Abstract
Recognizing the same person across different camera views is crucial and yet difficult task in video surveillance. The difficulty lies in finding the matched image-pair against drastic variations in appearances and structures of the individuals. In this article, we present a three stage person re-identification framework to establish the correspondence among persons observed across non-overlapping camera views. In first stage, we propose to apply an algorithm for handling the illumination variations in image pairs. A pyramidal body partitioning scheme is then introduced to handle the viewpoint variations, in which it segments the pedestrian image into several logical parts. In second stage, we formulate an ensemble weighted hypergraph partitioning strategy that divides the gallery candidates into a set of groups with high intra-group and low inter-group commonality. A weighing scheme is suggested to find the contribution of each feature channel towards defining a group. Furthermore, we generate a set of inlier groups for each probe, where the probability of finding the desired match pair is high. In final stage, contributory weights are fused with the correlation-based similarity measure to find the corresponding match within the inlier group. Extensive experiments are carried out on three challenging datasets to evaluate the effectiveness of our proposed framework. The experimental results demonstrate that the proposed framework can achieve better performance compared with the existing methods.















Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
Hue-weighted-Saturation: hue histogram where each hue sample is weighted by its corresponding saturation value.
References
Ahmed E, Jones M, Marks TK (2015) An improved deep learning architecture for person re-identification. In: Computer vision and pattern recognition, IEEE, pp 3908–3916. doi:10.1109/CVPR.2015.7299016
An L, Yang S, Bhanu B (2015) Person re-identification by robust canonical correlation analysis. Signal Process Lett IEEE 22(8):1103–1107. doi:10.1109/LSP.2015.2390222
An L, Kafai M, Yang S, Bhanu B (2016) Person reidentification with reference descriptor. Trans Circ Syst Video Technol IEEE 26(4):776–787. doi:10.1109/TCSVT.2015.2416561
Cheng DS, Cristani M, Stoppa M, Bazzani L, Murino V (2011) Custom pictorial structures for re-identification. In: British machine vision conference (BMVC), vol 1, p 6. doi:10.5244/C.25.68
da Vinci L (2005) In: The Da Vinci notebooks, profile, pp 1–224, ISBN 1-86197-987-8
Farenzena M, Bazzani L, Perina A, Murino V, Cristani M (2010) Person re-identification by symmetry-driven accumulation of local features. In: Computer vision and pattern recognition (CVPR), IEEE, pp 2360–2367. doi:10.1109/CVPR.2010.5539926
Garcia J, Martinel N, Micheloni C, Gardel A (2015) Person re-identification ranking optimisation by discriminant context information analysis. In: Computer vision (ICCV), IEEE, pp 1305–1313. doi:10.1109/ICCV.2015.154
Gray D, Brennan S, Tao H (2007) Evaluating appearance models for recognition, reacquisition, and tracking. In: International workshop on performance evaluation for tracking and surveillance (PETS), vol 3, no 5
Huang S, Yang D, Ge Y, Zhao D, Feng X (2014) Discriminant hyper-Laplacian projections with its application to face recognition. In: Multimedia and expo workshops (ICMEW), IEEE, pp 1–6. doi:10.1109/ICMEW.2014.6890566
Jobson DJ, Rahman Zu, Woodell GA (1997a) A multiscale retinex for bridging the gap between color images and the human observation of scenes. Trans Image Proces IEEE 6(7):965–976. doi:10.1109/83.597272
Jobson DJ, Rahman Zu, Woodell GA (1997b) Properties and performance of a center/surround retinex. Trans Image Process IEEE 6(3):451–462. doi:10.1109/83.557356
Jojic N, Perina A, Cristani M, Murino V, Frey B (2009) Stel component analysis: modeling spatial correlations in image class structure. In: Computer vision and pattern recognition (CVPR), IEEE, pp 2044–2051. doi:10.1109/CVPRW.2009.5206581
Karypis G, Aggarwal R, Kumar V, Shekhar S (1999) Multilevel hypergraph partitioning: applications in VLSI domain. Trans Very Large Scale Integr Syst IEEE 7(1):69–79. doi:10.1109/DAC.1997.597203
Khedher MI, El Yacoubi MA, Dorizzi B (2013) Multi-shot SURF-based person re-identification via sparse representation. In: Advanced video and signal based surveillance (AVSS), IEEE, pp 159–164. doi:10.1109/AVSS.2013.6636633
Koestinger M, Hirzer M, Wohlhart P, Roth PM, Bischof H (2012) Large scale metric learning from equivalence constraints. In: Computer vision and pattern recognition (CVPR), IEEE, pp 2288–2295. doi:10.1109/CVPR.2012.6247939
Kviatkovsky I, Adam A, Rivlin E (2013) Color invariants for person reidentification. Trans Pattern Anal Mach Intell IEEE 35(7):1622–1634. doi:10.1109/TPAMI.2012.246
Li A, Liu L, Wang K, Liu S, Yan S (2015) Clothing attributes assisted person reidentification. Trans Circ Syst Video Technol IEEE 25(5):869–878. doi:10.1109/TCSVT.2014.2352552
Li W, Zhao R, Wang X (2012) Human reidentification with transferred metric learning. In: Asian conference on computer vision (ACCV), Springer, pp 31–44. doi:10.1007/978-3-642-37331-2_3
Li W, Zhao R, Xiao T, Wang X (2014) DeepReId: deep filter pairing neural network for person re-identification. In: Computer vision and pattern recognition, IEEE, pp 152–159. doi:10.1109/CVPR.2014.27
Li Z, Chang S, Liang F, Huang T, Cao L, Smith J (2013) Learning locally-adaptive decision functions for person verification. In: Computer vision and pattern recognition (CVPR), IEEE, pp 3610–3617. doi:10.1109/CVPR.2013.463
Liao S, Hu Y, Zhu X, Li SZ (2015) Person re-identification by local maximal occurrence representation and metric learning. In: Computer vision and pattern recognition (CVPR), IEEE, pp 2197–2206. doi:10.1109/CVPR.2015.7298832
Liu X, Song M, Tao D, Zhou X, Chen C, Bu J (2014) Semi-supervised coupled dictionary learning for person re-identification. In: Computer vision and pattern recognition (CVPR), IEEE, pp 3550–3557. doi:10.1109/CVPR.2014.454
Ma B, Su Y, Jurie F (2014) Covariance descriptor based on bio-inspired features for person re-identification and face verification. Image Vis Comput 32(6):379–390. doi:10.1016/j.imavis.2014.04.002
Matsukawa T, Okabe T, Suzuki E, Sato Y (2016) Hierarchical Gaussian descriptor for person re-identification. In: Computer vision and pattern recognition (CVPR), IEEE, pp 1363–1372. doi:10.1109/CVPR.2016.152
Pele O, Werman M (2010) The quadratic-chi histogram distance family. In: European conference on computer vision (ECCV), Springer, pp 749–762. doi:10.1007/978-3-642-15552-9_54
Shi SC, Guo CC, Lai JH, Chen SZ, Hu XJ (2015) Person re-identification with multi-level adaptive correspondence models. Neurocomputing 168:550–559. doi:10.1016/j.neucom.2015.05.072
Strehl A, Ghosh J (2003) Cluster ensembles—a knowledge reuse framework for combining multiple partitions. J Mach Learn Res 3:583–617. doi:10.1162/153244303321897735
Van De Weijer J, Schmid C (2006) Coloring local feature extraction. In: European conference on computer vision (ECCV), Springer, pp 334–348. doi:10.1007/11744047_26
Wang T, Gong S, Zhu X, Wang S (2014) Person re-identification by video ranking. In: European conference on computer vision (ECCV), Springer, pp 688–703. doi:10.1007/978-3-319-10593-2_45
Xiong F, Gou M, Camps O, Sznaier M (2014) Person re-identification using kernel-based metric learning methods. In: European conference on computer vision (ECCV), Springer, pp 1–16. doi:10.1007/978-3-319-10584-0_1
Zelnik-Manor L, Perona P (2004) Self-tuning spectral clustering. In: Advances in neural information processing systems, pp 1601–1608
Zhao R, Ouyang W, Wang X (2013a) Person re-identification by salience matching. In: International conference on computer vision, IEEE, pp 2528–2535. doi:10.1109/ICCV.2013.314
Zhao R, Ouyang W, Wang X (2013b) Unsupervised salience learning for person re-identification. In: Computer vision and pattern recognition (CVPR), IEEE, pp 3586–3593. doi:10.1109/CVPR.2013.460
Zhao R, Ouyang W, Wang X (2014) Learning mid-level filters for person re-identification. In: Computer vision and pattern recognition (CVPR), IEEE, pp 144–151. doi:10.1109/CVPR.2014.26
Zheng L, Shen L, Tian L, Wang S, Wang J, Tian Q (2015a) Scalable person re-identification: a benchmark. In: International conference on computer vision (ICCV), IEEE, pp 1116–1124. doi:10.1109/ICCV.2015.133
Zheng L, Wang S, Tian L, He F, Liu Z, Tian Q (2015b) Query-adaptive late fusion for image search and person re-identification. In: Computer vision and pattern recognition (CVPR), pp 1741–1750. doi:10.1109/CVPR.2015.7298783
Zheng WS, Gong S, Xiang T (2011) Person re-identification by probabilistic relative distance comparison. In: Computer vision and pattern recognition (CVPR), IEEE, pp 649–656. doi:10.1109/CVPR.2011.5995598
Acknowledgements
This work is supported by Grant number SB/FTP/ETA-0059/2014 by Science and Engineering Research Board (SERB), Department of Science and Technology, Government of India.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Nanda, A., Sa, P.K., Chauhan, D.S. et al. A person re-identification framework by inlier-set group modeling for video surveillance. J Ambient Intell Human Comput 10, 13–25 (2019). https://doi.org/10.1007/s12652-017-0580-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12652-017-0580-7