Abstract
In this paper, we prove that linear and nonlinear equations with the Caputo–Fabrizio operators can be represented as systems of differential equations with derivatives of integer orders. The order of these equations is not more than one with respect to the integer part of the highest order of the Caputo–Fabrizio operators. We state that the Caputo–Fabrizio operators with exponential kernel cannot describe nonlocality and memory (temporal nonlocality) in processes and systems. Using the principle of nonlocality for fractional derivatives of noninteger orders (“No nonlocality. No fractional derivative”), we can state that the Caputo–Fabrizio operators cannot be considered as a fractional derivative. A general physical and economic interpretation (meaning) of the Caputo–Fabrizio operator is proposed. We state that physical and economic meaning of the Caputo–Fabrizio operators is continuously (exponentially) distributed lags.
Similar content being viewed by others
References
Allen RGD (1960) Mathematical economics, 2nd edn. Macmillan, London. https://doi.org/10.1007/978-1-349-81547-0
Al-Salti N, Karimov E, Sadarangani K (2015) On a differential equation with Caputo-Fabrizio fractional derivative of order 1 < β ≤ 2 and application to mass-spring-damper system. Prog Fract Differ Appl 2(4):257–263. https://doi.org/10.18576/pfda/020403
Bateman H (1954) Tables of integral transforms, vol I. McGraw-Hill Book Company, New York (ISBN 07-019549-8)
Caputo M, Fabrizio M (2015) A new definition of fractional derivative without singular kernel. Prog Fract Differ Appl 1(2):73–85. https://doi.org/10.12785/pfda/010201
Caputo M, Fabrizio M (2016) Applications of new time and spatial fractional derivatives with exponential kernels. Prog Fract Differ Appl 2(1):1–11. https://doi.org/10.18576/pfda/020101
Caputo M, Fabrizio M (2017) On the notion of fractional derivative and applications to the hysteresis phenomena. Meccanica 52(13):3043–3052. https://doi.org/10.1007/s11012-017-0652-y
Ciancio V, Flora BFF (2017) Technical note on a new definition of fractional derivative. Prog Fract Differ Appl. 3(3):233–235. https://doi.org/10.18576/pfda/030307
Hristov J (2018) Derivatives with non-singular kernels from the Caputo–Fabrizio definition and beyond. In: Bhalekar S (ed) Chapter 10 in the book frontiers in fractional calculus, vol 1. Bentham Science Publishers, Sharjah, pp 270–342. ISBN 978-1-68108-600-2
Karimov E, Pirnafasov S (2017) Higher order multi-term time-fractional partial differential equations involving Caputo-Fabrizio derivative. Electron J Differ Equ 2017(243):1–11
Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations. Elsevier, Amsterdam (ISBN 9780444518323)
Kiryakova V (1994) Generalized fractional calculus and applications. Longman and J. Wiley, New York, p 360
Leibniz an de l’Hospital (Letter from Hannover, Germany, September 30, 1695) (1853) Oeuvres Mathematiques de Leibniz. Correspondance de Leibniz avec Huygens, van Zichem et le Marquis de L’Hospital, vol. 2. Paris: Libr. de A. Franck, ed. P. 1, pp. 297–302
Leibniz an de l’Hospital (Letter 163: “Leibniz an Guillaume Francois de L’Hospital 30 September 1695”) (2005) in Gottfried Wilhelm Leibniz, Sämtliche Schriften und Briefe. Akademie-Ausgabe der Leibniz-Edition, Briefreihen III, Mathematischer, naturwissenschaftlicher und technischer Briefwechsel (Hannover). Hanover. pp.503-510 URL: https://www.gwlb.de/Leibniz/Leibnizarchiv/Veroeffentlichungen/III6A.pdf
Losada J, Nieto JJ (2015) Properties of a new fractional derivative without singular kernel. Prog Fract Differ Appl 1(2):87–92. https://doi.org/10.12785/pfda/010202
Ortigueira MD, Tenreiro Machado J (2018) A critical analysis of the Caputo-Fabrizio operator. Commun Nonlinear Sci Numer Simul 59:608–611. https://doi.org/10.1016/j.cnsns.2017.12.001
Ortigueira MD, Tenreiro Machado JA (2015) What is a fractional derivative? J Comput Phys 293:4–13. https://doi.org/10.1016/j.jcp.2014.07.019
Podlubny I (1998) Fractional differential equations. Academic Press, San Diego, p 340
Samko SG, Kilbas AA, Marichev OI (1993) Fractional integrals and derivatives theory and applications. Gordon and Breach, New York, p 1006
Tarasov VE (2013) No violation of the Leibniz rule. No fractional derivative. Commun Nonlinear Sci Numer Simul 18(11):2945–2948. https://doi.org/10.1016/j.cnsns.2013.04.001 (arXiv:1402.7161)
Tarasov VE (2016a) Geometric interpretation of fractional-order derivative. Fract Calc Appl Anal. 19(5):1200–1221. https://doi.org/10.1515/fca-2016-0062
Tarasov VE (2016b) Leibniz rule and fractional derivatives of power functions. J Comput Nonlinear Dyn. 11(3):031014. https://doi.org/10.1115/1.4031364
Tarasov VE (2016c) On chain rule for fractional derivatives. Commun Nonlinear Sci Numer Simul. 30(1–3):1–4. https://doi.org/10.1016/j.cnsns.2015.06.007
Tarasov VE (2017) Interpretation of fractional derivatives as reconstruction from sequence of integer derivatives. Fundam Inform 151(1–4):431–442. https://doi.org/10.3233/fi-2017-1502-8639-16-2018-83
Tarasov VE (2018) No nonlocality. No fractional derivative. Commun Nonlinear Sci Numerical Simulation. 62:157–163. https://doi.org/10.1016/j.cnsns.2018.02.019 (arXiv:1803.00750)
Tarasov VE, Tarasova VV (2018) Criterion of existence of power-law memory for economic processes. Entropy. 20(6):414. https://doi.org/10.3390/e20060414
Tarasov VE, Tarasova SS (2019) Fractional and integer derivatives with continuously distributed lag. Commun Nonlinear Sci Numer Simul 70:125–169. https://doi.org/10.1016/j.cnsns.2018.10.014
Tarasova VV, Tarasov VE (2018) Concept of dynamic memory in economics. Commun Nonlinear Sci Numer Simul 55:127–145. https://doi.org/10.1016/j.cnsns.2017.06.032
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Delfim F. M. Torres.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Tarasov, V.E. Caputo–Fabrizio operator in terms of integer derivatives: memory or distributed lag?. Comp. Appl. Math. 38, 113 (2019). https://doi.org/10.1007/s40314-019-0883-8
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s40314-019-0883-8