Skip to main content
Log in

Multi-step hybrid methods adapted to the numerical integration of oscillatory second-order systems

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

Multi-step hybrid methods adapted to the numerical integration of oscillatory second-order systems \(y''(t)+My(t)=g(t,y(t))\) are proposed and developed. The new methods inherit the basic framework of multi-step hybrid methods proposed by Li et al. (Numer Algorithms 73:711–733, 2016) and take account into the special oscillatory feature of the true flows. These methods contain the information from the previous steps and are designed specifically for oscillatory problem. The key property is that these methods are able to integrate exactly unperturbed oscillators \(y''(t)+My(t)=\mathbf {0}\). The order conditions of the new methods are deduced by using the theory of extended Nyström-series defined on the set of extended Nyström-trees. The linear stability properties are examined. Based on the order conditions, two explicit adapted four-step hybrid methods with order six and seven, respectively, are constructed. Numerical results show the superiority of the new methods over other methods from the scientific literature for oscillatory second-order systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations, 2nd edn. Wiley, Chichester (2008)

    Book  Google Scholar 

  2. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems, 2nd edn. Springer, Berlin (2002)

    MATH  Google Scholar 

  3. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration, Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  4. Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration illustrated by the Störmer–Verlet method. Acta Numer. 12, 399–450 (2003)

    Article  MathSciNet  Google Scholar 

  5. Cano, B., Moreta, M.J.: Multistep cosine methods for second-order partial differential systems. IMA J. Numer. Anal. 30, 431–461 (2010)

    Article  MathSciNet  Google Scholar 

  6. Mei, L.J., Wu, X.Y.: Symplectic exponential Runge–Kutta methods for solving nonlinear Hamiltonian systems. J. Comput. Phys. 338, 567–584 (2017)

    Article  MathSciNet  Google Scholar 

  7. Franco, J.M.: New methods for oscillatory systems based on ARKN methods. Appl. Numer. Math. 56, 1040–1053 (2006)

    Article  MathSciNet  Google Scholar 

  8. Wu, X.Y., You, X., Xia, J.L.: Order conditions for ARKN methods solving oscillatory systems. Comput. Phys. Commun. 180, 2250–2257 (2009)

    Article  MathSciNet  Google Scholar 

  9. Li, J.Y., Shi, W., Wu, X.Y.: The existence of explicit symplectic ARKN methods with several stages and algebraic order greater than two. J. Comput. Appl. Math. 353, 204–209 (2019)

    Article  MathSciNet  Google Scholar 

  10. Li, J.Y.: Symplectic and symmetric trigonometrically-fitted ARKN methods. Appl. Numer. Math. 135, 381–395 (2019)

    Article  MathSciNet  Google Scholar 

  11. Wu, X.Y., You, X., Shi, W., Wang, B.: ERKN integrators for systems of oscillatory second-order differential equations. Comput. Phys. Commun. 181, 1873–1887 (2010)

    Article  MathSciNet  Google Scholar 

  12. Wang, B., Iserles, A., Wu, X.Y.: Arbitrary-order trigonometric fourier collocation methods for multi-frequency oscillatory systems. Found. Comput. Math. 16(1), 151–181 (2016)

    Article  MathSciNet  Google Scholar 

  13. Mei, L.J., Wu, X.Y.: The construction of arbitrary order ERKN methods based on group theory for solving oscillatory Hamiltonian systems with applications. J. Comput. Phys. 323, 171–190 (2016)

    Article  MathSciNet  Google Scholar 

  14. Mei, L.J., Liu, C.Y., Wu, X.Y.: An essential extension of the finite-energy condition for extended Runge–Kutta-Order conditions for ARKN methods solving oscillatory systemsNyström integrators when applied to nonlinear wave equations. Commun. Comput. Phys. 22, 742–764 (2017)

    Article  MathSciNet  Google Scholar 

  15. Wang, B., Meng, F.W., Yang, H.L.: Efficient implementation of RKN-type Fourier collocation methods for second-order differential equations. Appl. Numer. Math. 119, 164–178 (2017)

    Article  MathSciNet  Google Scholar 

  16. Wang, B., Wu, X.Y., Meng, F.W.: Trigonometric collocation methods based on Lagrange basis polynomials for multi-frequency oscillatory second order differential equations. J. Comput. Appl. Math. 313, 185–201 (2017)

    Article  MathSciNet  Google Scholar 

  17. Wang, B., Wu, X.Y.: Global error bounds of one-stage extended RKN integrators for semilinear wave equations. Numer. Algorithms. https://doi.org/10.1007/s11075-018-0585-0

    Article  MathSciNet  Google Scholar 

  18. Li, J.Y., Deng, S., Wang, X.F.: Extended explicit pseudo two-step RKN methods for oscillatory systems \(y^{\prime \prime } +My = f(y)\). Numer. Algorithms 78, 673–700 (2018)

    Article  Google Scholar 

  19. Li, J.Y., Wang, B., You, X., Wu, X.Y.: Two-step extended RKN methods for oscillatory systems. Comput. Phys. Commun. 182, 2486–2507 (2011)

    Article  MathSciNet  Google Scholar 

  20. Li, J.Y., Wu, X.Y.: Error analysis of explicit TSERKN methods for highly oscillatory systems. Numer. Algorithms 65, 465–483 (2014)

    Article  MathSciNet  Google Scholar 

  21. Coleman, J.P.: Order conditions for a class of two-step methods for \(y^{\prime \prime }=f(x, y)\). IMA J. Numer. Anal. 23, 197–220 (2003)

    Article  Google Scholar 

  22. Franco, J.M.: Exponentially fitted explicit Runge–Kutta–Nyström methods. J. Comput. Appl. Math. 167, 1–19 (2004)

    Article  MathSciNet  Google Scholar 

  23. Franco, J.M., Rández, L.: Explicit exponentially fitted two-step hybrid methods of high order for second-order oscillatory IVPs. Appl. Math. Comput. 273, 493–505 (2016)

    MATH  MathSciNet  Google Scholar 

  24. Li, J.Y., Deng, S.: Trigonometrically fitted multi-step RKN methods for second-order oscillatory initial value problems. Appl. Math. Comput. 320, 740–753 (2018)

    MATH  MathSciNet  Google Scholar 

  25. Li, J.Y., Wang, X.F., Deng, S., Wang, B.: Symmetric trigonometrically-fitted two-step hybrid methods for oscillatory problems. J. Comput. Appl. Math. 344, 115–131 (2018)

    Article  MathSciNet  Google Scholar 

  26. Li, J.Y., Wu, X.Y.: Adapted Falkner-type methods solving oscillatory second-order differential equations. Numer. Algorithms 62, 355–381 (2013)

    Article  MathSciNet  Google Scholar 

  27. Li, J.Y., Wang, X.F.: Multi-step hybrid methods for special second-order differential equations \(y^{\prime \prime }(t) = f(t, y(t))\). Numer. Algorithms 73, 711–733 (2016)

    Article  Google Scholar 

  28. D’Ambrosio, R., Esposito, E., Paternoster, B.: General linear methods for \(y^{\prime \prime }= f ( y(t))\). Numer. Algorithms 61, 331–349 (2012)

    Article  Google Scholar 

  29. Li, J.Y., Wang, X.F., Lu, M.: A class of linear multi-step method adapted to general oscillatory second-order initial value problems. J. Appl. Math. Comput. 56, 561–591 (2018)

    Article  MathSciNet  Google Scholar 

  30. Tocino, A., Vigo-Aguiar, J.: Symplectic conditions for exponential fitting Runge–Kutta–Nyström methods. Math. Comput. Model. 42, 873–876 (2005)

    Article  Google Scholar 

  31. Wu, X.Y., Wang, B., Xia, J.L.: Explicit symplectic multidimensional exponential fitting modified Runge–Kutta–Nyström methods. BIT. Numer. Math. 52, 773–795 (2012)

    Article  Google Scholar 

  32. Yang, H.L., Wu, X.Y., You, X., Fang, Y.L.: Extended RKN-type methods for numerical integration of perturbed oscillators. Comput. Phys. Commun. 180, 1777–1794 (2009)

    Article  MathSciNet  Google Scholar 

  33. Butcher, J.C.: An algebraic theory of integration methods. Math. Comput. 26, 79–106 (1972)

    Article  MathSciNet  Google Scholar 

  34. Hairer, E., Wanner, G.: A theory for Nyström methods. Numer. Math. 25, 383–400 (1976)

    Article  Google Scholar 

  35. Lambert, J.D., Watson, I.A.: Symmetric multistep methods for periodic initial value problems. J. Inst. Math. Appl. 18, 189–202 (1976)

    Article  MathSciNet  Google Scholar 

  36. Franco, J.M.: A class of explicit two-step hybrid methods for second-order IVPs. J. Comput. Appl. Math. 187, 41–57 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are sincerely thankful to the anonymous referees for their constructive comments and valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiyong Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research was supported in part by the Natural Science Foundation of China under Grant No.: 11401164 and by Hebei Natural Science Foundation of China under Grant No.: A2014205136.

Appendix

Appendix

See Tables 1 and 2.

Table 1 The branches \(\beta \tau \) in BWT with \(\rho (\beta \tau )\le 5\)
Table 2 The branches \(\beta \tau \) in BWT with \(\rho (\beta \tau )=6\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J. Multi-step hybrid methods adapted to the numerical integration of oscillatory second-order systems. J. Appl. Math. Comput. 61, 155–184 (2019). https://doi.org/10.1007/s12190-019-01244-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-019-01244-3

Keywords

Mathematics Subject Classification

Navigation