl
output = self._dispatch_impl(func, types, args, kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_subclasses/fake_tensor.py", line 2581, in _dispatch_impl
return maybe_propagate_real_tensors(fast_impl(self, *args, **kwargs))
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_subclasses/fake_impls.py", line 962, in fast_binary_impl
final_shape = infer_size(final_shape, shape)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_subclasses/fake_impls.py", line 922, in infer_size
torch._check(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/__init__.py", line 1684, in _check
_check_with(RuntimeError, cond, message)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/__init__.py", line 1647, in _check_with
if expect_true(cond):
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 1702, in expect_true
return a.node.expect_true(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/sym_node.py", line 559, in expect_true
return self.shape_env.guard_or_defer_runtime_assert(
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyObject_MakeTpCall
File "??", line 0, in _PyCodec_EncodeText
File "??", line 0, in PyObject_Call
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/recording.py", line 272, in wrapper
return retlog(fn(*args, **kwargs))
File "??", line 0, in PyObject_Call
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 7730, in guard_or_defer_runtime_assert
self._maybe_guard_rel(expr)
File "??", line 0, in _PyObject_MakeTpCall
File "??", line 0, in _PyCodec_EncodeText
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 6868, in _maybe_guard_rel
self._refine_ranges(expr)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 7819, in _refine_ranges
self._set_replacement(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 6768, in _set_replacement
CapturedTraceback.extract(cpp=True)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/utils/_traceback.py", line 212, in extract
torch._C._profiler.gather_traceback(python=True, script=script, cpp=cpp),
File "??", line 0, in _PyObject_MakeTpCall
File "??", line 0, in PyObject_CallFunctionObjArgs
File "", line 0, in pybind11::cpp_function::dispatcher(_object*, _object*, _object*)
File "", line 0, in pybind11::cpp_function::initialize<std::shared_ptr<torch::CapturedTraceback> (*&)(bool, bool, bool), std::shared_ptr<torch::CapturedTraceback>, bool, bool, bool, pybind11::name, pybind11::scope, pybind11::sibling, pybind11::arg_v, pybind11::arg_v, pybind11::arg_v>(std::shared_ptr<torch::CapturedTraceback> (*&)(bool, bool, bool), std::shared_ptr<torch::CapturedTraceback> (*)(bool, bool, bool), pybind11::name const&, pybind11::scope const&, pybind11::sibling const&, pybind11::arg_v const&, pybind11::arg_v const&, pybind11::arg_v const&)::{lambda(pybind11::detail::function_call&)#3}::operator()(pybind11::detail::function_call&) const
File "??", line 0, in torch::CapturedTraceback::gather(bool, bool, bool)
File "??", line 0, in torch::unwind::unwind()
- You marked d1 as dynamic but your code specialized it to be a constant (4). If you're using mark_dynamic, either remove it or use maybe_mark_dynamic. If you're using Dim.DYNAMIC, replace it with either Dim.STATIC or Dim.AUTO.
Framework stack:
File "??", line 0, in _start
File "??", line 0, in __libc_start_main
File "??", line 0, in __libc_init_first
File "??", line 0, in Py_BytesMain
File "??", line 0, in Py_RunMain
File "??", line 0, in _PyRun_AnyFileObject
File "??", line 0, in _PyRun_SimpleFileObject
File "??", line 0, in PyUnicode_Tailmatch
File "??", line 0, in PyInit__collections
File "??", line 0, in PyUnicode_Tailmatch
File "??", line 0, in PyEval_EvalCode
File "??", line 0, in PyEval_EvalCode
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/bin/sphinx-build", line 7, in <module>
sys.exit(main())
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx/cmd/build.py", line 339, in main
return make_main(argv)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx/cmd/build.py", line 213, in make_main
return make_mode.run_make_mode(argv[1:])
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx/cmd/make_mode.py", line 181, in run_make_mode
return make.run_generic_build(args[0])
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx/cmd/make_mode.py", line 169, in run_generic_build
return build_main(args + opts)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx/cmd/build.py", line 293, in build_main
app = Sphinx(args.sourcedir, args.confdir, args.outputdir,
File "??", line 0, in _PyObject_MakeTpCall
File "??", line 0, in _PyStack_AsDict
File "??", line 0, in _PyObject_FastCallDictTstate
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx/application.py", line 272, in __init__
self._init_builder()
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx/application.py", line 343, in _init_builder
self.events.emit('builder-inited')
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx/events.py", line 97, in emit
results.append(listener.handler(self.app, *args))
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_gallery.py", line 757, in generate_gallery_rst
) = generate_dir_rst(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 606, in generate_dir_rst
results = parallel(
File "??", line 0, in PyUnicode_Decode
File "??", line 0, in _PyLong_FromByteArray
File "??", line 0, in PyObject_SelfIter
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 607, in <genexpr>
p_fun(fname, target_dir, src_dir, gallery_conf) for fname in iterator
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/var/lib/workspace/conf.py", line 85, in wrapper
p.start()
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/lib/python3.10/multiprocessing/process.py", line 121, in start
self._popen = self._Popen(self)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/lib/python3.10/multiprocessing/context.py", line 224, in _Popen
return _default_context.get_context().Process._Popen(process_obj)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/lib/python3.10/multiprocessing/context.py", line 281, in _Popen
return Popen(process_obj)
File "??", line 0, in _PyObject_MakeTpCall
File "??", line 0, in _PyStack_AsDict
File "??", line 0, in _PyObject_FastCallDictTstate
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/lib/python3.10/multiprocessing/popen_fork.py", line 19, in __init__
self._launch(process_obj)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/lib/python3.10/multiprocessing/popen_fork.py", line 71, in _launch
code = process_obj._bootstrap(parent_sentinel=child_r)
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/lib/python3.10/multiprocessing/process.py", line 314, in _bootstrap
self.run()
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/lib/python3.10/multiprocessing/process.py", line 108, in run
self._target(*self._args, **self._kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/var/lib/workspace/conf.py", line 73, in call_fn
result = func(*args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 1374, in generate_file_rst
output_blocks, time_elapsed = execute_script(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 1192, in execute_script
execute_code_block(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 1048, in execute_code_block
is_last_expr, mem_max = _exec_and_get_memory(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 876, in _exec_and_get_memory
mem_max, _ = call_memory(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 1725, in _sg_call_memory_noop
return 0.0, func()
File "??", line 0, in _PyObject_MakeTpCall
File "??", line 0, in PyInit__datetime
File "??", line 0, in _PyObject_Call_Prepend
File "??", line 0, in _PyObject_FastCallDictTstate
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 794, in __call__
exec(self.code, self.fake_main.__dict__)
File "??", line 0, in PyCell_New
File "??", line 0, in PyFrozenSet_New
File "??", line 0, in PyEval_EvalCode
File "??", line 0, in PyEval_EvalCode
File "??", line 0, in _PyEval_EvalFrameDefault
File "/var/lib/workspace/intermediate_source/torch_export_tutorial.py", line 557, in <module>
ep = export(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/__init__.py", line 286, in export
return _export(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1130, in wrapper
ep = fn(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/exported_program.py", line 123, in wrapper
return fn(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 2176, in _export
ep = _export_for_training(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1130, in wrapper
ep = fn(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/exported_program.py", line 123, in wrapper
return fn(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 2037, in _export_for_training
export_artifact = export_func(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1979, in _non_strict_export
aten_export_artifact = _to_aten_func( # type: ignore[operator]
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1798, in _export_to_aten_ir_make_fx
produce_guards_callback(gm)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1944, in _produce_guards_callback
return produce_guards_and_solve_constraints(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_export/non_strict_utils.py", line 514, in produce_guards_and_solve_constraints
shape_env.produce_guards(
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 5200, in produce_guards
return self.produce_guards_verbose(*args, **kwargs, langs=("python",))[0].exprs
File "??", line 0, in PyObject_Call
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 5405, in produce_guards_verbose
expr1, expr2 = get_expression(src1), get_expression(src2) # type: ignore[]
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 5399, in get_expression
return symint.node.expr
File "??", line 0, in PyObject_GetAttr
File "??", line 0, in _PyObject_GenericGetAttrWithDict
File "??", line 0, in PyObject_IsTrue
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/sym_node.py", line 189, in expr
return self.shape_env.replace(self._expr)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 2539, in wrapper
return fn_cache(self, *args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in _PyErr_FormatFromCause
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 6324, in replace
r = self._find(s)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 2539, in wrapper
return fn_cache(self, *args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in _PyErr_FormatFromCause
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/recording.py", line 272, in wrapper
return retlog(fn(*args, **kwargs))
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 6809, in _find
self._set_replacement(a, replaced, "find")
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 6768, in _set_replacement
CapturedTraceback.extract(cpp=True)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/utils/_traceback.py", line 212, in extract
torch._C._profiler.gather_traceback(python=True, script=script, cpp=cpp),
File "??", line 0, in _PyObject_MakeTpCall
File "??", line 0, in PyObject_CallFunctionObjArgs
File "", line 0, in pybind11::cpp_function::dispatcher(_object*, _object*, _object*)
File "", line 0, in pybind11::cpp_function::initialize<std::shared_ptr<torch::CapturedTraceback> (*&)(bool, bool, bool), std::shared_ptr<torch::CapturedTraceback>, bool, bool, bool, pybind11::name, pybind11::scope, pybind11::sibling, pybind11::arg_v, pybind11::arg_v, pybind11::arg_v>(std::shared_ptr<torch::CapturedTraceback> (*&)(bool, bool, bool), std::shared_ptr<torch::CapturedTraceback> (*)(bool, bool, bool), pybind11::name const&, pybind11::scope const&, pybind11::sibling const&, pybind11::arg_v const&, pybind11::arg_v const&, pybind11::arg_v const&)::{lambda(pybind11::detail::function_call&)#3}::operator()(pybind11::detail::function_call&) const
File "??", line 0, in torch::CapturedTraceback::gather(bool, bool, bool)
File "??", line 0, in torch::unwind::unwind()
- The values of dy = L['y'].size()[0] and dx = L['x'].size()[0] must always be equal.
Suggested fixes:
d1 = 4
dy = dx
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/var/lib/workspace/intermediate_source/torch_export_tutorial.py", line 557, in <module>
ep = export(
File "/usr/local/lib/python3.10/dist-packages/torch/export/__init__.py", line 319, in export
raise e
File "/usr/local/lib/python3.10/dist-packages/torch/export/__init__.py", line 286, in export
return _export(
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1164, in wrapper
raise e
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1130, in wrapper
ep = fn(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/export/exported_program.py", line 123, in wrapper
return fn(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 2176, in _export
ep = _export_for_training(
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1164, in wrapper
raise e
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1130, in wrapper
ep = fn(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/export/exported_program.py", line 123, in wrapper
return fn(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 2037, in _export_for_training
export_artifact = export_func(
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1979, in _non_strict_export
aten_export_artifact = _to_aten_func( # type: ignore[operator]
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1800, in _export_to_aten_ir_make_fx
raise UserError(UserErrorType.CONSTRAINT_VIOLATION, str(e)) # noqa: B904
torch._dynamo.exc.UserError: Constraints violated (d1, dy)! For more information, run with TORCH_LOGS="+dynamic".
- You marked d1 as dynamic but your code specialized it to be a constant (4). If you're using mark_dynamic, either remove it or use maybe_mark_dynamic. If you're using Dim.DYNAMIC, replace it with either Dim.STATIC or Dim.AUTO.
Framework stack:
File "??", line 0, in _start
File "??", line 0, in __libc_start_main
File "??", line 0, in __libc_init_first
File "??", line 0, in Py_BytesMain
File "??", line 0, in Py_RunMain
File "??", line 0, in _PyRun_AnyFileObject
File "??", line 0, in _PyRun_SimpleFileObject
File "??", line 0, in PyUnicode_Tailmatch
File "??", line 0, in PyInit__collections
File "??", line 0, in PyUnicode_Tailmatch
File "??", line 0, in PyEval_EvalCode
File "??", line 0, in PyEval_EvalCode
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/bin/sphinx-build", line 7, in <module>
sys.exit(main())
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx/cmd/build.py", line 339, in main
return make_main(argv)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx/cmd/build.py", line 213, in make_main
return make_mode.run_make_mode(argv[1:])
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx/cmd/make_mode.py", line 181, in run_make_mode
return make.run_generic_build(args[0])
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx/cmd/make_mode.py", line 169, in run_generic_build
return build_main(args + opts)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx/cmd/build.py", line 293, in build_main
app = Sphinx(args.sourcedir, args.confdir, args.outputdir,
File "??", line 0, in _PyObject_MakeTpCall
File "??", line 0, in _PyStack_AsDict
File "??", line 0, in _PyObject_FastCallDictTstate
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx/application.py", line 272, in __init__
self._init_builder()
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx/application.py", line 343, in _init_builder
self.events.emit('builder-inited')
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx/events.py", line 97, in emit
results.append(listener.handler(self.app, *args))
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_gallery.py", line 757, in generate_gallery_rst
) = generate_dir_rst(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 606, in generate_dir_rst
results = parallel(
File "??", line 0, in PyUnicode_Decode
File "??", line 0, in _PyLong_FromByteArray
File "??", line 0, in PyObject_SelfIter
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 607, in <genexpr>
p_fun(fname, target_dir, src_dir, gallery_conf) for fname in iterator
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/var/lib/workspace/conf.py", line 85, in wrapper
p.start()
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/lib/python3.10/multiprocessing/process.py", line 121, in start
self._popen = self._Popen(self)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/lib/python3.10/multiprocessing/context.py", line 224, in _Popen
return _default_context.get_context().Process._Popen(process_obj)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/lib/python3.10/multiprocessing/context.py", line 281, in _Popen
return Popen(process_obj)
File "??", line 0, in _PyObject_MakeTpCall
File "??", line 0, in _PyStack_AsDict
File "??", line 0, in _PyObject_FastCallDictTstate
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/lib/python3.10/multiprocessing/popen_fork.py", line 19, in __init__
self._launch(process_obj)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/lib/python3.10/multiprocessing/popen_fork.py", line 71, in _launch
code = process_obj._bootstrap(parent_sentinel=child_r)
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/lib/python3.10/multiprocessing/process.py", line 314, in _bootstrap
self.run()
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/lib/python3.10/multiprocessing/process.py", line 108, in run
self._target(*self._args, **self._kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/var/lib/workspace/conf.py", line 73, in call_fn
result = func(*args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 1374, in generate_file_rst
output_blocks, time_elapsed = execute_script(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 1192, in execute_script
execute_code_block(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 1048, in execute_code_block
is_last_expr, mem_max = _exec_and_get_memory(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 876, in _exec_and_get_memory
mem_max, _ = call_memory(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 1725, in _sg_call_memory_noop
return 0.0, func()
File "??", line 0, in _PyObject_MakeTpCall
File "??", line 0, in PyInit__datetime
File "??", line 0, in _PyObject_Call_Prepend
File "??", line 0, in _PyObject_FastCallDictTstate
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 794, in __call__
exec(self.code, self.fake_main.__dict__)
File "??", line 0, in PyCell_New
File "??", line 0, in PyFrozenSet_New
File "??", line 0, in PyEval_EvalCode
File "??", line 0, in PyEval_EvalCode
File "??", line 0, in _PyEval_EvalFrameDefault
File "/var/lib/workspace/intermediate_source/torch_export_tutorial.py", line 557, in <module>
ep = export(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/__init__.py", line 286, in export
return _export(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1130, in wrapper
ep = fn(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/exported_program.py", line 123, in wrapper
return fn(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 2176, in _export
ep = _export_for_training(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1130, in wrapper
ep = fn(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/exported_program.py", line 123, in wrapper
return fn(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 2037, in _export_for_training
export_artifact = export_func(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1979, in _non_strict_export
aten_export_artifact = _to_aten_func( # type: ignore[operator]
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1770, in _export_to_aten_ir_make_fx
gm, graph_signature = transform(_make_fx_helper)(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1900, in _aot_export_non_strict
gm, sig = aot_export(wrapped_mod, args, kwargs=kwargs, **flags)
File "??", line 0, in PyObject_Call
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1685, in _make_fx_helper
gm = make_fx(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 2318, in wrapped
return make_fx_tracer.trace(f, *args)
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 2250, in trace
return self._trace_inner(f, *args)
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 2221, in _trace_inner
t = dispatch_trace(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_compile.py", line 53, in inner
return disable_fn(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/eval_frame.py", line 929, in _fn
return fn(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1254, in dispatch_trace
graph = tracer.trace(root, concrete_args) # type: ignore[arg-type]
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1835, in trace
res = super().trace(root, concrete_args)
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/eval_frame.py", line 929, in _fn
return fn(*args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 850, in trace
(self.create_arg(fn(*args)),),
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1312, in wrapped
out = f(*tensors) # type:ignore[call-arg]
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "<string>", line 1, in <lambda>
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1589, in wrapped_fn
return tuple(flat_fn(*args))
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_functorch/_aot_autograd/utils.py", line 184, in flat_fn
tree_out = fn(*args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_functorch/_aot_autograd/traced_function_transforms.py", line 906, in functional_call
out = mod(*args[params_len:], **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in PyInit__datetime
File "??", line 0, in _PyObject_Call_Prepend
File "??", line 0, in _PyObject_FastCallDictTstate
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 825, in module_call_wrapper
return self.call_module(mod, forward, args, kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1905, in call_module
return Tracer.call_module(self, m, forward, args, kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 542, in call_module
ret_val = forward(*args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 818, in forward
return _orig_module_call(mod, *args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1773, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1784, in _call_impl
return forward_call(*args, **kwargs)
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1884, in forward
tree_out = mod(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in PyInit__datetime
File "??", line 0, in _PyObject_Call_Prepend
File "??", line 0, in _PyObject_FastCallDictTstate
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 825, in module_call_wrapper
return self.call_module(mod, forward, args, kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1905, in call_module
return Tracer.call_module(self, m, forward, args, kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 542, in call_module
ret_val = forward(*args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 818, in forward
return _orig_module_call(mod, *args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1773, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1784, in _call_impl
return forward_call(*args, **kwargs)
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/var/lib/workspace/intermediate_source/torch_export_tutorial.py", line 553, in forward
return w + torch.ones(4)
File "??", line 0, in PyNumber_Add
File "??", line 0, in _Py_c_pow
File "??", line 0, in PyThread_start_new_thread
File "??", line 0, in _PyType_LookupId
File "??", line 0, in _PyObject_GetDictPtr
File "python_variable_methods.cpp", line 0, in _object* torch::autograd::TypeError_to_NotImplemented_<&torch::autograd::THPVariable_add>(_object*, _object*, _object*)
File "python_variable_methods.cpp", line 0, in torch::autograd::THPVariable_add(_object*, _object*, _object*)
File "", line 0, in torch::handle_torch_function(torch::PythonArgs&, _object*, _object*, _object*, _object*, char const*, char const*)
File "??", line 0, in torch::handle_torch_function_no_python_arg_parser(c10::ArrayRef<_object*>, _object*, _object*, char const*, _object*, char const*, torch::TorchFunctionName)
File "??", line 0, in PyObject_CallMethod
File "??", line 0, in PyModule_AddObjectRef
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1360, in __torch_function__
return func(*args, **kwargs)
File "??", line 0, in _PyObject_GetDictPtr
File "python_variable_methods.cpp", line 0, in torch::autograd::THPVariable_add(_object*, _object*, _object*)
File "", line 0, in torch::handle_torch_function(torch::PythonArgs&, _object*, _object*, _object*, _object*, char const*, char const*)
File "??", line 0, in torch::handle_torch_function_no_python_arg_parser(c10::ArrayRef<_object*>, _object*, _object*, char const*, _object*, char const*, torch::TorchFunctionName)
File "??", line 0, in PyObject_CallMethod
File "??", line 0, in PyModule_AddObjectRef
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1407, in __torch_function__
return func(*args, **kwargs)
File "??", line 0, in _PyObject_GetDictPtr
File "python_variable_methods.cpp", line 0, in torch::autograd::THPVariable_add(_object*, _object*, _object*)
File "", line 0, in torch::handle_torch_function(torch::PythonArgs&, _object*, _object*, _object*, _object*, char const*, char const*)
File "??", line 0, in torch::handle_torch_function_no_python_arg_parser(c10::ArrayRef<_object*>, _object*, _object*, char const*, _object*, char const*, torch::TorchFunctionName)
File "??", line 0, in PyObject_CallMethod
File "??", line 0, in PyModule_AddObjectRef
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_export/non_strict_utils.py", line 1051, in __torch_function__
return func(*args, **kwargs)
File "??", line 0, in _PyObject_GetDictPtr
File "python_variable_methods.cpp", line 0, in torch::autograd::THPVariable_add(_object*, _object*, _object*)
File "??", line 0, in at::_ops::add_Tensor::call(at::Tensor const&, at::Tensor const&, c10::Scalar const&)
File "PyInterpreter.cpp", line 0, in torch::detail::(anonymous namespace)::ConcretePyInterpreterVTable::python_dispatcher(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_ops.py", line 950, in handler
return torch._library.utils.handle_dispatch_mode(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_library/utils.py", line 296, in handle_dispatch_mode
return curr_mode.__torch_dispatch__(op_overload, overload_types, args, kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/utils/_stats.py", line 28, in wrapper
return fn(*args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1462, in __torch_dispatch__
return proxy_call(self, func, self.pre_dispatch, args, kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 914, in proxy_call
out = func(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in PyInit__datetime
File "??", line 0, in _PyObject_Call_Prepend
File "??", line 0, in _PyObject_FastCallDictTstate
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_ops.py", line 829, in __call__
return self._op(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in PyObject_CallFunctionObjArgs
File "", line 0, in pybind11::cpp_function::dispatcher(_object*, _object*, _object*)
File "init.cpp", line 0, in pybind11::cpp_function::initialize<torch::jit::initJITBindings(_object*)::{lambda(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&)#2}::operator()(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) const::{lambda(pybind11::args const&, pybind11::kwargs const&)#1}, pybind11::object, pybind11::args const&, pybind11::kwargs const&>(torch::jit::initJITBindings(_object*)::{lambda(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&)#2}::operator()(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) const::{lambda(pybind11::args const&, pybind11::kwargs const&)#1}&&, pybind11::object (*)(pybind11::args const&, pybind11::kwargs const&))::{lambda(pybind11::detail::function_call&)#1}::_FUN(pybind11::detail::function_call&)
File "init.cpp", line 0, in torch::jit::initJITBindings(_object*)::{lambda(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&)#2}::operator()(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) const::{lambda(pybind11::args const&, pybind11::kwargs const&)#1}::operator()(pybind11::args const&, pybind11::kwargs const&) const
File "??", line 0, in torch::jit::_get_operation_for_overload_or_packet(std::vector<std::shared_ptr<torch::jit::Operator>, std::allocator<std::shared_ptr<torch::jit::Operator> > > const&, c10::Symbol, pybind11::args const&, pybind11::kwargs const&, bool, std::optional<c10::DispatchKey>)
File "??", line 0, in torch::jit::invokeOperatorFromPython(std::vector<std::shared_ptr<torch::jit::Operator>, std::allocator<std::shared_ptr<torch::jit::Operator> > > const&, pybind11::args const&, pybind11::kwargs const&, std::optional<c10::DispatchKey>)
File "register_c10_ops.cpp", line 0, in c10::Dispatcher::callBoxed(c10::OperatorHandle const&, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const [clone .isra.0]
File "PyInterpreter.cpp", line 0, in torch::detail::(anonymous namespace)::ConcretePyInterpreterVTable::python_dispatcher(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const
File "", line 0, in c10::OperatorHandle::callBoxedForDispatchKey(c10::DispatchKey, std::vector<c10::IValue, std::allocator<c10::IValue> >&) const
File "PythonFallbackKernel.cpp", line 0, in void c10::BoxedKernel::make_boxed_function<&(anonymous namespace)::pythonTLSSnapshotFallback>(c10::OperatorKernel*, c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*)
File "PyInterpreter.cpp", line 0, in torch::detail::(anonymous namespace)::ConcretePyInterpreterVTable::python_dispatcher(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const
File "", line 0, in c10::OperatorHandle::callBoxedForDispatchKey(c10::DispatchKey, std::vector<c10::IValue, std::allocator<c10::IValue> >&) const
File "VariableType_2.cpp", line 0, in c10::impl::make_boxed_from_unboxed_functor<c10::impl::detail::WrapFunctionIntoFunctor_<c10::CompileTimeFunctionPointer<at::Tensor (c10::DispatchKeySet, at::Tensor const&, at::Tensor const&, c10::Scalar const&), &torch::autograd::VariableType::(anonymous namespace)::add_Tensor>, at::Tensor, c10::guts::typelist::typelist<c10::DispatchKeySet, at::Tensor const&, at::Tensor const&, c10::Scalar const&> >, false>::call(c10::OperatorKernel*, c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*)
File "VariableType_2.cpp", line 0, in torch::autograd::VariableType::(anonymous namespace)::add_Tensor(c10::DispatchKeySet, at::Tensor const&, at::Tensor const&, c10::Scalar const&)
File "??", line 0, in at::_ops::add_Tensor::redispatch(c10::DispatchKeySet, at::Tensor const&, at::Tensor const&, c10::Scalar const&)
File "PyInterpreter.cpp", line 0, in torch::detail::(anonymous namespace)::ConcretePyInterpreterVTable::python_dispatcher(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const
File "", line 0, in c10::OperatorHandle::callBoxedForDispatchKey(c10::DispatchKey, std::vector<c10::IValue, std::allocator<c10::IValue> >&) const
File "PythonFallbackKernel.cpp", line 0, in (anonymous namespace)::pythonFallback(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*)
File "PyInterpreter.cpp", line 0, in torch::detail::(anonymous namespace)::ConcretePyInterpreterVTable::dispatch(c10::OperatorHandle const&, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const
File "??", line 0, in torch::handle_torch_function_no_python_arg_parser(c10::ArrayRef<_object*>, _object*, _object*, char const*, _object*, char const*, torch::TorchFunctionName)
File "??", line 0, in PyObject_CallMethod
File "??", line 0, in PyModule_AddObjectRef
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/utils/_stats.py", line 28, in wrapper
return fn(*args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_subclasses/fake_tensor.py", line 1352, in __torch_dispatch__
return self.dispatch(func, types, args, kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_subclasses/fake_tensor.py", line 2058, in dispatch
return self._cached_dispatch_impl(func, types, args, kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_subclasses/fake_tensor.py", line 1487, in _cached_dispatch_impl
output = self._dispatch_impl(func, types, args, kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_subclasses/fake_tensor.py", line 2581, in _dispatch_impl
return maybe_propagate_real_tensors(fast_impl(self, *args, **kwargs))
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_subclasses/fake_impls.py", line 962, in fast_binary_impl
final_shape = infer_size(final_shape, shape)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_subclasses/fake_impls.py", line 922, in infer_size
torch._check(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/__init__.py", line 1684, in _check
_check_with(RuntimeError, cond, message)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/__init__.py", line 1647, in _check_with
if expect_true(cond):
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 1702, in expect_true
return a.node.expect_true(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/sym_node.py", line 559, in expect_true
return self.shape_env.guard_or_defer_runtime_assert(
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyObject_MakeTpCall
File "??", line 0, in _PyCodec_EncodeText
File "??", line 0, in PyObject_Call
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/recording.py", line 272, in wrapper
return retlog(fn(*args, **kwargs))
File "??", line 0, in PyObject_Call
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 7730, in guard_or_defer_runtime_assert
self._maybe_guard_rel(expr)
File "??", line 0, in _PyObject_MakeTpCall
File "??", line 0, in _PyCodec_EncodeText
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 6868, in _maybe_guard_rel
self._refine_ranges(expr)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 7819, in _refine_ranges
self._set_replacement(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 6768, in _set_replacement
CapturedTraceback.extract(cpp=True)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/utils/_traceback.py", line 212, in extract
torch._C._profiler.gather_traceback(python=True, script=script, cpp=cpp),
File "??", line 0, in _PyObject_MakeTpCall
File "??", line 0, in PyObject_CallFunctionObjArgs
File "", line 0, in pybind11::cpp_function::dispatcher(_object*, _object*, _object*)
File "", line 0, in pybind11::cpp_function::initialize<std::shared_ptr<torch::CapturedTraceback> (*&)(bool, bool, bool), std::shared_ptr<torch::CapturedTraceback>, bool, bool, bool, pybind11::name, pybind11::scope, pybind11::sibling, pybind11::arg_v, pybind11::arg_v, pybind11::arg_v>(std::shared_ptr<torch::CapturedTraceback> (*&)(bool, bool, bool), std::shared_ptr<torch::CapturedTraceback> (*)(bool, bool, bool), pybind11::name const&, pybind11::scope const&, pybind11::sibling const&, pybind11::arg_v const&, pybind11::arg_v const&, pybind11::arg_v const&)::{lambda(pybind11::detail::function_call&)#3}::operator()(pybind11::detail::function_call&) const
File "??", line 0, in torch::CapturedTraceback::gather(bool, bool, bool)
File "??", line 0, in torch::unwind::unwind()
- You marked d1 as dynamic but your code specialized it to be a constant (4). If you're using mark_dynamic, either remove it or use maybe_mark_dynamic. If you're using Dim.DYNAMIC, replace it with either Dim.STATIC or Dim.AUTO.
Framework stack:
File "??", line 0, in _start
File "??", line 0, in __libc_start_main
File "??", line 0, in __libc_init_first
File "??", line 0, in Py_BytesMain
File "??", line 0, in Py_RunMain
File "??", line 0, in _PyRun_AnyFileObject
File "??", line 0, in _PyRun_SimpleFileObject
File "??", line 0, in PyUnicode_Tailmatch
File "??", line 0, in PyInit__collections
File "??", line 0, in PyUnicode_Tailmatch
File "??", line 0, in PyEval_EvalCode
File "??", line 0, in PyEval_EvalCode
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/bin/sphinx-build", line 7, in <module>
sys.exit(main())
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx/cmd/build.py", line 339, in main
return make_main(argv)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx/cmd/build.py", line 213, in make_main
return make_mode.run_make_mode(argv[1:])
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx/cmd/make_mode.py", line 181, in run_make_mode
return make.run_generic_build(args[0])
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx/cmd/make_mode.py", line 169, in run_generic_build
return build_main(args + opts)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx/cmd/build.py", line 293, in build_main
app = Sphinx(args.sourcedir, args.confdir, args.outputdir,
File "??", line 0, in _PyObject_MakeTpCall
File "??", line 0, in _PyStack_AsDict
File "??", line 0, in _PyObject_FastCallDictTstate
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx/application.py", line 272, in __init__
self._init_builder()
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx/application.py", line 343, in _init_builder
self.events.emit('builder-inited')
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx/events.py", line 97, in emit
results.append(listener.handler(self.app, *args))
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_gallery.py", line 757, in generate_gallery_rst
) = generate_dir_rst(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 606, in generate_dir_rst
results = parallel(
File "??", line 0, in PyUnicode_Decode
File "??", line 0, in _PyLong_FromByteArray
File "??", line 0, in PyObject_SelfIter
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 607, in <genexpr>
p_fun(fname, target_dir, src_dir, gallery_conf) for fname in iterator
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/var/lib/workspace/conf.py", line 85, in wrapper
p.start()
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/lib/python3.10/multiprocessing/process.py", line 121, in start
self._popen = self._Popen(self)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/lib/python3.10/multiprocessing/context.py", line 224, in _Popen
return _default_context.get_context().Process._Popen(process_obj)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/lib/python3.10/multiprocessing/context.py", line 281, in _Popen
return Popen(process_obj)
File "??", line 0, in _PyObject_MakeTpCall
File "??", line 0, in _PyStack_AsDict
File "??", line 0, in _PyObject_FastCallDictTstate
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/lib/python3.10/multiprocessing/popen_fork.py", line 19, in __init__
self._launch(process_obj)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/lib/python3.10/multiprocessing/popen_fork.py", line 71, in _launch
code = process_obj._bootstrap(parent_sentinel=child_r)
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/lib/python3.10/multiprocessing/process.py", line 314, in _bootstrap
self.run()
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/lib/python3.10/multiprocessing/process.py", line 108, in run
self._target(*self._args, **self._kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/var/lib/workspace/conf.py", line 73, in call_fn
result = func(*args, **kwargs)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 1374, in generate_file_rst
output_blocks, time_elapsed = execute_script(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 1192, in execute_script
execute_code_block(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 1048, in execute_code_block
is_last_expr, mem_max = _exec_and_get_memory(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 876, in _exec_and_get_memory
mem_max, _ = call_memory(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 1725, in _sg_call_memory_noop
return 0.0, func()
File "??", line 0, in _PyObject_MakeTpCall
File "??", line 0, in PyInit__datetime
File "??", line 0, in _PyObject_Call_Prepend
File "??", line 0, in _PyObject_FastCallDictTstate
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 794, in __call__
exec(self.code, self.fake_main.__dict__)
File "??", line 0, in PyCell_New
File "??", line 0, in PyFrozenSet_New
File "??", line 0, in PyEval_EvalCode
File "??", line 0, in PyEval_EvalCode
File "??", line 0, in _PyEval_EvalFrameDefault
File "/var/lib/workspace/intermediate_source/torch_export_tutorial.py", line 557, in <module>
ep = export(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/__init__.py", line 286, in export
return _export(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1130, in wrapper
ep = fn(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/exported_program.py", line 123, in wrapper
return fn(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 2176, in _export
ep = _export_for_training(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1130, in wrapper
ep = fn(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/exported_program.py", line 123, in wrapper
return fn(*args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 2037, in _export_for_training
export_artifact = export_func(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1979, in _non_strict_export
aten_export_artifact = _to_aten_func( # type: ignore[operator]
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1798, in _export_to_aten_ir_make_fx
produce_guards_callback(gm)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1944, in _produce_guards_callback
return produce_guards_and_solve_constraints(
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/_export/non_strict_utils.py", line 514, in produce_guards_and_solve_constraints
shape_env.produce_guards(
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 5200, in produce_guards
return self.produce_guards_verbose(*args, **kwargs, langs=("python",))[0].exprs
File "??", line 0, in PyObject_Call
File "??", line 0, in PyMethod_New
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 5405, in produce_guards_verbose
expr1, expr2 = get_expression(src1), get_expression(src2) # type: ignore[]
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 5399, in get_expression
return symint.node.expr
File "??", line 0, in PyObject_GetAttr
File "??", line 0, in _PyObject_GenericGetAttrWithDict
File "??", line 0, in PyObject_IsTrue
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/sym_node.py", line 189, in expr
return self.shape_env.replace(self._expr)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 2539, in wrapper
return fn_cache(self, *args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in _PyErr_FormatFromCause
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 6324, in replace
r = self._find(s)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 2539, in wrapper
return fn_cache(self, *args, **kwargs)
File "??", line 0, in PyObject_Call
File "??", line 0, in _PyErr_FormatFromCause
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/recording.py", line 272, in wrapper
return retlog(fn(*args, **kwargs))
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 6809, in _find
self._set_replacement(a, replaced, "find")
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 6768, in _set_replacement
CapturedTraceback.extract(cpp=True)
File "??", line 0, in _PyFunction_Vectorcall
File "??", line 0, in _PyEval_EvalFrameDefault
File "/usr/local/lib/python3.10/dist-packages/torch/utils/_traceback.py", line 212, in extract
torch._C._profiler.gather_traceback(python=True, script=script, cpp=cpp),
File "??", line 0, in _PyObject_MakeTpCall
File "??", line 0, in PyObject_CallFunctionObjArgs
File "", line 0, in pybind11::cpp_function::dispatcher(_object*, _object*, _object*)
File "", line 0, in pybind11::cpp_function::initialize<std::shared_ptr<torch::CapturedTraceback> (*&)(bool, bool, bool), std::shared_ptr<torch::CapturedTraceback>, bool, bool, bool, pybind11::name, pybind11::scope, pybind11::sibling, pybind11::arg_v, pybind11::arg_v, pybind11::arg_v>(std::shared_ptr<torch::CapturedTraceback> (*&)(bool, bool, bool), std::shared_ptr<torch::CapturedTraceback> (*)(bool, bool, bool), pybind11::name const&, pybind11::scope const&, pybind11::sibling const&, pybind11::arg_v const&, pybind11::arg_v const&, pybind11::arg_v const&)::{lambda(pybind11::detail::function_call&)#3}::operator()(pybind11::detail::function_call&) const
File "??", line 0, in torch::CapturedTraceback::gather(bool, bool, bool)
File "??", line 0, in torch::unwind::unwind()
- The values of dy = L['y'].size()[0] and dx = L['x'].size()[0] must always be equal.
Suggested fixes:
d1 = 4
dy = dx
The error above occurred when calling torch.export.export. If you would like to view some more information about this error, and get a list of all other errors that may occur in your export call, you can replace your `export()` call with `draft_export()`.
The expectation with suggested fixes is that the user can interactively copy-paste the changes into their dynamic shapes specification, and successfully export afterwards.
Lastly, there’s couple nice-to-knows about the options for specification:
None
is a good option for static behavior: -dynamic_shapes=None
(default) exports with the entire model being static. - specifyingNone
at an input-level exports with all tensor dimensions static, and is also required for non-tensor inputs. - specifyingNone
at a dimension-level specializes that dimension, though this is deprecated in favor ofDim.STATIC
.specifying per-dimension integer values also produces static behavior, and will additionally check that the provided sample input matches the specification.
These options are combined in the inputs & dynamic shapes spec below:
inputs = (
torch.randn(4, 4),
torch.randn(3, 3),
16,
False,
)
dynamic_shapes = {
"tensor_0": (Dim.AUTO, None),
"tensor_1": None,
"int_val": None,
"bool_val": None,
}
Data-dependent errors#
While trying to export models, you have may have encountered errors like “Could not guard on data-dependent expression”, or Could not extract specialized integer from data-dependent expression”.
These errors exist because torch.export()
compiles programs using FakeTensors, which symbolically represent their real tensor counterparts. While these have equivalent symbolic properties
(e.g. sizes, strides, dtypes), they diverge in that FakeTensors do not contain any data values. While this avoids unnecessary memory usage and expensive computation, it does mean that export may be
unable to out-of-the-box compile parts of user code where compilation relies on data values. In short, if the compiler requires a concrete, data-dependent value in order to proceed, it will error out,
complaining that the value is not available.
Data-dependent values appear in many places, and common sources are calls like item()
, tolist()
, or torch.unbind()
that extract scalar values from tensors.
How are these values represented in the exported program? In the Constraints/Dynamic Shapes
section, we talked about allocating symbols to represent dynamic input dimensions.
The same happens here: we allocate symbols for every data-dependent value that appears in the program. The important distinction is that these are “unbacked” symbols,
in contrast to the “backed” symbols allocated for input dimensions. The “backed/unbacked”
nomenclature refers to the presence/absence of a “hint” for the symbol: a concrete value backing the symbol, that can inform the compiler on how to proceed.
In the input shape symbol case (backed symbols), these hints are simply the sample input shapes provided, which explains why control-flow branching is determined by the sample input properties. For data-dependent values, the symbols are taken from FakeTensor “data” during tracing, and so the compiler doesn’t know the actual values (hints) that these symbols would take on.
Let’s see how these show up in exported programs:
class Foo(torch.nn.Module):
def forward(self, x, y):
a = x.item()
b = y.tolist()
return b + [a]
inps = (
torch.tensor(1),
torch.tensor([2, 3]),
)
ep = export(Foo(), inps)
print(ep)
I0813 15:28:43.125000 31208 torch/fx/experimental/symbolic_shapes.py:3767] create_env
I0813 15:28:43.130000 31208 torch/fx/experimental/symbolic_shapes.py:4776] create_unbacked_symint u0 [-int_oo, int_oo] (_subclasses/fake_impls.py:425 in local_scalar_dense)
I0813 15:28:43.131000 31208 torch/fx/experimental/symbolic_shapes.py:1287] compute_unbacked_bindings [u0]
I0813 15:28:43.135000 31208 torch/fx/experimental/symbolic_shapes.py:4776] create_unbacked_symint u1 [-int_oo, int_oo] (_subclasses/fake_impls.py:425 in local_scalar_dense)
I0813 15:28:43.135000 31208 torch/fx/experimental/symbolic_shapes.py:1287] compute_unbacked_bindings [u1]
I0813 15:28:43.136000 31208 torch/fx/experimental/symbolic_shapes.py:4776] create_unbacked_symint u2 [-int_oo, int_oo] (_subclasses/fake_impls.py:425 in local_scalar_dense)
I0813 15:28:43.136000 31208 torch/fx/experimental/symbolic_shapes.py:1287] compute_unbacked_bindings [u2]
I0813 15:28:43.138000 31208 torch/fx/experimental/symbolic_shapes.py:5238] produce_guards
V0813 15:28:43.139000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['x'].storage_offset() 0 None
V0813 15:28:43.139000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['y'].size()[0] 2 None
V0813 15:28:43.139000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['y'].stride()[0] 1 None
V0813 15:28:43.140000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['y'].storage_offset() 0 None
ExportedProgram:
class GraphModule(torch.nn.Module):
def forward(self, x: "i64[]", y: "i64[2]"):
# File: /var/lib/workspace/intermediate_source/torch_export_tutorial.py:618 in forward, code: a = x.item()
item: "Sym(u0)" = torch.ops.aten.item.default(x); x = None
# File: /var/lib/workspace/intermediate_source/torch_export_tutorial.py:619 in forward, code: b = y.tolist()
unbind = torch.ops.aten.unbind.int(y); y = None
getitem: "i64[]" = unbind[0]
getitem_1: "i64[]" = unbind[1]; unbind = None
item_1: "Sym(u1)" = torch.ops.aten.item.default(getitem); getitem = None
item_2: "Sym(u2)" = torch.ops.aten.item.default(getitem_1); getitem_1 = None
return (item_1, item_2, item)
Graph signature:
# inputs
x: USER_INPUT
y: USER_INPUT
# outputs
item_1: USER_OUTPUT
item_2: USER_OUTPUT
item: USER_OUTPUT
Range constraints: {u0: VR[-int_oo, int_oo], u1: VR[-int_oo, int_oo], u2: VR[-int_oo, int_oo]}
The result is that 3 unbacked symbols (notice they’re prefixed with “u”, instead of the usual “s” for input shape/backed symbols) are allocated and returned:
1 for the item()
call, and 1 for each of the elements of y
with the tolist()
call.
Note from the range constraints field that these take on ranges of [-int_oo, int_oo]
, not the default [0, int_oo]
range allocated to input shape symbols,
since we have no information on what these values are - they don’t represent sizes, so don’t necessarily have positive values.
Guards, torch._check()#
But the case above is easy to export, because the concrete values of these symbols aren’t used in any compiler decision-making; all that’s relevant is that the return values are unbacked symbols. The data-dependent errors highlighted in this section are cases like the following, where data-dependent guards are encountered:
Here we actually need the “hint”, or the concrete value of a
for the compiler to decide whether to trace return y + 2
or return y * 5
as the output.
Because we trace with FakeTensors, we don’t know what a // 2 >= 5
actually evaluates to, and export errors out with “Could not guard on data-dependent expression u0 // 2 >= 5 (unhinted)
”.
So how do we export this toy model? Unlike torch.compile()
, export requires full graph compilation, and we can’t just graph break on this. Here are some basic options:
Manual specialization: we could intervene by selecting the branch to trace, either by removing the control-flow code to contain only the specialized branch, or using
torch.compiler.is_compiling()
to guard what’s traced at compile-time.torch.cond()
: we could rewrite the control-flow code to usetorch.cond()
so we don’t specialize on a branch.
While these options are valid, they have their pitfalls. Option 1 sometimes requires drastic, invasive rewrites of the model code to specialize, and torch.cond()
is not a comprehensive system for handling data-dependent errors.
As we will see, there are data-dependent errors that do not involve control-flow.
The generally recommended approach is to start with torch._check()
calls. While these give the impression of purely being assert statements, they are in fact a system of informing the compiler on properties of symbols.
While a torch._check()
call does act as an assertion at runtime, when traced at compile-time, the checked expression is sent to the symbolic shapes subsystem for reasoning, and any symbol properties that follow from the expression being true,
are stored as symbol properties (provided it’s smart enough to infer those properties). So even if unbacked symbols don’t have hints, if we’re able to communicate properties that are generally true for these symbols via
torch._check()
calls, we can potentially bypass data-dependent guards without rewriting the offending model code.
For example in the model above, inserting torch._check(a >= 10)
would tell the compiler that y + 2
can always be returned, and torch._check(a == 4)
tells it to return y * 5
.
See what happens when we re-export this model.
class Foo(torch.nn.Module):
def forward(self, x, y):
a = x.item()
torch._check(a >= 10)
torch._check(a <= 60)
if a // 2 >= 5:
return y + 2
else:
return y * 5
inps = (
torch.tensor(32),
torch.randn(4),
)
ep = export(Foo(), inps)
print(ep)
I0813 15:28:43.146000 31208 torch/fx/experimental/symbolic_shapes.py:3767] create_env
I0813 15:28:43.151000 31208 torch/fx/experimental/symbolic_shapes.py:4776] create_unbacked_symint u0 [-int_oo, int_oo] (_subclasses/fake_impls.py:425 in local_scalar_dense)
I0813 15:28:43.152000 31208 torch/fx/experimental/symbolic_shapes.py:1287] compute_unbacked_bindings [u0]
I0813 15:28:43.153000 31208 torch/fx/experimental/symbolic_shapes.py:7197] runtime_assert u0 >= 10 [guard added] (ar/lib/workspace/intermediate_source/torch_export_tutorial.py:673 in forward), for more info run with TORCHDYNAMO_EXTENDED_DEBUG_GUARD_ADDED="u0 >= 10"
V0813 15:28:43.154000 31208 torch/fx/experimental/symbolic_shapes.py:6606] _update_var_to_range u0 = VR[10, int_oo] (update)
I0813 15:28:43.159000 31208 torch/fx/experimental/symbolic_shapes.py:7197] runtime_assert u0 <= 60 [guard added] (ar/lib/workspace/intermediate_source/torch_export_tutorial.py:674 in forward), for more info run with TORCHDYNAMO_EXTENDED_DEBUG_GUARD_ADDED="u0 <= 60"
V0813 15:28:43.159000 31208 torch/fx/experimental/symbolic_shapes.py:6606] _update_var_to_range u0 = VR[10, 60] (update)
V0813 15:28:43.165000 31208 torch/fx/experimental/symbolic_shapes.py:7475] eval False == True [statically known]
I0813 15:28:43.168000 31208 torch/fx/experimental/symbolic_shapes.py:5238] produce_guards
V0813 15:28:43.168000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['x'].storage_offset() 0 None
V0813 15:28:43.168000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['y'].size()[0] 4 None
V0813 15:28:43.169000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['y'].stride()[0] 1 None
V0813 15:28:43.169000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['y'].storage_offset() 0 None
V0813 15:28:43.171000 31208 torch/fx/experimental/symbolic_shapes.py:7694] runtime_assert u0 >= 10 == True [statically known]
V0813 15:28:43.172000 31208 torch/fx/experimental/symbolic_shapes.py:7694] runtime_assert u0 <= 60 == True [statically known]
ExportedProgram:
class GraphModule(torch.nn.Module):
def forward(self, x: "i64[]", y: "f32[4]"):
# File: /var/lib/workspace/intermediate_source/torch_export_tutorial.py:672 in forward, code: a = x.item()
item: "Sym(u0)" = torch.ops.aten.item.default(x); x = None
ge_2: "Sym(u0 >= 10)" = item >= 10
_assert_scalar_default = torch.ops.aten._assert_scalar.default(ge_2, "Runtime assertion failed for expression u0 >= 10 on node 'ge_2'"); ge_2 = _assert_scalar_default = None
le_1: "Sym(u0 <= 60)" = item <= 60; item = None
_assert_scalar_default_1 = torch.ops.aten._assert_scalar.default(le_1, "Runtime assertion failed for expression u0 <= 60 on node 'le_1'"); le_1 = _assert_scalar_default_1 = None
# File: /var/lib/workspace/intermediate_source/torch_export_tutorial.py:676 in forward, code: return y + 2
add: "f32[4]" = torch.ops.aten.add.Tensor(y, 2); y = None
return (add,)
Graph signature:
# inputs
x: USER_INPUT
y: USER_INPUT
# outputs
add: USER_OUTPUT
Range constraints: {u0: VR[10, 60]}
Export succeeds, and note from the range constraints field that u0
takes on a range of [10, 60]
.
So what information do torch._check()
calls actually communicate? This varies as the symbolic shapes subsystem gets smarter, but at a fundamental level, these are generally true:
Equality with non-data-dependent expressions:
torch._check()
calls that communicate equalities likeu0 == s0 + 4
oru0 == 5
.Range refinement: calls that provide lower or upper bounds for symbols, like the above.
Some basic reasoning around more complicated expressions: inserting
torch._check(a < 4)
will typically tell the compiler thata >= 4
is false. Checks on complex expressions liketorch._check(a ** 2 - 3 * a <= 10)
will typically get you past identical guards.
As mentioned previously, torch._check()
calls have applicability outside of data-dependent control flow. For example, here’s a model where torch._check()
insertion
prevails while manual specialization & torch.cond()
do not:
class Foo(torch.nn.Module):
def forward(self, x, y):
a = x.item()
return y[a]
inps = (
torch.tensor(32),
torch.randn(60),
)
try:
export(Foo(), inps)
except Exception:
tb.print_exc()
I0813 15:28:43.177000 31208 torch/fx/experimental/symbolic_shapes.py:3767] create_env
I0813 15:28:43.183000 31208 torch/fx/experimental/symbolic_shapes.py:4776] create_unbacked_symint u0 [-int_oo, int_oo] (_subclasses/fake_impls.py:425 in local_scalar_dense)
I0813 15:28:43.183000 31208 torch/fx/experimental/symbolic_shapes.py:1287] compute_unbacked_bindings [u0]
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] Data dependent variable 'u0' allocated at:
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/bin/sphinx-build", line 7, in <module>
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] sys.exit(main())
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/sphinx/cmd/build.py", line 339, in main
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return make_main(argv)
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/sphinx/cmd/build.py", line 213, in make_main
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return make_mode.run_make_mode(argv[1:])
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/sphinx/cmd/make_mode.py", line 181, in run_make_mode
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return make.run_generic_build(args[0])
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/sphinx/cmd/make_mode.py", line 169, in run_generic_build
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return build_main(args + opts)
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/sphinx/cmd/build.py", line 293, in build_main
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] app = Sphinx(args.sourcedir, args.confdir, args.outputdir,
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/sphinx/application.py", line 272, in __init__
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] self._init_builder()
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/sphinx/application.py", line 343, in _init_builder
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] self.events.emit('builder-inited')
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/sphinx/events.py", line 97, in emit
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] results.append(listener.handler(self.app, *args))
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_gallery.py", line 757, in generate_gallery_rst
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] ) = generate_dir_rst(
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 606, in generate_dir_rst
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] results = parallel(
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 607, in <genexpr>
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] p_fun(fname, target_dir, src_dir, gallery_conf) for fname in iterator
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/var/lib/workspace/conf.py", line 85, in wrapper
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] p.start()
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/lib/python3.10/multiprocessing/process.py", line 121, in start
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] self._popen = self._Popen(self)
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/lib/python3.10/multiprocessing/context.py", line 224, in _Popen
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return _default_context.get_context().Process._Popen(process_obj)
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/lib/python3.10/multiprocessing/context.py", line 281, in _Popen
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return Popen(process_obj)
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/lib/python3.10/multiprocessing/popen_fork.py", line 19, in __init__
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] self._launch(process_obj)
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/lib/python3.10/multiprocessing/popen_fork.py", line 71, in _launch
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] code = process_obj._bootstrap(parent_sentinel=child_r)
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/lib/python3.10/multiprocessing/process.py", line 314, in _bootstrap
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] self.run()
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/lib/python3.10/multiprocessing/process.py", line 108, in run
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] self._target(*self._args, **self._kwargs)
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/var/lib/workspace/conf.py", line 73, in call_fn
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] result = func(*args, **kwargs)
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 1374, in generate_file_rst
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] output_blocks, time_elapsed = execute_script(
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 1192, in execute_script
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] execute_code_block(
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 1048, in execute_code_block
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] is_last_expr, mem_max = _exec_and_get_memory(
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 876, in _exec_and_get_memory
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] mem_max, _ = call_memory(
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 1725, in _sg_call_memory_noop
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return 0.0, func()
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 794, in __call__
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] exec(self.code, self.fake_main.__dict__)
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/var/lib/workspace/intermediate_source/torch_export_tutorial.py", line 709, in <module>
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] export(Foo(), inps)
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/export/__init__.py", line 286, in export
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return _export(
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1130, in wrapper
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] ep = fn(*args, **kwargs)
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/export/exported_program.py", line 123, in wrapper
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return fn(*args, **kwargs)
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 2176, in _export
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] ep = _export_for_training(
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1130, in wrapper
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] ep = fn(*args, **kwargs)
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/export/exported_program.py", line 123, in wrapper
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return fn(*args, **kwargs)
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 2037, in _export_for_training
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] export_artifact = export_func(
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1979, in _non_strict_export
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] aten_export_artifact = _to_aten_func( # type: ignore[operator]
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1770, in _export_to_aten_ir_make_fx
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] gm, graph_signature = transform(_make_fx_helper)(
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1900, in _aot_export_non_strict
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] gm, sig = aot_export(wrapped_mod, args, kwargs=kwargs, **flags)
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1685, in _make_fx_helper
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] gm = make_fx(
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 2318, in wrapped
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return make_fx_tracer.trace(f, *args)
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 2250, in trace
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return self._trace_inner(f, *args)
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 2221, in _trace_inner
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] t = dispatch_trace(
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/_compile.py", line 53, in inner
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return disable_fn(*args, **kwargs)
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/eval_frame.py", line 929, in _fn
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return fn(*args, **kwargs)
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1254, in dispatch_trace
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] graph = tracer.trace(root, concrete_args) # type: ignore[arg-type]
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1835, in trace
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] res = super().trace(root, concrete_args)
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/eval_frame.py", line 929, in _fn
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return fn(*args, **kwargs)
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 850, in trace
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] (self.create_arg(fn(*args)),),
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1312, in wrapped
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] out = f(*tensors) # type:ignore[call-arg]
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "<string>", line 1, in <lambda>
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1589, in wrapped_fn
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return tuple(flat_fn(*args))
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/_functorch/_aot_autograd/utils.py", line 184, in flat_fn
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] tree_out = fn(*args, **kwargs)
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/_functorch/_aot_autograd/traced_function_transforms.py", line 906, in functional_call
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] out = mod(*args[params_len:], **kwargs)
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 825, in module_call_wrapper
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return self.call_module(mod, forward, args, kwargs)
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1905, in call_module
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return Tracer.call_module(self, m, forward, args, kwargs)
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 542, in call_module
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] ret_val = forward(*args, **kwargs)
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 818, in forward
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return _orig_module_call(mod, *args, **kwargs)
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1773, in _wrapped_call_impl
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return self._call_impl(*args, **kwargs)
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1784, in _call_impl
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return forward_call(*args, **kwargs)
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1884, in forward
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] tree_out = mod(*args, **kwargs)
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 825, in module_call_wrapper
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return self.call_module(mod, forward, args, kwargs)
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1905, in call_module
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return Tracer.call_module(self, m, forward, args, kwargs)
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 542, in call_module
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] ret_val = forward(*args, **kwargs)
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 818, in forward
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return _orig_module_call(mod, *args, **kwargs)
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1773, in _wrapped_call_impl
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return self._call_impl(*args, **kwargs)
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1784, in _call_impl
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return forward_call(*args, **kwargs)
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/var/lib/workspace/intermediate_source/torch_export_tutorial.py", line 701, in forward
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] a = x.item()
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1360, in __torch_function__
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return func(*args, **kwargs)
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1407, in __torch_function__
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return func(*args, **kwargs)
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/_export/non_strict_utils.py", line 1051, in __torch_function__
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return func(*args, **kwargs)
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/_ops.py", line 950, in handler
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return torch._library.utils.handle_dispatch_mode(
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/_library/utils.py", line 296, in handle_dispatch_mode
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return curr_mode.__torch_dispatch__(op_overload, overload_types, args, kwargs)
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/utils/_stats.py", line 28, in wrapper
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return fn(*args, **kwargs)
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1462, in __torch_dispatch__
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return proxy_call(self, func, self.pre_dispatch, args, kwargs)
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 914, in proxy_call
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] out = func(*args, **kwargs)
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/_ops.py", line 829, in __call__
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return self._op(*args, **kwargs)
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/utils/_stats.py", line 28, in wrapper
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return fn(*args, **kwargs)
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/_subclasses/fake_tensor.py", line 1352, in __torch_dispatch__
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return self.dispatch(func, types, args, kwargs)
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/_subclasses/fake_tensor.py", line 2058, in dispatch
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return self._cached_dispatch_impl(func, types, args, kwargs)
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/_subclasses/fake_tensor.py", line 1474, in _cached_dispatch_impl
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return self._dispatch_impl(func, types, args, kwargs)
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/_subclasses/fake_tensor.py", line 2687, in _dispatch_impl
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] op_impl_out = op_impl(self, func, *args, **kwargs)
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/_subclasses/fake_impls.py", line 163, in dispatch_to_op_implementations_dict
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return op_implementations_dict[func](fake_mode, func, *args, **kwargs)
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/_subclasses/fake_impls.py", line 425, in local_scalar_dense
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] r = fake_mode.shape_env.create_unbacked_symint()
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/recording.py", line 272, in wrapper
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return retlog(fn(*args, **kwargs))
V0813 15:28:43.186000 31208 torch/fx/experimental/symbolic_shapes.py:6519]
E0813 15:28:43.194000 31208 torch/_subclasses/fake_tensor.py:2721] failed while attempting to run meta for aten.select.int
E0813 15:28:43.194000 31208 torch/_subclasses/fake_tensor.py:2721] Traceback (most recent call last):
E0813 15:28:43.194000 31208 torch/_subclasses/fake_tensor.py:2721] File "/usr/local/lib/python3.10/dist-packages/torch/_subclasses/fake_tensor.py", line 2717, in _dispatch_impl
E0813 15:28:43.194000 31208 torch/_subclasses/fake_tensor.py:2721] r = func(*args, **kwargs)
E0813 15:28:43.194000 31208 torch/_subclasses/fake_tensor.py:2721] File "/usr/local/lib/python3.10/dist-packages/torch/_ops.py", line 829, in __call__
E0813 15:28:43.194000 31208 torch/_subclasses/fake_tensor.py:2721] return self._op(*args, **kwargs)
E0813 15:28:43.194000 31208 torch/_subclasses/fake_tensor.py:2721] File "/usr/local/lib/python3.10/dist-packages/torch/_meta_registrations.py", line 5545, in meta_select
E0813 15:28:43.194000 31208 torch/_subclasses/fake_tensor.py:2721] guard_size_oblivious(-index > size) or guard_size_oblivious(index >= size)
E0813 15:28:43.194000 31208 torch/_subclasses/fake_tensor.py:2721] File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 473, in guard_size_oblivious
E0813 15:28:43.194000 31208 torch/_subclasses/fake_tensor.py:2721] return expr.node.guard_size_oblivious("", 0)
E0813 15:28:43.194000 31208 torch/_subclasses/fake_tensor.py:2721] File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/sym_node.py", line 596, in guard_size_oblivious
E0813 15:28:43.194000 31208 torch/_subclasses/fake_tensor.py:2721] r = self.evaluate(size_oblivious=True)
E0813 15:28:43.194000 31208 torch/_subclasses/fake_tensor.py:2721] File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/sym_node.py", line 512, in evaluate
E0813 15:28:43.194000 31208 torch/_subclasses/fake_tensor.py:2721] return self.shape_env.evaluate_sym_node(self, size_oblivious)
E0813 15:28:43.194000 31208 torch/_subclasses/fake_tensor.py:2721] File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 7223, in evaluate_sym_node
E0813 15:28:43.194000 31208 torch/_subclasses/fake_tensor.py:2721] return self.evaluate_expr(
E0813 15:28:43.194000 31208 torch/_subclasses/fake_tensor.py:2721] File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 7323, in evaluate_expr
E0813 15:28:43.194000 31208 torch/_subclasses/fake_tensor.py:2721] return self._inner_evaluate_expr(
E0813 15:28:43.194000 31208 torch/_subclasses/fake_tensor.py:2721] File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/recording.py", line 272, in wrapper
E0813 15:28:43.194000 31208 torch/_subclasses/fake_tensor.py:2721] return retlog(fn(*args, **kwargs))
E0813 15:28:43.194000 31208 torch/_subclasses/fake_tensor.py:2721] File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 7346, in _inner_evaluate_expr
E0813 15:28:43.194000 31208 torch/_subclasses/fake_tensor.py:2721] return self._evaluate_expr(
E0813 15:28:43.194000 31208 torch/_subclasses/fake_tensor.py:2721] File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 7570, in _evaluate_expr
E0813 15:28:43.194000 31208 torch/_subclasses/fake_tensor.py:2721] raise self._make_data_dependent_error(
E0813 15:28:43.194000 31208 torch/_subclasses/fake_tensor.py:2721] torch.fx.experimental.symbolic_shapes.GuardOnDataDependentSymNode: Could not guard on data-dependent expression -u0 > 60 (unhinted: -u0 > 60). (Size-like symbols: none)
E0813 15:28:43.194000 31208 torch/_subclasses/fake_tensor.py:2721]
E0813 15:28:43.194000 31208 torch/_subclasses/fake_tensor.py:2721] Caused by: (_meta_registrations.py:5545 in meta_select)
E0813 15:28:43.194000 31208 torch/_subclasses/fake_tensor.py:2721] For more information, run with TORCH_LOGS="dynamic"
E0813 15:28:43.194000 31208 torch/_subclasses/fake_tensor.py:2721] For extended logs when we create symbols, also add TORCHDYNAMO_EXTENDED_DEBUG_CREATE_SYMBOL="u0"
E0813 15:28:43.194000 31208 torch/_subclasses/fake_tensor.py:2721] If you suspect the guard was triggered from C++, add TORCHDYNAMO_EXTENDED_DEBUG_CPP=1
E0813 15:28:43.194000 31208 torch/_subclasses/fake_tensor.py:2721] For more debugging help, see https://docs.google.com/document/d/1HSuTTVvYH1pTew89Rtpeu84Ht3nQEFTYhAX3Ypa_xJs/edit?usp=sharing
E0813 15:28:43.194000 31208 torch/_subclasses/fake_tensor.py:2721]
E0813 15:28:43.194000 31208 torch/_subclasses/fake_tensor.py:2721] For C++ stack trace, run with TORCHDYNAMO_EXTENDED_DEBUG_CPP=1
def forward(self, arg0_1: "i64[]", arg1_1: "f32[60]"):
# File: /var/lib/workspace/intermediate_source/torch_export_tutorial.py:701 in forward, code: a = x.item()
item: "Sym(u0)" = torch.ops.aten.item.default(arg0_1); arg0_1 = None
# File: /var/lib/workspace/intermediate_source/torch_export_tutorial.py:702 in forward, code: return y[a]
select = torch.ops.aten.select.int(arg1_1, 0, item); arg1_1 = item = select = None
def forward(self, arg0_1: "i64[]", arg1_1: "f32[60]"):
# File: /var/lib/workspace/intermediate_source/torch_export_tutorial.py:701 in forward, code: a = x.item()
item: "Sym(u0)" = torch.ops.aten.item.default(arg0_1); arg0_1 = None
# File: /var/lib/workspace/intermediate_source/torch_export_tutorial.py:702 in forward, code: return y[a]
select = torch.ops.aten.select.int(arg1_1, 0, item); arg1_1 = item = select = None
Traceback (most recent call last):
File "/var/lib/workspace/intermediate_source/torch_export_tutorial.py", line 709, in <module>
export(Foo(), inps)
File "/usr/local/lib/python3.10/dist-packages/torch/export/__init__.py", line 319, in export
raise e
File "/usr/local/lib/python3.10/dist-packages/torch/export/__init__.py", line 286, in export
return _export(
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1164, in wrapper
raise e
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1130, in wrapper
ep = fn(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/export/exported_program.py", line 123, in wrapper
return fn(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 2176, in _export
ep = _export_for_training(
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1164, in wrapper
raise e
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1130, in wrapper
ep = fn(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/export/exported_program.py", line 123, in wrapper
return fn(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 2037, in _export_for_training
export_artifact = export_func(
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1979, in _non_strict_export
aten_export_artifact = _to_aten_func( # type: ignore[operator]
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1770, in _export_to_aten_ir_make_fx
gm, graph_signature = transform(_make_fx_helper)(
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1900, in _aot_export_non_strict
gm, sig = aot_export(wrapped_mod, args, kwargs=kwargs, **flags)
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1685, in _make_fx_helper
gm = make_fx(
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 2318, in wrapped
return make_fx_tracer.trace(f, *args)
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 2250, in trace
return self._trace_inner(f, *args)
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 2221, in _trace_inner
t = dispatch_trace(
File "/usr/local/lib/python3.10/dist-packages/torch/_compile.py", line 53, in inner
return disable_fn(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/eval_frame.py", line 929, in _fn
return fn(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1254, in dispatch_trace
graph = tracer.trace(root, concrete_args) # type: ignore[arg-type]
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1835, in trace
res = super().trace(root, concrete_args)
File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/eval_frame.py", line 929, in _fn
return fn(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 850, in trace
(self.create_arg(fn(*args)),),
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1312, in wrapped
out = f(*tensors) # type:ignore[call-arg]
File "<string>", line 1, in <lambda>
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1589, in wrapped_fn
return tuple(flat_fn(*args))
File "/usr/local/lib/python3.10/dist-packages/torch/_functorch/_aot_autograd/utils.py", line 184, in flat_fn
tree_out = fn(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/_functorch/_aot_autograd/traced_function_transforms.py", line 906, in functional_call
out = mod(*args[params_len:], **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 825, in module_call_wrapper
return self.call_module(mod, forward, args, kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1905, in call_module
return Tracer.call_module(self, m, forward, args, kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 542, in call_module
ret_val = forward(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 818, in forward
return _orig_module_call(mod, *args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1773, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1784, in _call_impl
return forward_call(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1884, in forward
tree_out = mod(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 825, in module_call_wrapper
return self.call_module(mod, forward, args, kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1905, in call_module
return Tracer.call_module(self, m, forward, args, kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 542, in call_module
ret_val = forward(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 818, in forward
return _orig_module_call(mod, *args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1773, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1784, in _call_impl
return forward_call(*args, **kwargs)
File "/var/lib/workspace/intermediate_source/torch_export_tutorial.py", line 702, in forward
return y[a]
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1360, in __torch_function__
return func(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1407, in __torch_function__
return func(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/_export/non_strict_utils.py", line 1051, in __torch_function__
return func(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/_export/non_strict_utils.py", line 1026, in run
t = _method(t, *_args)
File "/usr/local/lib/python3.10/dist-packages/torch/_ops.py", line 950, in handler
return torch._library.utils.handle_dispatch_mode(
File "/usr/local/lib/python3.10/dist-packages/torch/_library/utils.py", line 296, in handle_dispatch_mode
return curr_mode.__torch_dispatch__(op_overload, overload_types, args, kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/utils/_stats.py", line 28, in wrapper
return fn(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1462, in __torch_dispatch__
return proxy_call(self, func, self.pre_dispatch, args, kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 914, in proxy_call
out = func(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/_ops.py", line 829, in __call__
return self._op(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/utils/_stats.py", line 28, in wrapper
return fn(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/_subclasses/fake_tensor.py", line 1352, in __torch_dispatch__
return self.dispatch(func, types, args, kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/_subclasses/fake_tensor.py", line 2058, in dispatch
return self._cached_dispatch_impl(func, types, args, kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/_subclasses/fake_tensor.py", line 1487, in _cached_dispatch_impl
output = self._dispatch_impl(func, types, args, kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/_subclasses/fake_tensor.py", line 2717, in _dispatch_impl
r = func(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/_ops.py", line 829, in __call__
return self._op(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/_meta_registrations.py", line 5545, in meta_select
guard_size_oblivious(-index > size) or guard_size_oblivious(index >= size)
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 473, in guard_size_oblivious
return expr.node.guard_size_oblivious("", 0)
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/sym_node.py", line 596, in guard_size_oblivious
r = self.evaluate(size_oblivious=True)
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/sym_node.py", line 512, in evaluate
return self.shape_env.evaluate_sym_node(self, size_oblivious)
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 7223, in evaluate_sym_node
return self.evaluate_expr(
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 7323, in evaluate_expr
return self._inner_evaluate_expr(
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/recording.py", line 272, in wrapper
return retlog(fn(*args, **kwargs))
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 7346, in _inner_evaluate_expr
return self._evaluate_expr(
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 7570, in _evaluate_expr
raise self._make_data_dependent_error(
torch.fx.experimental.symbolic_shapes.GuardOnDataDependentSymNode: Could not guard on data-dependent expression -u0 > 60 (unhinted: -u0 > 60). (Size-like symbols: none)
Caused by: (_meta_registrations.py:5545 in meta_select)
For more information, run with TORCH_LOGS="dynamic"
For extended logs when we create symbols, also add TORCHDYNAMO_EXTENDED_DEBUG_CREATE_SYMBOL="u0"
If you suspect the guard was triggered from C++, add TORCHDYNAMO_EXTENDED_DEBUG_CPP=1
For more debugging help, see https://docs.google.com/document/d/1HSuTTVvYH1pTew89Rtpeu84Ht3nQEFTYhAX3Ypa_xJs/edit?usp=sharing
For C++ stack trace, run with TORCHDYNAMO_EXTENDED_DEBUG_CPP=1
The following call raised this error:
File "/var/lib/workspace/intermediate_source/torch_export_tutorial.py", line 702, in forward
return y[a]
To fix the error, insert one of the following checks before this call:
1. torch._check((-1)*a > 60)
2. torch._check((-1)*a <= 60)
(These suggested fixes were derived by replacing `u0` with a in -u0 > 60 and its negation.)
The error above occurred when calling torch.export.export. If you would like to view some more information about this error, and get a list of all other errors that may occur in your export call, you can replace your `export()` call with `draft_export()`.
Here is a scenario where torch._check()
insertion is required simply to prevent an operation from failing. The export call will fail with
“Could not guard on data-dependent expression -u0 > 60
”, implying that the compiler doesn’t know if this is a valid indexing operation -
if the value of x
is out-of-bounds for y
or not. Here, manual specialization is too prohibitive, and torch.cond()
has no place.
Instead, informing the compiler of u0
’s range is sufficient:
class Foo(torch.nn.Module):
def forward(self, x, y):
a = x.item()
torch._check(a >= 0)
torch._check(a < y.shape[0])
return y[a]
inps = (
torch.tensor(32),
torch.randn(60),
)
ep = export(Foo(), inps)
print(ep)
I0813 15:28:43.208000 31208 torch/fx/experimental/symbolic_shapes.py:3767] create_env
I0813 15:28:43.213000 31208 torch/fx/experimental/symbolic_shapes.py:4776] create_unbacked_symint u0 [-int_oo, int_oo] (_subclasses/fake_impls.py:425 in local_scalar_dense)
I0813 15:28:43.213000 31208 torch/fx/experimental/symbolic_shapes.py:1287] compute_unbacked_bindings [u0]
I0813 15:28:43.215000 31208 torch/fx/experimental/symbolic_shapes.py:7197] runtime_assert u0 >= 0 [guard added] (ar/lib/workspace/intermediate_source/torch_export_tutorial.py:722 in forward), for more info run with TORCHDYNAMO_EXTENDED_DEBUG_GUARD_ADDED="u0 >= 0"
V0813 15:28:43.215000 31208 torch/fx/experimental/symbolic_shapes.py:6606] _update_var_to_range u0 = VR[0, int_oo] (update)
I0813 15:28:43.218000 31208 torch/fx/experimental/symbolic_shapes.py:7197] runtime_assert u0 < 60 [guard added] (ar/lib/workspace/intermediate_source/torch_export_tutorial.py:723 in forward), for more info run with TORCHDYNAMO_EXTENDED_DEBUG_GUARD_ADDED="u0 < 60"
V0813 15:28:43.219000 31208 torch/fx/experimental/symbolic_shapes.py:6606] _update_var_to_range u0 = VR[0, 59] (update)
V0813 15:28:43.221000 31208 torch/fx/experimental/symbolic_shapes.py:7475] eval size_oblivious(-u0 > 60) == False [statically known]
V0813 15:28:43.221000 31208 torch/fx/experimental/symbolic_shapes.py:7475] eval size_oblivious(u0 >= 60) == False [statically known]
V0813 15:28:43.222000 31208 torch/fx/experimental/symbolic_shapes.py:7475] eval False == True [statically known]
V0813 15:28:43.223000 31208 torch/fx/experimental/symbolic_shapes.py:7475] eval False == True [statically known]
I0813 15:28:43.225000 31208 torch/fx/experimental/symbolic_shapes.py:5238] produce_guards
V0813 15:28:43.225000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['x'].storage_offset() 0 None
V0813 15:28:43.226000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['y'].size()[0] 60 None
V0813 15:28:43.226000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['y'].stride()[0] 1 None
V0813 15:28:43.226000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['y'].storage_offset() 0 None
V0813 15:28:43.227000 31208 torch/fx/experimental/symbolic_shapes.py:7694] runtime_assert u0 >= 0 == True [statically known]
V0813 15:28:43.229000 31208 torch/fx/experimental/symbolic_shapes.py:7694] runtime_assert u0 <= 59 == True [statically known]
V0813 15:28:43.230000 31208 torch/fx/experimental/symbolic_shapes.py:7694] runtime_assert u0 < 60 == True [statically known]
ExportedProgram:
class GraphModule(torch.nn.Module):
def forward(self, x: "i64[]", y: "f32[60]"):
# File: /var/lib/workspace/intermediate_source/torch_export_tutorial.py:721 in forward, code: a = x.item()
item: "Sym(u0)" = torch.ops.aten.item.default(x); x = None
ge_1: "Sym(u0 >= 0)" = item >= 0
_assert_scalar_default = torch.ops.aten._assert_scalar.default(ge_1, "Runtime assertion failed for expression u0 >= 0 on node 'ge_1'"); ge_1 = _assert_scalar_default = None
le: "Sym(u0 <= 59)" = item <= 59
_assert_scalar_default_1 = torch.ops.aten._assert_scalar.default(le, "Runtime assertion failed for expression u0 <= 59 on node 'le'"); le = _assert_scalar_default_1 = None
#
lt_1: "Sym(u0 < 60)" = item < 60
_assert_scalar_default_2 = torch.ops.aten._assert_scalar.default(lt_1, "Runtime assertion failed for expression u0 < 60 on node 'lt_1'"); lt_1 = _assert_scalar_default_2 = None
# File: /var/lib/workspace/intermediate_source/torch_export_tutorial.py:724 in forward, code: return y[a]
select: "f32[]" = torch.ops.aten.select.int(y, 0, item); y = item = None
return (select,)
Graph signature:
# inputs
x: USER_INPUT
y: USER_INPUT
# outputs
select: USER_OUTPUT
Range constraints: {u0: VR[0, 59]}
Specialized values#
Another category of data-dependent error happens when the program attempts to extract a concrete data-dependent integer/float value while tracing. This looks something like “Could not extract specialized integer from data-dependent expression”, and is analogous to the previous class of errors - if these occur when attempting to evaluate concrete integer/float values, data-dependent guard errors arise with evaluating concrete boolean values.
This error typically occurs when there is an explicit or implicit int()
cast on a data-dependent expression. For example, this list comprehension
has a range() call that implicitly does an int()
cast on the size of the list:
class Foo(torch.nn.Module):
def forward(self, x, y):
a = x.item()
b = torch.cat([y for y in range(a)], dim=0)
return b + int(a)
inps = (
torch.tensor(32),
torch.randn(60),
)
try:
export(Foo(), inps, strict=False)
except Exception:
tb.print_exc()
I0813 15:28:43.236000 31208 torch/fx/experimental/symbolic_shapes.py:3767] create_env
I0813 15:28:43.241000 31208 torch/fx/experimental/symbolic_shapes.py:4776] create_unbacked_symint u0 [-int_oo, int_oo] (_subclasses/fake_impls.py:425 in local_scalar_dense)
I0813 15:28:43.242000 31208 torch/fx/experimental/symbolic_shapes.py:1287] compute_unbacked_bindings [u0]
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] Data dependent variable 'u0' allocated at:
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/bin/sphinx-build", line 7, in <module>
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] sys.exit(main())
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/sphinx/cmd/build.py", line 339, in main
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return make_main(argv)
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/sphinx/cmd/build.py", line 213, in make_main
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return make_mode.run_make_mode(argv[1:])
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/sphinx/cmd/make_mode.py", line 181, in run_make_mode
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return make.run_generic_build(args[0])
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/sphinx/cmd/make_mode.py", line 169, in run_generic_build
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return build_main(args + opts)
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/sphinx/cmd/build.py", line 293, in build_main
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] app = Sphinx(args.sourcedir, args.confdir, args.outputdir,
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/sphinx/application.py", line 272, in __init__
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] self._init_builder()
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/sphinx/application.py", line 343, in _init_builder
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] self.events.emit('builder-inited')
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/sphinx/events.py", line 97, in emit
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] results.append(listener.handler(self.app, *args))
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_gallery.py", line 757, in generate_gallery_rst
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] ) = generate_dir_rst(
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 606, in generate_dir_rst
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] results = parallel(
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 607, in <genexpr>
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] p_fun(fname, target_dir, src_dir, gallery_conf) for fname in iterator
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/var/lib/workspace/conf.py", line 85, in wrapper
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] p.start()
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/lib/python3.10/multiprocessing/process.py", line 121, in start
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] self._popen = self._Popen(self)
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/lib/python3.10/multiprocessing/context.py", line 224, in _Popen
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return _default_context.get_context().Process._Popen(process_obj)
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/lib/python3.10/multiprocessing/context.py", line 281, in _Popen
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return Popen(process_obj)
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/lib/python3.10/multiprocessing/popen_fork.py", line 19, in __init__
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] self._launch(process_obj)
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/lib/python3.10/multiprocessing/popen_fork.py", line 71, in _launch
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] code = process_obj._bootstrap(parent_sentinel=child_r)
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/lib/python3.10/multiprocessing/process.py", line 314, in _bootstrap
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] self.run()
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/lib/python3.10/multiprocessing/process.py", line 108, in run
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] self._target(*self._args, **self._kwargs)
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/var/lib/workspace/conf.py", line 73, in call_fn
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] result = func(*args, **kwargs)
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 1374, in generate_file_rst
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] output_blocks, time_elapsed = execute_script(
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 1192, in execute_script
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] execute_code_block(
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 1048, in execute_code_block
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] is_last_expr, mem_max = _exec_and_get_memory(
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 876, in _exec_and_get_memory
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] mem_max, _ = call_memory(
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 1725, in _sg_call_memory_noop
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return 0.0, func()
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/sphinx_gallery/gen_rst.py", line 794, in __call__
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] exec(self.code, self.fake_main.__dict__)
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/var/lib/workspace/intermediate_source/torch_export_tutorial.py", line 756, in <module>
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] export(Foo(), inps, strict=False)
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/export/__init__.py", line 286, in export
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return _export(
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1130, in wrapper
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] ep = fn(*args, **kwargs)
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/export/exported_program.py", line 123, in wrapper
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return fn(*args, **kwargs)
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 2176, in _export
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] ep = _export_for_training(
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1130, in wrapper
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] ep = fn(*args, **kwargs)
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/export/exported_program.py", line 123, in wrapper
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return fn(*args, **kwargs)
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 2037, in _export_for_training
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] export_artifact = export_func(
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1979, in _non_strict_export
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] aten_export_artifact = _to_aten_func( # type: ignore[operator]
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1770, in _export_to_aten_ir_make_fx
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] gm, graph_signature = transform(_make_fx_helper)(
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1900, in _aot_export_non_strict
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] gm, sig = aot_export(wrapped_mod, args, kwargs=kwargs, **flags)
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1685, in _make_fx_helper
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] gm = make_fx(
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 2318, in wrapped
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return make_fx_tracer.trace(f, *args)
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 2250, in trace
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return self._trace_inner(f, *args)
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 2221, in _trace_inner
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] t = dispatch_trace(
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/_compile.py", line 53, in inner
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return disable_fn(*args, **kwargs)
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/eval_frame.py", line 929, in _fn
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return fn(*args, **kwargs)
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1254, in dispatch_trace
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] graph = tracer.trace(root, concrete_args) # type: ignore[arg-type]
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1835, in trace
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] res = super().trace(root, concrete_args)
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/eval_frame.py", line 929, in _fn
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return fn(*args, **kwargs)
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 850, in trace
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] (self.create_arg(fn(*args)),),
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1312, in wrapped
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] out = f(*tensors) # type:ignore[call-arg]
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "<string>", line 1, in <lambda>
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1589, in wrapped_fn
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return tuple(flat_fn(*args))
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/_functorch/_aot_autograd/utils.py", line 184, in flat_fn
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] tree_out = fn(*args, **kwargs)
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/_functorch/_aot_autograd/traced_function_transforms.py", line 906, in functional_call
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] out = mod(*args[params_len:], **kwargs)
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 825, in module_call_wrapper
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return self.call_module(mod, forward, args, kwargs)
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1905, in call_module
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return Tracer.call_module(self, m, forward, args, kwargs)
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 542, in call_module
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] ret_val = forward(*args, **kwargs)
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 818, in forward
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return _orig_module_call(mod, *args, **kwargs)
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1773, in _wrapped_call_impl
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return self._call_impl(*args, **kwargs)
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1784, in _call_impl
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return forward_call(*args, **kwargs)
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1884, in forward
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] tree_out = mod(*args, **kwargs)
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 825, in module_call_wrapper
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return self.call_module(mod, forward, args, kwargs)
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1905, in call_module
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return Tracer.call_module(self, m, forward, args, kwargs)
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 542, in call_module
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] ret_val = forward(*args, **kwargs)
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 818, in forward
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return _orig_module_call(mod, *args, **kwargs)
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1773, in _wrapped_call_impl
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return self._call_impl(*args, **kwargs)
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1784, in _call_impl
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return forward_call(*args, **kwargs)
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/var/lib/workspace/intermediate_source/torch_export_tutorial.py", line 747, in forward
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] a = x.item()
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1360, in __torch_function__
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return func(*args, **kwargs)
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1407, in __torch_function__
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return func(*args, **kwargs)
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/_export/non_strict_utils.py", line 1051, in __torch_function__
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return func(*args, **kwargs)
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/_ops.py", line 950, in handler
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return torch._library.utils.handle_dispatch_mode(
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/_library/utils.py", line 296, in handle_dispatch_mode
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return curr_mode.__torch_dispatch__(op_overload, overload_types, args, kwargs)
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/utils/_stats.py", line 28, in wrapper
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return fn(*args, **kwargs)
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1462, in __torch_dispatch__
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return proxy_call(self, func, self.pre_dispatch, args, kwargs)
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 914, in proxy_call
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] out = func(*args, **kwargs)
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/_ops.py", line 829, in __call__
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return self._op(*args, **kwargs)
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/utils/_stats.py", line 28, in wrapper
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return fn(*args, **kwargs)
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/_subclasses/fake_tensor.py", line 1352, in __torch_dispatch__
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return self.dispatch(func, types, args, kwargs)
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/_subclasses/fake_tensor.py", line 2058, in dispatch
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return self._cached_dispatch_impl(func, types, args, kwargs)
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/_subclasses/fake_tensor.py", line 1474, in _cached_dispatch_impl
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return self._dispatch_impl(func, types, args, kwargs)
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/_subclasses/fake_tensor.py", line 2687, in _dispatch_impl
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] op_impl_out = op_impl(self, func, *args, **kwargs)
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/_subclasses/fake_impls.py", line 163, in dispatch_to_op_implementations_dict
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return op_implementations_dict[func](fake_mode, func, *args, **kwargs)
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/_subclasses/fake_impls.py", line 425, in local_scalar_dense
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] r = fake_mode.shape_env.create_unbacked_symint()
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/recording.py", line 272, in wrapper
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519] return retlog(fn(*args, **kwargs))
V0813 15:28:43.243000 31208 torch/fx/experimental/symbolic_shapes.py:6519]
def forward(self, arg0_1: "i64[]", arg1_1: "f32[60]"):
# File: /var/lib/workspace/intermediate_source/torch_export_tutorial.py:747 in forward, code: a = x.item()
item: "Sym(u0)" = torch.ops.aten.item.default(arg0_1); arg0_1 = item = None
def forward(self, arg0_1: "i64[]", arg1_1: "f32[60]"):
# File: /var/lib/workspace/intermediate_source/torch_export_tutorial.py:747 in forward, code: a = x.item()
item: "Sym(u0)" = torch.ops.aten.item.default(arg0_1); arg0_1 = item = None
Traceback (most recent call last):
File "/var/lib/workspace/intermediate_source/torch_export_tutorial.py", line 756, in <module>
export(Foo(), inps, strict=False)
File "/usr/local/lib/python3.10/dist-packages/torch/export/__init__.py", line 319, in export
raise e
File "/usr/local/lib/python3.10/dist-packages/torch/export/__init__.py", line 286, in export
return _export(
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1164, in wrapper
raise e
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1130, in wrapper
ep = fn(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/export/exported_program.py", line 123, in wrapper
return fn(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 2176, in _export
ep = _export_for_training(
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1164, in wrapper
raise e
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1130, in wrapper
ep = fn(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/export/exported_program.py", line 123, in wrapper
return fn(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 2037, in _export_for_training
export_artifact = export_func(
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1979, in _non_strict_export
aten_export_artifact = _to_aten_func( # type: ignore[operator]
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1770, in _export_to_aten_ir_make_fx
gm, graph_signature = transform(_make_fx_helper)(
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1900, in _aot_export_non_strict
gm, sig = aot_export(wrapped_mod, args, kwargs=kwargs, **flags)
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1685, in _make_fx_helper
gm = make_fx(
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 2318, in wrapped
return make_fx_tracer.trace(f, *args)
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 2250, in trace
return self._trace_inner(f, *args)
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 2221, in _trace_inner
t = dispatch_trace(
File "/usr/local/lib/python3.10/dist-packages/torch/_compile.py", line 53, in inner
return disable_fn(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/eval_frame.py", line 929, in _fn
return fn(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1254, in dispatch_trace
graph = tracer.trace(root, concrete_args) # type: ignore[arg-type]
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1835, in trace
res = super().trace(root, concrete_args)
File "/usr/local/lib/python3.10/dist-packages/torch/_dynamo/eval_frame.py", line 929, in _fn
return fn(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 850, in trace
(self.create_arg(fn(*args)),),
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1312, in wrapped
out = f(*tensors) # type:ignore[call-arg]
File "<string>", line 1, in <lambda>
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1589, in wrapped_fn
return tuple(flat_fn(*args))
File "/usr/local/lib/python3.10/dist-packages/torch/_functorch/_aot_autograd/utils.py", line 184, in flat_fn
tree_out = fn(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/_functorch/_aot_autograd/traced_function_transforms.py", line 906, in functional_call
out = mod(*args[params_len:], **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 825, in module_call_wrapper
return self.call_module(mod, forward, args, kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1905, in call_module
return Tracer.call_module(self, m, forward, args, kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 542, in call_module
ret_val = forward(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 818, in forward
return _orig_module_call(mod, *args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1773, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1784, in _call_impl
return forward_call(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/export/_trace.py", line 1884, in forward
tree_out = mod(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 825, in module_call_wrapper
return self.call_module(mod, forward, args, kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py", line 1905, in call_module
return Tracer.call_module(self, m, forward, args, kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 542, in call_module
ret_val = forward(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/fx/_symbolic_trace.py", line 818, in forward
return _orig_module_call(mod, *args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1773, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1784, in _call_impl
return forward_call(*args, **kwargs)
File "/var/lib/workspace/intermediate_source/torch_export_tutorial.py", line 748, in forward
b = torch.cat([y for y in range(a)], dim=0)
File "/usr/local/lib/python3.10/dist-packages/torch/__init__.py", line 438, in __index__
return self.node.int_()
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/sym_node.py", line 468, in int_
return self.guard_int("", 0) # NB: uses Python backtrace
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/sym_node.py", line 518, in guard_int
r = self.evaluate()
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/sym_node.py", line 512, in evaluate
return self.shape_env.evaluate_sym_node(self, size_oblivious)
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 7223, in evaluate_sym_node
return self.evaluate_expr(
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 7323, in evaluate_expr
return self._inner_evaluate_expr(
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/recording.py", line 272, in wrapper
return retlog(fn(*args, **kwargs))
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 7346, in _inner_evaluate_expr
return self._evaluate_expr(
File "/usr/local/lib/python3.10/dist-packages/torch/fx/experimental/symbolic_shapes.py", line 7570, in _evaluate_expr
raise self._make_data_dependent_error(
torch.fx.experimental.symbolic_shapes.GuardOnDataDependentSymNode: Could not extract specialized integer from data-dependent expression u0 (unhinted: u0). (Size-like symbols: none)
Caused by: (ar/lib/workspace/intermediate_source/torch_export_tutorial.py:748 in forward)
For more information, run with TORCH_LOGS="dynamic"
For extended logs when we create symbols, also add TORCHDYNAMO_EXTENDED_DEBUG_CREATE_SYMBOL="u0"
If you suspect the guard was triggered from C++, add TORCHDYNAMO_EXTENDED_DEBUG_CPP=1
For more debugging help, see https://docs.google.com/document/d/1HSuTTVvYH1pTew89Rtpeu84Ht3nQEFTYhAX3Ypa_xJs/edit?usp=sharing
For C++ stack trace, run with TORCHDYNAMO_EXTENDED_DEBUG_CPP=1
The error above occurred when calling torch.export.export. If you would like to view some more information about this error, and get a list of all other errors that may occur in your export call, you can replace your `export()` call with `draft_export()`.
For these errors, some basic options you have are:
Avoid unnecessary
int()
cast calls, in this case theint(a)
in the return statement.Use
torch._check()
calls; unfortunately all you may be able to do in this case is specialize (withtorch._check(a == 60)
).Rewrite the offending code at a higher level. For example, the list comprehension is semantically a
repeat()
op, which doesn’t involve anint()
cast. The following rewrite avoids data-dependent errors:
class Foo(torch.nn.Module):
def forward(self, x, y):
a = x.item()
b = y.unsqueeze(0).repeat(a, 1)
return b + a
inps = (
torch.tensor(32),
torch.randn(60),
)
ep = export(Foo(), inps, strict=False)
print(ep)
I0813 15:28:43.257000 31208 torch/fx/experimental/symbolic_shapes.py:3767] create_env
I0813 15:28:43.263000 31208 torch/fx/experimental/symbolic_shapes.py:4776] create_unbacked_symint u0 [-int_oo, int_oo] (_subclasses/fake_impls.py:425 in local_scalar_dense)
I0813 15:28:43.264000 31208 torch/fx/experimental/symbolic_shapes.py:1287] compute_unbacked_bindings [u0]
I0813 15:28:43.267000 31208 torch/fx/experimental/symbolic_shapes.py:7197] runtime_assert u0 >= 0 [guard added] (_meta_registrations.py:4247 in meta_repeat), for more info run with TORCHDYNAMO_EXTENDED_DEBUG_GUARD_ADDED="u0 >= 0"
V0813 15:28:43.267000 31208 torch/fx/experimental/symbolic_shapes.py:6606] _update_var_to_range u0 = VR[0, int_oo] (update)
V0813 15:28:43.268000 31208 torch/fx/experimental/symbolic_shapes.py:7694] runtime_assert u0 >= 0 == True [statically known]
I0813 15:28:43.272000 31208 torch/fx/experimental/symbolic_shapes.py:7369] could not evaluate Eq(u0, 0) due to data dependency, it was assumed to be False with no runtime assertions (utils/_stats.py:28 in wrapper)
I0813 15:28:43.272000 31208 torch/fx/experimental/symbolic_shapes.py:7369] For C++ stack trace, run with TORCHDYNAMO_EXTENDED_DEBUG_CPP=1
I0813 15:28:43.278000 31208 torch/fx/experimental/symbolic_shapes.py:7369] could not evaluate 60*u0 < 2 due to data dependency, it was assumed to be False with no runtime assertions (_prims_common/__init__.py:279 in is_contiguous)
I0813 15:28:43.278000 31208 torch/fx/experimental/symbolic_shapes.py:7369] For C++ stack trace, run with TORCHDYNAMO_EXTENDED_DEBUG_CPP=1
I0813 15:28:43.279000 31208 torch/fx/experimental/symbolic_shapes.py:7369] could not evaluate Eq(u0, 1) due to data dependency, it was assumed to be False with no runtime assertions (_prims_common/__init__.py:285 in is_contiguous)
I0813 15:28:43.279000 31208 torch/fx/experimental/symbolic_shapes.py:7369] For C++ stack trace, run with TORCHDYNAMO_EXTENDED_DEBUG_CPP=1
V0813 15:28:43.281000 31208 torch/fx/experimental/symbolic_shapes.py:7694] runtime_assert True == True [statically known]
I0813 15:28:43.286000 31208 torch/fx/experimental/symbolic_shapes.py:5238] produce_guards
V0813 15:28:43.286000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['x'].storage_offset() 0 None
V0813 15:28:43.286000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['y'].size()[0] 60 None
V0813 15:28:43.287000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['y'].stride()[0] 1 None
V0813 15:28:43.287000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['y'].storage_offset() 0 None
V0813 15:28:43.288000 31208 torch/fx/experimental/symbolic_shapes.py:7694] runtime_assert u0 >= 0 == True [statically known]
ExportedProgram:
class GraphModule(torch.nn.Module):
def forward(self, x: "i64[]", y: "f32[60]"):
# File: /var/lib/workspace/intermediate_source/torch_export_tutorial.py:769 in forward, code: a = x.item()
item: "Sym(u0)" = torch.ops.aten.item.default(x); x = None
#
sym_constrain_range_for_size_default = torch.ops.aten.sym_constrain_range_for_size.default(item); sym_constrain_range_for_size_default = None
# File: /var/lib/workspace/intermediate_source/torch_export_tutorial.py:769 in forward, code: a = x.item()
ge: "Sym(u0 >= 0)" = item >= 0
_assert_scalar_default = torch.ops.aten._assert_scalar.default(ge, "Runtime assertion failed for expression u0 >= 0 on node 'ge'"); ge = _assert_scalar_default = None
# File: /var/lib/workspace/intermediate_source/torch_export_tutorial.py:770 in forward, code: b = y.unsqueeze(0).repeat(a, 1)
unsqueeze: "f32[1, 60]" = torch.ops.aten.unsqueeze.default(y, 0); y = None
repeat: "f32[u0, 60]" = torch.ops.aten.repeat.default(unsqueeze, [item, 1]); unsqueeze = None
# File: /var/lib/workspace/intermediate_source/torch_export_tutorial.py:771 in forward, code: return b + a
add: "f32[u0, 60]" = torch.ops.aten.add.Tensor(repeat, item); repeat = item = None
return (add,)
Graph signature:
# inputs
x: USER_INPUT
y: USER_INPUT
# outputs
add: USER_OUTPUT
Range constraints: {u0: VR[0, int_oo]}
Data-dependent errors can be much more involved, and there are many more options in your toolkit to deal with them: torch._check_is_size()
, guard_size_oblivious()
, or real-tensor tracing, as starters.
For more in-depth guides, please refer to the Export Programming Model,
or Dealing with GuardOnDataDependentSymNode errors.
Custom Ops#
torch.export
can export PyTorch programs with custom operators. Please
refer to this page
on how to author a custom operator in either C++ or Python.
The following is an example of registering a custom operator in python to be
used by torch.export
. The important thing to note is that the custom op
must have a FakeTensor kernel.
@torch.library.custom_op("my_custom_library::custom_op", mutates_args={})
def custom_op(x: torch.Tensor) -> torch.Tensor:
print("custom_op called!")
return torch.relu(x)
@custom_op.register_fake
def custom_op_meta(x):
# Returns an empty tensor with the same shape as the expected output
return torch.empty_like(x)
Here is an example of exporting a program with the custom op.
class CustomOpExample(torch.nn.Module):
def forward(self, x):
x = torch.sin(x)
x = torch.ops.my_custom_library.custom_op(x)
x = torch.cos(x)
return x
exported_custom_op_example = export(CustomOpExample(), (torch.randn(3, 3),))
print(exported_custom_op_example)
print(exported_custom_op_example.module()(torch.randn(3, 3)))
I0813 15:28:43.362000 31208 torch/fx/experimental/symbolic_shapes.py:3767] create_env
I0813 15:28:43.371000 31208 torch/fx/experimental/symbolic_shapes.py:5238] produce_guards
V0813 15:28:43.372000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['x'].size()[0] 3 None
V0813 15:28:43.372000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['x'].size()[1] 3 None
V0813 15:28:43.372000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['x'].stride()[0] 3 None
V0813 15:28:43.372000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['x'].stride()[1] 1 None
V0813 15:28:43.373000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['x'].storage_offset() 0 None
ExportedProgram:
class GraphModule(torch.nn.Module):
def forward(self, x: "f32[3, 3]"):
# File: /var/lib/workspace/intermediate_source/torch_export_tutorial.py:812 in forward, code: x = torch.sin(x)
sin: "f32[3, 3]" = torch.ops.aten.sin.default(x); x = None
# File: /var/lib/workspace/intermediate_source/torch_export_tutorial.py:813 in forward, code: x = torch.ops.my_custom_library.custom_op(x)
custom_op: "f32[3, 3]" = torch.ops.my_custom_library.custom_op.default(sin); sin = None
# File: /var/lib/workspace/intermediate_source/torch_export_tutorial.py:814 in forward, code: x = torch.cos(x)
cos: "f32[3, 3]" = torch.ops.aten.cos.default(custom_op); custom_op = None
return (cos,)
Graph signature:
# inputs
x: USER_INPUT
# outputs
cos: USER_OUTPUT
Range constraints: {}
custom_op called!
tensor([[0.8374, 0.7322, 0.8945],
[1.0000, 1.0000, 1.0000],
[1.0000, 1.0000, 0.8501]])
Note that in the ExportedProgram
, the custom operator is included in the graph.
IR/Decompositions#
The graph produced by torch.export
returns a graph containing only
ATen operators, which are the
basic unit of computation in PyTorch. As there are over 3000 ATen operators,
export provides a way to narrow down the operator set used in the graph based
on certain characteristics, creating different IRs.
By default, export produces the most generic IR which contains all ATen
operators, including both functional and non-functional operators. A functional
operator is one that does not contain any mutations or aliasing of the inputs.
You can find a list of all ATen operators
here
and you can inspect if an operator is functional by checking
op._schema.is_mutable
, for example:
print(torch.ops.aten.add.Tensor._schema.is_mutable)
print(torch.ops.aten.add_.Tensor._schema.is_mutable)
False
True
This generic IR can be used to train in eager PyTorch Autograd. This IR can be
more explicitly reached through the API torch.export.export_for_training
,
which was introduced in PyTorch 2.5, but calling torch.export.export
should produce the same graph as of PyTorch 2.6.
class DecompExample(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv = torch.nn.Conv2d(1, 3, 1, 1)
self.bn = torch.nn.BatchNorm2d(3)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
return (x,)
ep_for_training = torch.export.export_for_training(DecompExample(), (torch.randn(1, 1, 3, 3),))
print(ep_for_training.graph)
I0813 15:28:43.381000 31208 torch/fx/experimental/symbolic_shapes.py:3767] create_env
I0813 15:28:43.411000 31208 torch/fx/experimental/symbolic_shapes.py:5238] produce_guards
V0813 15:28:43.412000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['x'].size()[0] 1 None
V0813 15:28:43.412000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['x'].size()[1] 1 None
V0813 15:28:43.412000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['x'].size()[2] 3 None
V0813 15:28:43.412000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['x'].size()[3] 3 None
V0813 15:28:43.413000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['x'].stride()[0] 9 None
V0813 15:28:43.413000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['x'].stride()[1] 9 None
V0813 15:28:43.413000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['x'].stride()[2] 3 None
V0813 15:28:43.413000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['x'].stride()[3] 1 None
V0813 15:28:43.414000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['x'].storage_offset() 0 None
graph():
%p_conv_weight : [num_users=1] = placeholder[target=p_conv_weight]
%p_conv_bias : [num_users=1] = placeholder[target=p_conv_bias]
%p_bn_weight : [num_users=1] = placeholder[target=p_bn_weight]
%p_bn_bias : [num_users=1] = placeholder[target=p_bn_bias]
%b_bn_running_mean : [num_users=1] = placeholder[target=b_bn_running_mean]
%b_bn_running_var : [num_users=1] = placeholder[target=b_bn_running_var]
%b_bn_num_batches_tracked : [num_users=1] = placeholder[target=b_bn_num_batches_tracked]
%x : [num_users=1] = placeholder[target=x]
%conv2d : [num_users=1] = call_function[target=torch.ops.aten.conv2d.default](args = (%x, %p_conv_weight, %p_conv_bias), kwargs = {})
%add_ : [num_users=0] = call_function[target=torch.ops.aten.add_.Tensor](args = (%b_bn_num_batches_tracked, 1), kwargs = {})
%batch_norm : [num_users=1] = call_function[target=torch.ops.aten.batch_norm.default](args = (%conv2d, %p_bn_weight, %p_bn_bias, %b_bn_running_mean, %b_bn_running_var, True, 0.1, 1e-05, True), kwargs = {})
return (batch_norm,)
We can then lower this exported program to an operator set which only contains
functional ATen operators through the API run_decompositions
, which
decomposes the ATen operators into the ones specified in the decomposition
table, and functionalizes the graph. By specifying an empty set, we’re only
performing functionalization, and does not do any additional decompositions.
This results in an IR which contains ~2000 operators (instead of the 3000
operators above), and is ideal for inference cases.
ep_for_inference = ep_for_training.run_decompositions(decomp_table={})
print(ep_for_inference.graph)
graph():
%p_conv_weight : [num_users=1] = placeholder[target=p_conv_weight]
%p_conv_bias : [num_users=1] = placeholder[target=p_conv_bias]
%p_bn_weight : [num_users=1] = placeholder[target=p_bn_weight]
%p_bn_bias : [num_users=1] = placeholder[target=p_bn_bias]
%b_bn_running_mean : [num_users=1] = placeholder[target=b_bn_running_mean]
%b_bn_running_var : [num_users=1] = placeholder[target=b_bn_running_var]
%b_bn_num_batches_tracked : [num_users=1] = placeholder[target=b_bn_num_batches_tracked]
%x : [num_users=1] = placeholder[target=x]
%conv2d : [num_users=1] = call_function[target=torch.ops.aten.conv2d.default](args = (%x, %p_conv_weight, %p_conv_bias), kwargs = {})
%add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%b_bn_num_batches_tracked, 1), kwargs = {})
%_native_batch_norm_legit_functional : [num_users=3] = call_function[target=torch.ops.aten._native_batch_norm_legit_functional.default](args = (%conv2d, %p_bn_weight, %p_bn_bias, %b_bn_running_mean, %b_bn_running_var, True, 0.1, 1e-05), kwargs = {})
%getitem : [num_users=1] = call_function[target=operator.getitem](args = (%_native_batch_norm_legit_functional, 0), kwargs = {})
%getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_native_batch_norm_legit_functional, 3), kwargs = {})
%getitem_4 : [num_users=1] = call_function[target=operator.getitem](args = (%_native_batch_norm_legit_functional, 4), kwargs = {})
return (getitem_3, getitem_4, add, getitem)
As we can see, the previously mutable operator,
torch.ops.aten.add_.default
has now been replaced with
torch.ops.aten.add.default
, a l operator.
We can also further lower this exported program to an operator set which only contains the Core ATen Operator Set, which is a collection of only ~180 operators. This IR is optimal for backends who do not want to reimplement all ATen operators.
from torch.export import default_decompositions
core_aten_decomp_table = default_decompositions()
core_aten_ep = ep_for_training.run_decompositions(decomp_table=core_aten_decomp_table)
print(core_aten_ep.graph)
graph():
%p_conv_weight : [num_users=1] = placeholder[target=p_conv_weight]
%p_conv_bias : [num_users=1] = placeholder[target=p_conv_bias]
%p_bn_weight : [num_users=1] = placeholder[target=p_bn_weight]
%p_bn_bias : [num_users=1] = placeholder[target=p_bn_bias]
%b_bn_running_mean : [num_users=1] = placeholder[target=b_bn_running_mean]
%b_bn_running_var : [num_users=1] = placeholder[target=b_bn_running_var]
%b_bn_num_batches_tracked : [num_users=1] = placeholder[target=b_bn_num_batches_tracked]
%x : [num_users=1] = placeholder[target=x]
%convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%x, %p_conv_weight, %p_conv_bias, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
%add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%b_bn_num_batches_tracked, 1), kwargs = {})
%_native_batch_norm_legit_functional : [num_users=3] = call_function[target=torch.ops.aten._native_batch_norm_legit_functional.default](args = (%convolution, %p_bn_weight, %p_bn_bias, %b_bn_running_mean, %b_bn_running_var, True, 0.1, 1e-05), kwargs = {})
%getitem : [num_users=1] = call_function[target=operator.getitem](args = (%_native_batch_norm_legit_functional, 0), kwargs = {})
%getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_native_batch_norm_legit_functional, 3), kwargs = {})
%getitem_4 : [num_users=1] = call_function[target=operator.getitem](args = (%_native_batch_norm_legit_functional, 4), kwargs = {})
return (getitem_3, getitem_4, add, getitem)
We now see that torch.ops.aten.conv2d.default
has been decomposed
into torch.ops.aten.convolution.default
. This is because convolution
is a more “core” operator, as operations like conv1d
and conv2d
can be
implemented using the same op.
We can also specify our own decomposition behaviors:
my_decomp_table = torch.export.default_decompositions()
def my_awesome_custom_conv2d_function(x, weight, bias, stride=[1, 1], padding=[0, 0], dilation=[1, 1], groups=1):
return 2 * torch.ops.aten.convolution(x, weight, bias, stride, padding, dilation, False, [0, 0], groups)
my_decomp_table[torch.ops.aten.conv2d.default] = my_awesome_custom_conv2d_function
my_ep = ep_for_training.run_decompositions(my_decomp_table)
print(my_ep.graph)
graph():
%p_conv_weight : [num_users=1] = placeholder[target=p_conv_weight]
%p_conv_bias : [num_users=1] = placeholder[target=p_conv_bias]
%p_bn_weight : [num_users=1] = placeholder[target=p_bn_weight]
%p_bn_bias : [num_users=1] = placeholder[target=p_bn_bias]
%b_bn_running_mean : [num_users=1] = placeholder[target=b_bn_running_mean]
%b_bn_running_var : [num_users=1] = placeholder[target=b_bn_running_var]
%b_bn_num_batches_tracked : [num_users=1] = placeholder[target=b_bn_num_batches_tracked]
%x : [num_users=1] = placeholder[target=x]
%convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%x, %p_conv_weight, %p_conv_bias, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
%mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 2), kwargs = {})
%add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%b_bn_num_batches_tracked, 1), kwargs = {})
%_native_batch_norm_legit_functional : [num_users=3] = call_function[target=torch.ops.aten._native_batch_norm_legit_functional.default](args = (%mul, %p_bn_weight, %p_bn_bias, %b_bn_running_mean, %b_bn_running_var, True, 0.1, 1e-05), kwargs = {})
%getitem : [num_users=1] = call_function[target=operator.getitem](args = (%_native_batch_norm_legit_functional, 0), kwargs = {})
%getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_native_batch_norm_legit_functional, 3), kwargs = {})
%getitem_4 : [num_users=1] = call_function[target=operator.getitem](args = (%_native_batch_norm_legit_functional, 4), kwargs = {})
return (getitem_3, getitem_4, add, getitem)
Notice that instead of torch.ops.aten.conv2d.default
being decomposed
into torch.ops.aten.convolution.default
, it is now decomposed into
torch.ops.aten.convolution.default
and torch.ops.aten.mul.Tensor
,
which matches our custom decomposition rule.
ExportDB#
torch.export
will only ever export a single computation graph from a PyTorch program. Because of this requirement,
there will be Python or PyTorch features that are not compatible with torch.export
, which will require users to
rewrite parts of their model code. We have seen examples of this earlier in the tutorial – for example, rewriting
if-statements using cond
.
ExportDB is the standard reference that documents
supported and unsupported Python/PyTorch features for torch.export
. It is essentially a list a program samples, each
of which represents the usage of one particular Python/PyTorch feature and its interaction with torch.export
.
Examples are also tagged by category so that they can be more easily searched.
For example, let’s use ExportDB to get a better understanding of how the predicate works in the cond
operator.
We can look at the example called cond_predicate
, which has a torch.cond
tag. The example code looks like:
def cond_predicate(x):
"""
The conditional statement (aka predicate) passed to ``cond()`` must be one of the following:
- ``torch.Tensor`` with a single element
- boolean expression
NOTE: If the `pred` is test on a dim with batch size < 2, it will be specialized.
"""
pred = x.dim() > 2 and x.shape[2] > 10
return cond(pred, lambda x: x.cos(), lambda y: y.sin(), [x])
More generally, ExportDB can be used as a reference when one of the following occurs:
Before attempting
torch.export
, you know ahead of time that your model uses some tricky Python/PyTorch features and you want to know iftorch.export
covers that feature.When attempting
torch.export
, there is a failure and it’s unclear how to work around it.
ExportDB is not exhaustive, but is intended to cover all use cases found in typical PyTorch code. Feel free to reach
out if there is an important Python/PyTorch feature that should be added to ExportDB or supported by torch.export
.
Running the Exported Program#
As torch.export
is only a graph capturing mechanism, calling the artifact
produced by torch.export
eagerly will be equivalent to running the eager
module. To optimize the execution of the Exported Program, we can pass this
exported artifact to backends such as Inductor through torch.compile
,
AOTInductor,
or TensorRT.
class M(torch.nn.Module):
def __init__(self):
super().__init__()
self.linear = torch.nn.Linear(3, 3)
def forward(self, x):
x = self.linear(x)
return x
inp = torch.randn(2, 3, device="cuda")
m = M().to(device="cuda")
ep = torch.export.export(m, (inp,))
# Run it eagerly
res = ep.module()(inp)
print(res)
# Run it with torch.compile
res = torch.compile(ep.module(), backend="inductor")(inp)
print(res)
I0813 15:28:44.339000 31208 torch/fx/experimental/symbolic_shapes.py:3767] create_env
I0813 15:28:44.351000 31208 torch/fx/experimental/symbolic_shapes.py:5238] produce_guards
V0813 15:28:44.352000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['x'].size()[0] 2 None
V0813 15:28:44.352000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['x'].size()[1] 3 None
V0813 15:28:44.352000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['x'].stride()[0] 3 None
V0813 15:28:44.353000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['x'].stride()[1] 1 None
V0813 15:28:44.353000 31208 torch/fx/experimental/symbolic_shapes.py:5458] track_symint L['x'].storage_offset() 0 None
tensor([[-0.3264, -1.0192, -0.5303],
[ 0.5112, -0.0307, 0.4543]], device='cuda:0',
grad_fn=<AddmmBackward0>)
I0813 15:28:45.691000 31208 torch/fx/experimental/symbolic_shapes.py:3767] [2/0] create_env
/usr/local/lib/python3.10/dist-packages/torch/_inductor/compile_fx.py:282: UserWarning:
TensorFloat32 tensor cores for float32 matrix multiplication available but not enabled. Consider setting `torch.set_float32_matmul_precision('high')` for better performance.
I0813 15:28:46.408000 31208 torch/fx/experimental/symbolic_shapes.py:5238] [2/0] produce_guards
I0813 15:28:46.418000 31208 torch/fx/experimental/symbolic_shapes.py:5238] [2/0] produce_guards
V0813 15:28:46.418000 31208 torch/fx/experimental/symbolic_shapes.py:5458] [2/0] track_symint L['x'].size()[0] 2 None
V0813 15:28:46.418000 31208 torch/fx/experimental/symbolic_shapes.py:5458] [2/0] track_symint L['x'].size()[1] 3 None
V0813 15:28:46.418000 31208 torch/fx/experimental/symbolic_shapes.py:5458] [2/0] track_symint L['x'].stride()[0] 3 None
V0813 15:28:46.419000 31208 torch/fx/experimental/symbolic_shapes.py:5458] [2/0] track_symint L['x'].stride()[1] 1 None
V0813 15:28:46.419000 31208 torch/fx/experimental/symbolic_shapes.py:5458] [2/0] track_symint L['x'].storage_offset() 0 None
V0813 15:28:46.419000 31208 torch/fx/experimental/symbolic_shapes.py:5458] [2/0] track_symint L['self']._modules['linear']._parameters['weight'].size()[0] 3 None
V0813 15:28:46.419000 31208 torch/fx/experimental/symbolic_shapes.py:5458] [2/0] track_symint L['self']._modules['linear']._parameters['weight'].size()[1] 3 None
V0813 15:28:46.420000 31208 torch/fx/experimental/symbolic_shapes.py:5458] [2/0] track_symint L['self']._modules['linear']._parameters['weight'].stride()[0] 3 None
V0813 15:28:46.420000 31208 torch/fx/experimental/symbolic_shapes.py:5458] [2/0] track_symint L['self']._modules['linear']._parameters['weight'].stride()[1] 1 None
V0813 15:28:46.420000 31208 torch/fx/experimental/symbolic_shapes.py:5458] [2/0] track_symint L['self']._modules['linear']._parameters['weight'].storage_offset() 0 None
V0813 15:28:46.420000 31208 torch/fx/experimental/symbolic_shapes.py:5458] [2/0] track_symint L['self']._modules['linear']._parameters['bias'].size()[0] 3 None
V0813 15:28:46.421000 31208 torch/fx/experimental/symbolic_shapes.py:5458] [2/0] track_symint L['self']._modules['linear']._parameters['bias'].stride()[0] 1 None
V0813 15:28:46.421000 31208 torch/fx/experimental/symbolic_shapes.py:5458] [2/0] track_symint L['self']._modules['linear']._parameters['bias'].storage_offset() 0 None
V0813 15:28:46.421000 31208 torch/fx/experimental/symbolic_shapes.py:5679] [2/0] Skipping guard L['x'].size()[0] == 2
V0813 15:28:46.421000 31208 torch/fx/experimental/symbolic_shapes.py:5679] [2/0] Skipping guard L['x'].size()[1] == 3
V0813 15:28:46.422000 31208 torch/fx/experimental/symbolic_shapes.py:5679] [2/0] Skipping guard L['x'].stride()[0] == 3
V0813 15:28:46.422000 31208 torch/fx/experimental/symbolic_shapes.py:5679] [2/0] Skipping guard L['x'].stride()[1] == 1
V0813 15:28:46.422000 31208 torch/fx/experimental/symbolic_shapes.py:5679] [2/0] Skipping guard L['x'].storage_offset() == 0
V0813 15:28:46.422000 31208 torch/fx/experimental/symbolic_shapes.py:5679] [2/0] Skipping guard L['self']._modules['linear']._parameters['weight'].size()[0] == 3
V0813 15:28:46.423000 31208 torch/fx/experimental/symbolic_shapes.py:5679] [2/0] Skipping guard L['self']._modules['linear']._parameters['weight'].size()[1] == 3
V0813 15:28:46.423000 31208 torch/fx/experimental/symbolic_shapes.py:5679] [2/0] Skipping guard L['self']._modules['linear']._parameters['weight'].stride()[0] == 3
V0813 15:28:46.423000 31208 torch/fx/experimental/symbolic_shapes.py:5679] [2/0] Skipping guard L['self']._modules['linear']._parameters['weight'].stride()[1] == 1
V0813 15:28:46.424000 31208 torch/fx/experimental/symbolic_shapes.py:5679] [2/0] Skipping guard L['self']._modules['linear']._parameters['weight'].storage_offset() == 0
V0813 15:28:46.424000 31208 torch/fx/experimental/symbolic_shapes.py:5679] [2/0] Skipping guard L['self']._modules['linear']._parameters['bias'].size()[0] == 3
V0813 15:28:46.424000 31208 torch/fx/experimental/symbolic_shapes.py:5679] [2/0] Skipping guard L['self']._modules['linear']._parameters['bias'].stride()[0] == 1
V0813 15:28:46.424000 31208 torch/fx/experimental/symbolic_shapes.py:5679] [2/0] Skipping guard L['self']._modules['linear']._parameters['bias'].storage_offset() == 0
tensor([[-0.3264, -1.0192, -0.5303],
[ 0.5112, -0.0307, 0.4543]], device='cuda:0',
grad_fn=<CompiledFunctionBackward>)
import torch._inductor
# Note: these APIs are subject to change
# Compile the exported program to a PT2 archive using ``AOTInductor``
with torch.no_grad():
pt2_path = torch._inductor.aoti_compile_and_package(ep)
# Load and run the .so file in Python.
# To load and run it in a C++ environment, see:
# https://pytorch.org/docs/main/torch.compiler_aot_inductor.html
aoti_compiled = torch._inductor.aoti_load_package(pt2_path)
res = aoti_compiled(inp)
Conclusion#
We introduced torch.export
, the new PyTorch 2.X way to export single computation
graphs from PyTorch programs. In particular, we demonstrate several code modifications
and considerations (control flow ops, constraints, etc.) that need to be made in order to export a graph.
Total running time of the script: (0 minutes 5.093 seconds)