Abstract
Resting-state fMRI (rs-fMRI) functional connectivity (FC) analysis provides valuable insights into the relationships between different brain regions and their potential implications for neurological or psychiatric disorders. However, specific design efforts to predict treatment response from rs-fMRI remain limited due to difficulties in understanding the current brain state and the underlying mechanisms driving the observed patterns, which limited the clinical application of rs-fMRI. To overcome that, we propose a graph learning framework that captures comprehensive features by integrating both correlation and distance-based similarity measures under a contrastive loss. This approach results in a more expressive framework that captures brain dynamic features at different scales and enables more accurate prediction of treatment response. Our experiments on the chronic pain and depersonalization disorder datasets demonstrate that our proposed method outperforms current methods in different scenarios. To the best of our knowledge, we are the first to explore the integration of distance-based and correlation-based neural similarity into graph learning for treatment response prediction.
This research is supported in part by the Beijing Hospitals Authority Youth Program (ref: QML20191901), Beijing Hospitals Authority Clinical Medicine Development of Special Funding (ref: ZYLX202129), Beijing Hospitals Authority’s Ascent Plan (ref: DFL20191901), Training Plan for High Level Public Health Technical Talents Construction Project (ref: TTL-02-40), Research Cultivation Program of Beijing Municipal Hospital (ref: PZ2023032), EPSRC NortHFutures project (ref: EP/X031012/1).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Change history
26 November 2023
A correction has been published.
References
Khosla, M., Jamison, K., Ngo, G.H., Kuceyeski, A., Sabuncu, M.R.: Machine learning in resting-state fMRI analysis. Magn. Reson. Imaging 64, 101–121 (2019)
Du, Y., Fu, Z., Calhoun, V.D.: Classification and prediction of brain disorders using functional connectivity: promising but challenging. Front. Neurosci. 12, 525 (2018)
Taylor, J.J., Kurt, H.G., Anand, A.: Resting state functional connectivity biomarkers of treatment response in mood disorders: a review. Front. Psych. 12, 565136 (2021)
Kong, Y., et al.: Spatio-temporal graph convolutional network for diagnosis and treatment response prediction of major depressive disorder from functional connectivity. Hum. Brain Map. 42(12), 3922–3933 (2021)
Bobadilla-Suarez, S., Ahlheim, C., Mehrotra, A., Panos, A., Love, B.C.: Measures of neural similarity. Comput. Brain Behav. 3, 369–383 (2020)
Xiao, L., et al.: Distance correlation-based brain functional connectivity estimation and non-convex multi-task learning for developmental fMRI studies. IEEE Trans. Biomed. Eng. 69(10), 3039–3050 (2022)
Wang, J., Zuo, X., He, Y.: Graph-based network analysis of resting-state functional MRI. Front. Syst. Neurosci. 4, 1419 (2010)
Zhou, J., Cui, G., Hu, S., et al.: Graph neural networks: a review of methods and applications. AI Open. 1, 57–81 (2020)
Yu, Q., et al.: Application of graph theory to assess static and dynamic brain connectivity: approaches for building brain graphs. Proc. IEEE 106(5), 886–906 (2018)
Kan, X., Dai, W., Cui, H., Zhang, Z., Guo, Y., Yang, C.: Brain network transformer. In: Advances in Neural Information Processing Systems, vol. 35, pp. 25586–25599 (2022)
Dahan, S., Williams, L.Z.J., Rueckert, D., Robinson, E.C.: Improving phenotype prediction using long-range spatio-temporal dynamics of functional connectivity. In: Abdulkadir, A., et al. (eds.) MLCN 2021. LNCS, vol. 13001, pp. 145–154. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87586-2_15
Gadgil, S., Zhao, Q., Pfefferbaum, A., Sullivan, E.V., Adeli, E., Pohl, K.M.: Spatio-temporal graph convolution for resting-state fMRI analysis. In: Martel, A.L., et al. (eds.) MICCAI 2020, Part VII. LNCS, vol. 12267, pp. 528–538. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_52
Kim, B.H., Ye, J.C., Kim, J.J.: Learning dynamic graph representation of brain connectome with spatio-temporal attention. In: Advances in Neural Information Processing Systems, vol. 34, pp. 4314–4327 (2021)
Chang, C., Glover, G.H.: Time-frequency dynamics of resting-state brain connectivity measured with fMRI. Neuroimage 50(1), 81–98 (2010)
Xu, K., Hu, W., Leskovec, J., Jegelka, S. How powerful are graph neural networks?. arXiv preprint arXiv:1810.00826 (2018)
Cao, B., et al.: Treatment response prediction and individualized identification of first-episode drug-naive schizophrenia using brain functional connectivity. Mol. Psychiatry 25(4), 906–913 (2020)
Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)
Woo, S., Park, J., Lee, J. Y., Kweon, I. S. CBAM: convolutional block attention module. In: Proceedings of the European Conference on Computer Vision, pp. 3–19 (2018)
Tétreault, P., Mansour, A., Vachon-Presseau, E., Schnitzer, T.J., Apkarian, A.V., Baliki, M.N.: Brain connectivity predicts placebo response across chronic pain clinical trials. PLoS Biol. 14(10), e1002570 (2016)
Ma, H., Wu, F., Guan, Y., Xu, L., Liu, J., Tian, L.: BrainNet with connectivity attention for individualized predictions based on multi-facet connections extracted from resting-state fMRI data. Cognit. Comput. 15, 1–15 (2023). https://doi.org/10.1007/s12559-023-10133-8
Del Fabro, L., Bondi, E., Serio, F., Maggioni, E., D’Agostino, A., Brambilla, P.: Machine learning methods to predict outcomes of pharmacological treatment in psychosis. Transl. Psychiatry 13(1), 75 (2023)
Yan, S., Xiong, Y., Lin, D.: Spatial temporal graph convolutional networks for action recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, no. 1 (2018)
Faria, A.V., et al.: Atlas-based analysis of resting-state functional connectivity: evaluation for reproducibility and multi-modal anatomy-function correlation studies. Neuroimage 61(3), 613–621 (2012)
Janse, R.J., et al.: Conducting correlation analysis: important limitations and pitfalls. Clin. Kidney J. 14(11), 2332–2337 (2021)
Walther, A., Nili, H., Ejaz, N., Alink, A., Kriegeskorte, N., Diedrichsen, J.: Reliability of dissimilarity measures for multi-voxel pattern analysis. Neuroimage 137, 188–200 (2016)
Perlibakas, V.: Distance measures for PCA-based face recognition. Pattern Recogn. Lett. 25(6), 711–724 (2004)
Smitha, K.A., et al.: Resting state fMRI: a review on methods in resting state connectivity analysis and resting state networks. Neuroradiol. J. 30(4), 305–317 (2017)
Thompson, G.J.: Neural and metabolic basis of dynamic resting state fMRI. Neuroimage 180, 448–462 (2018)
Babcock, B., Datar, M., Motwani, R.: Sampling from a moving window over streaming data. In: Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 633–634 (2002)
Kim, B.H., Ye, J.C.: Understanding graph isomorphism network for RS-fMRI functional connectivity analysis. Front. Neurosci. 14, 630 (2020)
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
Wang, X., Yao, L., Rekik, I., Zhang, Y.: Contrastive Functional Connectivity Graph Learning for Population-based fMRI Classification. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention - MICCAI 2022. MICCAI 2022. LNCS, Part I, vol. 13431, pp. 221–230. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16431-6_21
Olszowy, W., Aston, J., Rua, C., Williams, G.B.: Accurate autocorrelation modeling substantially improves fMRI reliability. Nat. Commun. 10(1), 1220 (2019)
Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597-1607. PMLR (2020)
Dwivedi, C., Nofallah, S., Pouryahya, M., et al.: Multi stain graph fusion for multimodal integration in pathology. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1835-1845 (2022)
Zheng, S., et al.: Potential targets for noninvasive brain stimulation on depersonalization-derealization disorder. Brain Sci. 12(8), 1112 (2022)
Sierra, M., Berrios, G.E.: The Cambridge depersonalisation scale: a new instrument for the measurement of depersonalisation. Psychiatry Res. 93(2), 153–164 (2000)
Yan, C.G., Wang, X.D., Zuo, X.N., Zang, Y.F.: DPABI: data processing & analysis for (resting-state) brain imaging. Neuroinformatics 14, 339–351 (2016)
Glasser, M.F., et al.: A multi-modal parcellation of human cerebral cortex. Nature 536(7615), 171–178 (2016)
Jenkinson, M., Beckmann, C.F., Behrens, T.E., Woolrich, M.W., Smith, S.M.: Fsl. Neuroimage 62(2), 782–790 (2012)
Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)
Kesler, S.R., Rao, A., Blayney, D.W., Oakley-Girvan, I.A., Karuturi, M., Palesh, O.: Predicting long-term cognitive outcome following breast cancer with pre-treatment resting state fMRI and random forest machine learning. Front. Hum. Neurosci. 11, 555 (2017)
Chang, Z., Koulieris, G.A., Shum, H.P.: On the design fundamentals of diffusion models: a survey. arXiv preprint arXiv:2306.04542 (2023)
Zhang, X., Al Moubayed, N., Shum, H.P.: Towards graph representation learning based surgical workflow anticipation. In: 2022 IEEE-EMBS International Conference on Biomedical and Health Informatics, pp. 01–04 (2022)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Zhang, F.X. et al. (2024). Correlation-Distance Graph Learning for Treatment Response Prediction from rs-fMRI. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1963. Springer, Singapore. https://doi.org/10.1007/978-981-99-8138-0_24
Download citation
DOI: https://doi.org/10.1007/978-981-99-8138-0_24
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-8137-3
Online ISBN: 978-981-99-8138-0
eBook Packages: Computer ScienceComputer Science (R0)