Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulation of gene-activation pathways by PIAS proteins in the immune system

Key Points

  • Protein inhibitor of activated STAT (signal transducer and activator of transcription protein) proteins (PIAS proteins) regulate the activity of certain transcription factors — such as STATs, nuclear factor-κB and SMADs (SMA (small body size)- and MAD (mothers against decapentaplegic)-related proteins) — in cytokine-mediated signalling, using distinct mechanisms.

  • PIAS proteins can inhibit transcription by blocking the DNA-binding activity of transcription factors.

  • PIAS proteins can negatively or positively regulate transcription by recruiting transcriptional co-regulators, such as histone deacetylases, or p300 or CBP (cyclic-AMP-responsive-element-binding protein (CREB)-binding protein), respectively.

  • PIAS proteins have SUMO (small ubiquitin-like modifier)-E3-ligase activity, which might be involved in transcriptional regulation.

  • PIAS1 has specific effects on cytokine-mediated signalling by selectively regulating a subset of interferon- or tumour-necrosis-factor-responsive genes.

  • PIAS1 is important in innate immunity. A deficiency in PIAS1 results in increased protection against viral and bacterial infection.

Abstract

The protein inhibitor of activated STAT (PIAS) family of proteins has been proposed to regulate the activity of many transcription factors, including signal transducer and activator of transcription proteins (STATs), nuclear factor-κB, SMA- and MAD-related proteins (SMADs), and the tumour-suppressor protein p53. PIAS proteins regulate transcription through several mechanisms, including blocking the DNA-binding activity of transcription factors, recruiting transcriptional corepressors or co-activators, and promoting protein sumoylation. Recent genetic studies support an in vivo function for PIAS proteins in the regulation of innate immune responses. In this article, we review the current understanding of the molecular basis, specificity and physiological roles of PIAS proteins in the regulation of gene-activation pathways in the immune system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The cytokine-activated STAT, NF-κB and SMAD pathways.
Figure 2: The domain structure of PIAS proteins.
Figure 3: Proposed mechanisms of PIAS-mediated transcriptional regulation.
Figure 4: The specificity of PIAS1-mediated transcriptional repression in STAT1 and NF-κB signalling.

Similar content being viewed by others

References

  1. Levy, D. E. & Darnell, J. E. Stats: transcriptional control and biological impact. Nature Rev. Mol. Cell Biol. 3, 651–662 (2002).

    Article  CAS  Google Scholar 

  2. Shuai, K. & Liu, B. Regulation of JAK–STAT signalling in the immune system. Nature Rev. Immunol. 3, 900–911 (2003).

    Article  CAS  Google Scholar 

  3. Viatour, P., Merville, M. P., Bours, V. & Chariot, A. Phosphorylation of NF-κB and IκB proteins: implications in cancer and inflammation. Trends Biochem. Sci. 30, 43–52 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Bonizzi, G., Karin, M., Yamamoto, Y. & Wang, Q. M. The two NF-κB activation pathways and their role in innate and adaptive immunity. Trends Immunol. 25, 280–288 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Karin, M., Yamamoto, Y. & Wang, Q. M. The IKK NF-κB system: a treasure trove for drug development. Nature Rev. Drug Discov. 3, 17–26 (2004).

    Article  CAS  Google Scholar 

  6. Attisano, L. & Wrana, J. L. Smads as transcriptional co-modulators. Curr. Opin. Cell Biol. 12, 235–243 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Roberts, A. B., Russo, A., Felici, A. & Flanders, K. C. Smad3: a key player in pathogenetic mechanisms dependent on TGF-β. Ann. NY Acad. Sci. 995, 1–10 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Zhu, A. J. & Scott, M. P. Incredible journey: how do developmental signals travel through tissue? Genes Dev. 18, 2985–2997 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Yingling, J. M., Blanchard, K. L. & Sawyer, J. S. Development of TGF-β signalling inhibitors for cancer therapy. Nature Rev. Drug Discov. 3, 1011–1022 (2004).

    Article  CAS  Google Scholar 

  10. Aggarwal, B. B. Signalling pathways of the TNF superfamily: a double-edged sword. Nature Rev. Immunol. 3, 745–756 (2003).

    Article  CAS  Google Scholar 

  11. Dupuis, S. et al. Impaired response to interferon-α/β and lethal viral disease in human STAT1 deficiency. Nature Genet. 33, 388–391 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Chung, C. D. et al. Specific inhibition of Stat3 signal transduction by PIAS3. Science 278, 1803–1805 (1997). This study provides the first evidence to indicate the involvement of PIAS proteins in the negative regulation of STAT signalling. It shows that PIAS proteins can block the DNA-binding activity of STATs.

    Article  CAS  PubMed  Google Scholar 

  13. Liu, B. et al. Inhibition of Stat1-mediated gene activation by PIAS1. Proc. Natl Acad. Sci. USA 95, 10626–10631 (1998). This paper reports the identification of PIAS-family members.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shuai, K. The STAT family of proteins in cytokine signaling. Prog. Biophys. Mol. Biol. 71, 405–422 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Shuai, K. Modulation of STAT signaling by STAT-interacting proteins. Oncogene 19, 2638–2644 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Jackson, P. K. A new RING for SUMO: wrestling transcriptional responses into nuclear bodies with PIAS family E3 SUMO ligases. Genes Dev. 15, 3053–3058 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Schmidt, D. & Muller, S. PIAS/SUMO: new partners in transcriptional regulation. Cell. Mol. Life Sci. 60, 2561–2574 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Aravind, L. & Koonin, E. V. SAP — a putative DNA-binding motif involved in chromosomal organization. Trends Biochem. Sci. 25, 112–114 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Kipp, M. et al. SAF-Box, a conserved protein domain that specifically recognizes scaffold attachment region DNA. Mol. Cell. Biol. 20, 7480–7489 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sachdev, S. et al. PIASy, a nuclear matrix-associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies. Genes Dev. 15, 3088–3103 (2001). This study provides the first evidence to indicate that PIAS proteins might repress transcription by sequestering transcription factors in nuclear bodies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Okubo, S. et al. NMR structure of the N-terminal domain of SUMO ligase PIAS1 and its interaction with tumor suppressor p53 and A/T-rich DNA oligomers. J. Biol. Chem. 279, 31455–31461 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Heery, D. M., Kalkhoven, E., Hoare, S. & Parker, M. G. A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 387, 733–736 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Hu, X. & Lazar, M. A. The CoRNR motif controls the recruitment of corepressors by nuclear hormone receptors. Nature 402, 93–96 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Loinder, K. & Soderstrom, M. Functional analyses of an LXXLL motif in nuclear receptor corepressor (N-CoR). J. Steroid Biochem. Mol. Biol. 91, 191–196 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Glass, C. K. & Rosenfeld, M. G. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev. 14, 121–141 (2000).

    CAS  PubMed  Google Scholar 

  26. Liu, B., Gross, M., ten Hoeve, J. & Shuai, K. A transcriptional corepressor of Stat1 with an essential LXXLL signature motif. Proc. Natl Acad. Sci. USA 98, 3203–3207 (2001). This report provides the first evidence to indicate that PIAS proteins might repress transcription by recruiting corepressors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gross, M. et al. Distinct effects of PIAS proteins on androgen-mediated gene activation in prostate cancer cells. Oncogene 20, 3880–3887 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Joazeiro, C. A. & Weissman, A. M. RING finger proteins: mediators of ubiquitin ligase activity. Cell 102, 549–552 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Kotaja, N., Karvonen, U., Janne, O. A. & Palvimo, J. J. PIAS proteins modulate transcription factors by functioning as SUMO-1 ligases. Mol. Cell. Biol. 22, 5222–5234 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Duval, D., Duval, G., Kedinger, C., Poch, O. & Boeuf, H. The 'PINIT' motif, of a newly identified conserved domain of the PIAS protein family, is essential for nuclear retention of PIAS3L. FEBS Lett. 554, 111–118 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Wong, K. A. et al. Protein inhibitor of activated STAT Y (PIASy) and a splice variant lacking exon 6 enhance sumoylation but are not essential for embryogenesis and adult life. Mol. Cell. Biol. 24, 5577–5586 (2004). Together with reference 53, this paper reports findings from the deletion of the gene that encodes PIASy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Minty, A., Dumont, X., Kaghad, M. & Caput, D. Covalent modification of p73α by SUMO-1. Two-hybrid screening with p73 identifies novel SUMO-1-interacting proteins and a SUMO-1 interaction motif. J. Biol. Chem. 275, 36316–36323 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Liu, B. et al. Negative regulation of NF-κB signaling by PIAS1. Mol. Cell. Biol. 25, 1113–1123 (2005). Together with reference 35, this paper reports the characterization of Pias1−/− mice and provides evidence to show that PIAS1 has a physiological role in the negative regulation of STAT and NF-κB signalling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liao, J., Fu, Y. & Shuai, K. Distinct roles of the NH2- and COOH-terminal domains of the protein inhibitor of activated signal transducer and activator of transcription (STAT)1 (PIAS1) in cytokine-induced PIAS1–Stat1 interaction. Proc. Natl Acad. Sci. USA 97, 5267–5272 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu, B. et al. PIAS1 selectively inhibits interferon-inducible genes and is important in innate immunity. Nature Immunol. 5, 891–898 (2004).

    Article  CAS  Google Scholar 

  36. Tussie-Luna, M. I., Bayarsaihan, D., Seto, E., Ruddle, F. H. & Roy, A. L. Physical and functional interactions of histone deacetylase 3 with TFII-I family proteins and PIASxβ. Proc. Natl Acad. Sci. USA 99, 12807–12812 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Arora, T. et al. PIASx is a transcriptional co-repressor of signal transducer and activator of transcription 4. J. Biol. Chem. 278, 21327–21330 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Long, J. et al. Repression of Smad transcriptional activity by PIASy, an inhibitor of activated STAT. Proc. Natl Acad. Sci. USA 100, 9791–9796 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gross, M., Yang, R., Top, I., Gasper, C. & Shuai, K. PIASy-mediated repression of the androgen receptor is independent of sumoylation. Oncogene 23, 3059–3066 (2004). References 37–39 indicate the involvement of HDACs in PIASy-mediated gene repression.

    Article  CAS  PubMed  Google Scholar 

  40. Johnson, E. S. Protein modification by SUMO. Annu. Rev. Biochem. 73, 355–382 (2004). Reference 41 reports the first identification of a SUMO E3 ligase and indicates that PIAS proteins have SUMO-E3-ligase activity.

    Article  CAS  PubMed  Google Scholar 

  41. Johnson, E. S. & Gupta, A. A. An E3-like factor that promotes SUMO conjugation to the yeast septins. Cell 106, 735–744 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Nishida, T. & Yasuda, H. PIAS1 and PIASxα function as SUMO-E3 ligases toward androgen receptor, and repress androgen receptor-dependent transcription. J. Biol. Chem. 277, 41311–41317 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Ungureanu, D. et al. PIAS proteins promote SUMO-1 conjugation to STAT1. Blood 102, 3311–3313 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Rogers, R. S., Horvath, C. M. & Matunis, M. J. SUMO modification of STAT1 and its role in PIAS-mediated inhibition of gene activation. J. Biol. Chem. 278, 30091–30097 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Ungureanu, D., Vanhatupa, S., Gronholm, J., Palvimo, J. J. & Silvennoinen, O. SUMO-1 conjugation selectively modulates STAT1-mediated gene responses. Blood 106, 224–226 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Long, J., Wang, G., Matsuura, I., He, D. & Liu, F. Activation of Smad transcriptional activity by protein inhibitor of activated STAT3 (PIAS3). Proc. Natl Acad. Sci. USA 101, 99–104 (2004). This study provides the first evidence to indicate that PIAS3 can activate transcription by recruiting p300 or CBP.

    Article  CAS  PubMed  Google Scholar 

  47. Darnell, J. E. Jr. STATs and gene regulation. Science 277, 1630–1635 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Simoncic, P. D., Lee-Loy, A., Barber, D. L., Tremblay, M. L. & McGlade, C. J. The T cell protein tyrosine phosphatase is a negative regulator of Janus family kinases 1 and 3. Curr. Biol. 12, 446–453 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. ten Hoeve, J. et al. Identification of a nuclear Stat1 protein tyrosine phosphatase. Mol. Cell. Biol. 22, 5662–5668 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mohr, S. E. & Boswell, R. E. Zimp encodes a homologue of mouse Miz1 and PIAS3 and is an essential gene in Drosophila melanogaster. Gene 229, 109–116 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Betz, A., Lampen, N., Martinek, S., Young, M. W. & Darnell, J. E. Jr. A Drosophila PIAS homologue negatively regulates stat92E. Proc. Natl Acad. Sci. USA 98, 9563–9568 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hari, K. L., Cook, K. R. & Karpen, G. H. The Drosophila Su(var)2–10 locus regulates chromosome structure and function and encodes a member of the PIAS protein family. Genes Dev. 15, 1334–1348 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Roth, W. et al. PIASy-deficient mice display modest defects in IFN and Wnt signaling. J. Immunol. 173, 6189–6199 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Karin, M. & Ben-Neriah, Y. Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu. Rev. Immunol. 18, 621–663 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. May, M. J. & Ghosh, S. Rel/NF-κB and IκB proteins: an overview. Semin. Cancer Biol. 8, 63–73 (1997).

    Article  CAS  PubMed  Google Scholar 

  56. Jang, H. D., Yoon, K., Shin, Y. J., Kim, J. & Lee, S. Y. PIAS3 suppresses NF-κB-mediated transcription by interacting with the p65/RelA subunit. J. Biol. Chem. 279, 24873–24880 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Derynck, R. & Zhang, Y. E. Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature 425, 577–584 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Imoto, S., Sugiyama, K., Sato, N., Yamamoto, T. & Matsuda, T. Regulation of TGF-β signaling by protein inhibitor of STATy through Smad3. J. Biol. Chem. 278, 34253–34258 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Lee, P. S., Chang, C., Liu, D. & Derynck, R. Sumoylation of Smad4, the common Smad mediator of transforming growth factor-β family signaling. J. Biol. Chem. 278, 27853–27863 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Ohshima, T. & Shimotohno, K. Transforming growth factor-β-mediated signaling via the p38 MAP kinase pathway activates Smad-dependent transcription through SUMO-1 modification of Smad4. J. Biol. Chem. 278, 50833–50842 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Liang, M., Melchior, F., Feng, X. H. & Lin, X. Regulation of Smad4 sumoylation and transforming growth factor-β signaling by protein inhibitor of activated STAT1. J. Biol. Chem. 279, 22857–22865 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Daniels, M., Shimizu, K., Zorn, A. M. & Ohnuma, S. Negative regulation of Smad2 by PIASy is required for proper Xenopus mesoderm formation. Development 131, 5613–5626 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Melino, G., Lu, X., Gasco, M., Crook, T. & Knight, R. A. Functional regulation of p73 and p63: development and cancer. Trends Biochem. Sci. 28, 663–670 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Urist, M. & Prives, C. p53 leans on its siblings. Cancer Cell 1, 311–313 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Levine, A. J. p53, the cellular gatekeeper for growth and division. Cell 88, 323–331 (1997).

    Article  CAS  PubMed  Google Scholar 

  66. Sengupta, S. & Harris, C. C. p53: traffic cop at the crossroads of DNA repair and recombination. Nature Rev. Mol. Cell Biol. 6, 44–55 (2005).

    Article  CAS  Google Scholar 

  67. Vousden, K. H. & Prives, C. p53 and prognosis: new insights and further complexity. Cell 120, 7–10 (2005).

    CAS  PubMed  Google Scholar 

  68. Megidish, T., Xu, J. H. & Xu, C. W. Activation of p53 by protein inhibitor of activated Stat1 (PIAS1). J. Biol. Chem. 277, 8255–8259 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Schmidt, D. & Muller, S. Members of the PIAS family act as SUMO ligases for c-Jun and p53 and repress p53 activity. Proc. Natl Acad. Sci. USA 99, 2872–2877 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kahyo, T., Nishida, T. & Yasuda, H. Involvement of PIAS1 in the sumoylation of tumor suppressor p53. Mol. Cell 8, 713–718 (2001). This paper provides the first evidence to show that a mammalian PIAS protein has SUMO-E3-ligase activity.

    Article  CAS  PubMed  Google Scholar 

  71. Rossi, M. et al. The ubiquitin-protein ligase Itch regulates p73 stability. EMBO J. 24, 836–848 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Melino, G. p73, the 'assistant' guardian of the genome? Ann. NY Acad. Sci. 1010, 9–15 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Moll, U. M. & Slade, N. p63 and p73: roles in development and tumor formation. Mol. Cancer Res. 2, 371–386 (2004).

    CAS  PubMed  Google Scholar 

  74. Munarriz, E. et al. PIAS-1 is a checkpoint regulator which affects exit from G1 and G2 by sumoylation of p73. Mol. Cell. Biol. 24, 10593–10610 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Honda, R., Tanaka, H. & Yasuda, H. Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett. 420, 25–27 (1997).

    Article  CAS  PubMed  Google Scholar 

  76. Prives, C. Signaling to p53: breaking the MDM2–p53 circuit. Cell 95, 5–8 (1998).

    Article  CAS  PubMed  Google Scholar 

  77. Yang, Y., Li, C. C. & Weissman, A. M. Regulating the p53 system through ubiquitination. Oncogene 23, 2096–2106 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Miyauchi, Y., Yogosawa, S., Honda, R., Nishida, T. & Yasuda, H. Sumoylation of Mdm2 by protein inhibitor of activated STAT (PIAS) and RanBP2 enzymes. J. Biol. Chem. 277, 50131–50136 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Dobreva, G., Dambacher, J. & Grosschedl, R. SUMO modification of a novel MAR-binding protein, SATB2, modulates immunoglobulin μ gene expression. Genes Dev. 17, 3048–3061 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Morii, E. et al. Abnormal expression of mouse mast cell protease 5 gene in cultured mast cells derived from mutant mi/mi mice. Blood 90, 3057–3066 (1997).

    CAS  PubMed  Google Scholar 

  81. Morii, E. et al. Regulation of mouse mast cell protease 6 gene expression by transcription factor encoded by the mi locus. Blood 88, 2488–2494 (1996).

    CAS  PubMed  Google Scholar 

  82. Levy, C., Nechushtan, H. & Razin, E. A new role for the STAT3 inhibitor, PIAS3: a repressor of microphthalmia transcription factor. J. Biol. Chem. 277, 1962–1966 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Levy, C., Sonnenblick, A. & Razin, E. Role played by microphthalmia transcription factor phosphorylation and its Zip domain in its transcriptional inhibition by PIAS3. Mol. Cell. Biol. 23, 9073–9080 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sonnenblick, A., Levy, C. & Razin, E. Interplay between MITF, PIAS3, and STAT3 in mast cells and melanocytes. Mol. Cell. Biol. 24, 10584–10592 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chih, D. Y., Chumakov, A. M., Park, D. J., Silla, A. G. & Koeffler, H. P. Modulation of mRNA expression of a novel human myeloid-selective CCAAT/enhancer binding protein gene (C/EBPε). Blood 90, 2987–2994 (1997).

    CAS  PubMed  Google Scholar 

  86. Williams, S. C. et al. C/EBPε is a myeloid-specific activator of cytokine, chemokine, and macrophage-colony-stimulating factor receptor genes. J. Biol. Chem. 273, 13493–13501 (1998).

    Article  CAS  PubMed  Google Scholar 

  87. Tavor, S. et al. Macrophage functional maturation and cytokine production are impaired in C/EBPε-deficient mice. Blood 99, 1794–1801 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Yamanaka, R. et al. Impaired granulopoiesis, myelodysplasia, and early lethality in CCAAT/enhancer binding protein ε-deficient mice. Proc. Natl Acad. Sci. USA 94, 13187–13192 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chih, D. Y. et al. Protein partners of C/EBPε. Exp. Hematol. 32, 1173–1181 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Kim, J. et al. Repression and coactivation of CCAAT/enhancer binding protein ε by sumoylation and protein inhibitor of activated STATx proteins. J. Biol. Chem. 280, 12246–12254 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Chang, L. K. et al. Post-translational modification of Rta of Epstein–Barr virus by SUMO-1. J. Biol. Chem. 279, 38803–38812 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Lee, J. M. et al. PIAS1 enhances SUMO-1 modification and the transactivation activity of the major immediate-early IE2 protein of human cytomegalovirus. FEBS Lett. 555, 322–328 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Lee, B. H. et al. Association of the nucleocapsid protein of the Seoul and Hantaan hantaviruses with small ubiquitin-like modifier-1-related molecules. Virus Res. 98, 83–91 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Rosas-Acosta, G., Langereis, M. A., Deyrieux, A. & Wilson, V. G. Proteins of the PIAS family enhance the sumoylation of the papillomavirus E1 protein. Virology 331, 190–203 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Kim, K. I., Baek, S. H. & Chung, C. H. Versatile protein tag, SUMO: its enzymology and biological function. J. Cell. Physiol. 191, 257–268 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Melchior, F. SUMO — nonclassical ubiquitin. Annu. Rev. Cell Dev. Biol. 16, 591–626 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Rodriguez, M. S., Dargemont, C. & Hay, R. T. SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting. J. Biol. Chem. 276, 12654–12659 (2001).

    Article  CAS  PubMed  Google Scholar 

  98. Hoege, C., Pfander, B., Moldovan, G. L., Pyrowolakis, G. & Jentsch, S. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419, 135–141 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Wilson, V. G. & Rangasamy, D. Intracellular targeting of proteins by sumoylation. Exp. Cell Res. 271, 57–65 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Tatham, M. H. et al. Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J. Biol. Chem. 276, 35368–35374 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Pichler, A., Gast, A., Seeler, J. S., Dejean, A. & Melchior, F. The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell 108, 109–120 (2002).

    Article  CAS  PubMed  Google Scholar 

  102. Rycyzyn, M. A. & Clevenger, C. V. The intranuclear prolactin/cyclophilin B complex as a transcriptional inducer. Proc. Natl Acad. Sci. USA 99, 6790–6795 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Rodel, B. et al. The zinc finger protein Gfi-1 can enhance STAT3 signaling by interacting with the STAT3 inhibitor PIAS3. EMBO J. 19, 5845–5855 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Nojiri, S. et al. ATBF1 enhances the suppression of STAT3 signaling by interaction with PIAS3. Biochem. Biophys. Res. Commun. 314, 97–103 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Nakagawa, K. & Yokosawa, H. PIAS3 induces SUMO-1 modification and transcriptional repression of IRF-1. FEBS Lett. 530, 204–208 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Zhang, J., Xu, L. G., Han, K. J., Wei, X. & Shu, H. B. PIASy represses TRIF-induced ISRE and NF-κB activation but not apoptosis. FEBS Lett. 570, 97–101 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Dahle, O. et al. Transactivation properties of c-Myb are critically dependent on two SUMO-1 acceptor sites that are conjugated in a PIASy enhanced manner. Eur. J. Biochem. 270, 1338–1348 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Van Dyck, F., Delvaux, E. L., Van de Ven, W. J. & Chavez, M. V. Repression of the transactivating capacity of the oncoprotein PLAG1 by SUMOylation. J. Biol. Chem. 279, 36121–36131 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

K.S. is supported by grants from the National Institutes of Health (United States). B.L. is a special fellow of The Leukemia & Lymphoma Society (United States).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Shuai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

DATABASES

Entrez Gene

C/EBP-ε

MDM2

MITF

p50

p53

p65

p73

PIAS1

PIAS3

PIASx

PIASy

SATB2

SMAD2

SMAD3

SMAD4

STAT1

STAT3

STAT4

SUMO1

SUMO2

SUMO3

FURTHER INFORMATION

Ke Shuai's homepage

Glossary

SMALL-UBIQUITIN-LIKE-MODIFIER E3 LIGASE

(SUMO E3 ligase). An enzyme that catalyses the conjugation of SUMO to a protein substrate.

SCAFFOLD-ATTACHMENT REGION

(SAR). Also known as matrix-attachment region. A DNA element in the eukaryotic genome that attaches the chromatin fibre to the nuclear scaffold (which is also known as the nuclear matrix).

NUCLEAR SCAFFOLD

Also known as nuclear matrix. A subnuclear structure that consists of the proteinaceous network of the nuclues.

CHROMATIN-IMMUNOPRECIPITATION ASSAY

(ChIP assay). A technique for the detection of proteins bound to specific regions of chromatin. These assays involve chemically crosslinking bound proteins to the underlying DNA sequences, followed by immunoprecipitation with an antibody that is specific for the crosslinked protein.

NUCLEAR BODY

A subnuclear structure that is implicated in transcriptional repression, transcriptional activation and protein degradation.

MOBILITY GEL-SHIFT ANALYSIS

A technique to detect the DNA-binding activity of a protein in vitro. This assay involves the mixing of proteins with a specific DNA sequence, followed by the separation of this mixture by electrophoresis.

LUCIFERASE-REPORTER ASSAY

A method to measure the transcriptional response. This assay uses a promoter from a gene of interest fused to the gene that encodes luciferase.

YEAST THREE-HYBRID SCREEN

A system that is used to study ternary protein complexes. This technique involves three proteins that allow or prevent the formation of a functional transcriptional-activator complex.

MORPHOLINO OLIGONUCLEOTIDE

A 25-base-pair DNA analogue that operates by blocking mRNA translation or mRNA splicing and thereby inducing antisense effects. These oligonucleotides operate only when they are complementary either to a sequence that is located between the 5′ untranslated region and the first 25 bases 3′ of the AUG start site or to the sequence at a splice junction.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shuai, K., Liu, B. Regulation of gene-activation pathways by PIAS proteins in the immune system. Nat Rev Immunol 5, 593–605 (2005). https://doi.org/10.1038/nri1667

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1667

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing