Abstract
We are given a bipartite graph \(G = (A \cup B, E)\) where each vertex has a preference list ranking its neighbors: in particular, every \(a \in A\) ranks its neighbors in a strict order of preference, whereas the preference lists of \(b \in B\) may contain ties. A matching M is popular if there is no matching \(M'\) such that the number of vertices that prefer \(M'\) to M exceeds the number that prefer M to \(M'\). We show that the problem of deciding whether G admits a popular matching or not is \(\mathsf {NP}\)-hard. This is the case even when every \(b \in B\) either has a strict preference list or puts all its neighbors into a single tie. In contrast, we show that the problem becomes polynomially solvable in the case when each \(b \in B\) puts all its neighbors into a single tie. That is, all neighbors of b are tied in b’s list and and b desires to be matched to any of them. Our main result is an \(O(n^2)\) algorithm (where \(n = |A \cup B|\)) for the popular matching problem in this model. Note that this model is quite different from the model where vertices in B have no preferences and do not care whether they are matched or not.
Á. Cseh—Work done while visiting TIFR, supported by the Deutsche Telekom Stiftung.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abraham, D.J., Irving, R.W., Kavitha, T., Mehlhorn, K.: Popular matchings. SIAM Journal on Computing 37(4), 1030–1045 (2007)
Berman, P., Karpinski, M., Scott, A.D.: Approximation hardness of short symmetric instances of MAX-3SAT. Electronic Colloquium on Computational Complexity Report, number 49 (2003)
Biró, P., Irving, R.W., Manlove, D.F.: Popular Matchings in the Marriage and Roommates Problems. In: Calamoneri, T., Diaz, J. (eds.) CIAC 2010. LNCS, vol. 6078, pp. 97–108. Springer, Heidelberg (2010)
Dulmage, A., Mendelsohn, N.: Coverings of bipartite graphs. Canadian Journal of Mathematics 10, 517–534 (1958)
Gärdenfors, P.: Match making: assignments based on bilateral preferences. Behavioural Science 20, 166–173 (1975)
Graham, R.L., Grötschel, M., Lovasz, L., (eds.) The Handbook of Combinatorics, chapter 3, Matchings and Extensions, by W. R. Pulleyblank, pp. 179–232. North Holland (1995)
Huang, C.-C., Kavitha, T.: Popular Matchings in the Stable Marriage Problem. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 666–677. Springer, Heidelberg (2011)
Kavitha, T.: Popularity vs Maximum cardinality in the stable marriage setting. In: Proceedings of the 23rd SODA, pp. 123–134 (2012)
Kavitha, T., Mestre, J., Nasre, M.: Popular Mixed Matchings. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 574–584. Springer, Heidelberg (2009)
Kavitha, T., Nasre, M.: Note: Optimal popular matchings. Discrete Applied Mathematics 157(14), 3181–3186 (2009)
Mahdian, M.: Random popular matchings. In: Proceedings of the 7th EC, pp. 238–242 (2006)
Manlove, D.F., Sng, C.T.S.: Popular Matchings in the Capacitated House Allocation Problem. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 492–503. Springer, Heidelberg (2006)
McCutchen, R.M.: The Least-Unpopularity-Factor and Least-Unpopularity-Margin Criteria for Matching Problems with One-Sided Preferences. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp. 593–604. Springer, Heidelberg (2008)
McDermid, E., Irving, R.W.: Popular Matchings: Structure and Algorithms. In: Ngo, H.Q. (ed.) COCOON 2009. LNCS, vol. 5609, pp. 506–515. Springer, Heidelberg (2009)
Mestre, J.: Weighted Popular Matchings. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 715–726. Springer, Heidelberg (2006)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cseh, Á., Huang, CC., Kavitha, T. (2015). Popular Matchings with Two-Sided Preferences and One-Sided Ties. In: Halldórsson, M., Iwama, K., Kobayashi, N., Speckmann, B. (eds) Automata, Languages, and Programming. ICALP 2015. Lecture Notes in Computer Science(), vol 9134. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47672-7_30
Download citation
DOI: https://doi.org/10.1007/978-3-662-47672-7_30
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-47671-0
Online ISBN: 978-3-662-47672-7
eBook Packages: Computer ScienceComputer Science (R0)